欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • HCPL-7800A-000E图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HCPL-7800A-000E 现货库存
  • 数量6851 
  • 厂家AVAGO 
  • 封装DIP8 
  • 批号24+ 
  • 全新原装现货,可开增值税发票,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • HCPL-7800A图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HCPL-7800A 现货库存
  • 数量5000 
  • 厂家AVAGO 
  • 封装DIPSOP 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • HCPL-7800A-000E图
  • 北京罗彻斯特电子科技有限公司

     该会员已使用本站18年以上
  • HCPL-7800A-000E 现货库存
  • 数量2000 
  • 厂家AVAGO 
  • 封装DIP8 
  • 批号1528+ 
  • ▊真实原装现货▊可出售样品及配套服务
  • QQ:674627925QQ:674627925 复制
    QQ:372787046QQ:372787046 复制
  • 13261827936军工芯片优势 QQ:674627925QQ:372787046
  • HCPL-7800-300E图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • HCPL-7800-300E 现货库存
  • 数量29500 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • HCPL-7800A-000E图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • HCPL-7800A-000E 现货库存
  • 数量865000 
  • 厂家AVAGO 
  • 封装DIP8 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • HCPL-7800-500E图
  • 集好芯城

     该会员已使用本站13年以上
  • HCPL-7800-500E 现货库存
  • 数量23626 
  • 厂家Avago(安华高) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • HCPL-7800A-000E图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • HCPL-7800A-000E 现货库存
  • 数量9000 
  • 厂家AVAGOTECHNOLOGIES 
  • 封装 
  • 批号2021+ 
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • HCPL-7800-500E图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • HCPL-7800-500E 现货库存
  • 数量8000 
  • 厂家Avago(安华高) 
  • 封装SMD-8 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • HCPL-7800A-500E图
  • 深圳市恒嘉威智能科技有限公司

     该会员已使用本站7年以上
  • HCPL-7800A-500E 现货库存
  • 数量14324 
  • 厂家AVAGO/安华高 
  • 封装SOP-8 
  • 批号21+ 
  • 原装恒嘉威价格最实在
  • QQ:1036846627QQ:1036846627 复制
    QQ:2274045202QQ:2274045202 复制
  • -0755-23942980 QQ:1036846627QQ:2274045202
  • HCPL-7800-500E图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • HCPL-7800-500E 现货库存
  • 数量1958 
  • 厂家AVAGO 
  • 封装原包 
  • 批号2021+ 
  • 现货特价来电准没错
  • QQ:1220294187QQ:1220294187 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-89345486 QQ:1220294187QQ:1017582752
  • HCPL-7800A-500E【特价现货】图
  • 齐创科技(上海北京青岛)有限公司

     该会员已使用本站14年以上
  • HCPL-7800A-500E【特价现货】 现货库存
  • 数量23680 
  • 厂家AVAGO代理 
  • 封装SOP8 
  • 批号24+热销 
  • 中国区代理全新热卖原装正品
  • QQ:2394092314QQ:2394092314 复制
    QQ:792179102QQ:792179102 复制
  • 021-62153656 QQ:2394092314QQ:792179102
  • HCPL-7800A-500E图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • HCPL-7800A-500E 现货库存
  • 数量5898 
  • 厂家AVAGO/安华高 
  • 封装SOP-8 
  • 批号22+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • HCPL-7800-500E图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • HCPL-7800-500E 现货库存
  • 数量4500 
  • 厂家AVAGO/安华高 
  • 封装SOP-8 
  • 批号22+ 
  • 原装正品现货,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • HCPL-7800A-000E图
  • 深圳市芳益电子科技有限公司

     该会员已使用本站10年以上
  • HCPL-7800A-000E 现货热卖
  • 数量780 
  • 厂家AVAGO 
  • 封装DIP8 
  • 批号2023+ 
  • 原装正品 量多价优
  • QQ:498361569QQ:498361569 复制
    QQ:389337416QQ:389337416 复制
  • 0755-13631573466 QQ:498361569QQ:389337416
  • HCPL-7800-500E图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • HCPL-7800-500E 优势库存
  • 数量7000 
  • 厂家ADI 
  • 封装N/A 
  • 批号22+ 
  • 只做原装,现货库存,价格优势
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • HCPL-7800-500E图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • HCPL-7800-500E 优势库存
  • 数量6800 
  • 厂家AVAGO/安华高 
  • 封装SOP-8 
  • 批号22+ 
  • 原装现货,专票可开,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • HCPL-7800-500E图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • HCPL-7800-500E 热卖库存
  • 数量4076 
  • 厂家AVAGO(安华高) 
  • 封装22+ 
  • 批号SMD-8 
  • 全新原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • HCPL-7800-000E图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • HCPL-7800-000E 热卖库存
  • 数量2508 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号1803+ 
  • ?专注AVAGO!实单可谈!
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • HCPL-7800图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • HCPL-7800
  • 数量5300 
  • 厂家Agilent Technologies Inc 
  • 封装 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • HCPL-7800#300图
  • 深圳市科雨电子有限公司

     该会员已使用本站8年以上
  • HCPL-7800#300
  • 数量450 
  • 厂家BROADCOM 
  • 封装DIP-8 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!单价:184元
  • QQ:97671959QQ:97671959 复制
  • 171-4729-9698(微信同号) QQ:97671959
  • HCPL-7800图
  • 深圳市科雨电子有限公司

     该会员已使用本站8年以上
  • HCPL-7800
  • 数量450 
  • 厂家BROADCOM 
  • 封装DIP-8 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!单价:183元
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805
  • HCPL-7800图
  • 深圳市中利达电子科技有限公司

     该会员已使用本站11年以上
  • HCPL-7800
  • 数量10000 
  • 厂家AVAGO/安华高 
  • 封装DIP-8 
  • 批号24+ 
  • 原装进口现货 假一罚十
  • QQ:1902134819QQ:1902134819 复制
    QQ:2881689472QQ:2881689472 复制
  • 0755-83200645 QQ:1902134819QQ:2881689472
  • HCPL-7800-500E图
  • 深圳市勤思达科技有限公司

     该会员已使用本站14年以上
  • HCPL-7800-500E
  • 数量21587 
  • 厂家AVAGO/安华高 
  • 封装SOP 
  • 批号24+ 
  • 全新现货可以开税票
  • QQ:2881239445QQ:2881239445 复制
  • 0755-83264115 QQ:2881239445
  • HCPL-7800A-500E图
  • 深圳市芯必得电子科技有限公司

     该会员已使用本站10年以上
  • HCPL-7800A-500E
  • 数量90000 
  • 厂家AVAGO/安华高 
  • 封装SOP-8 
  • 批号22+ 
  • 只做原装全系列供应可提供技术支持
  • QQ:2853778621QQ:2853778621 复制
  • 0755-82203002 QQ:2853778621
  • HCPL-7800A-000E图
  • 麦尔集团

     该会员已使用本站10年以上
  • HCPL-7800A-000E
  • 数量500 
  • 厂家AVAGO 
  • 封装十五周年庆典 
  • 批号N/A 
  • 原装现货,正品原装
  • QQ:1716771758QQ:1716771758 复制
    QQ:2574148071QQ:2574148071 复制
  • 88266576 QQ:1716771758QQ:2574148071
  • HCPL-7800图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • HCPL-7800
  • 数量5800 
  • 厂家AVAGO 
  • 封装DIP-8 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • HCPL-7800-000E图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • HCPL-7800-000E
  • 数量15548 
  • 厂家AVAGO/安华高 
  • 封装DIP 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • HCPL-7800-000ME图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • HCPL-7800-000ME
  • 数量26890 
  • 厂家BROADCOM 
  • 封装DIP 
  • 批号全新环保批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • HCPL-7800图
  • 深圳市顺兴源微电子商行

     该会员已使用本站7年以上
  • HCPL-7800
  • 数量6890000 
  • 厂家Agilent 
  • 封装SOP8 
  • 批号16+ 
  • 原装现货,低价出售
  • QQ:3475025894QQ:3475025894 复制
    QQ:3504055308QQ:3504055308 复制
  • 0755-82723655 QQ:3475025894QQ:3504055308
  • HCPL-7800图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • HCPL-7800
  • 数量57 
  • 厂家HP 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • HCPL-7800A  SOP图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • HCPL-7800A SOP
  • 数量5000 
  • 厂家安捷伦 
  • 封装SOP-8 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • HCPL-7800A /A7800A图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • HCPL-7800A /A7800A
  • 数量6800 
  • 厂家AGILENT 
  • 封装SOP-8 
  • 批号0027+ 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • HCPL-7800-000E图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • HCPL-7800-000E
  • 数量12500 
  • 厂家AVAGO/安华高 
  • 封装NA 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • HCPL-7800-000E图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • HCPL-7800-000E
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • HCPL-7800(DIP)图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • HCPL-7800(DIP)
  • 数量10184 
  • 厂家√ 欧美㊣品 
  • 封装贴◆插 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • HCPL-7800-500E图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HCPL-7800-500E
  • 数量5369 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • HCPL-7800-300E图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • HCPL-7800-300E
  • 数量35898 
  • 厂家BroadcomLimited 
  • 封装8-DIP 
  • 批号21+ 
  • ■原装现货长期供应电子元器件代理经销WWW.ZN-IC.COM
  • QQ:2881664480QQ:2881664480 复制
  • 0755-83532193 QQ:2881664480
  • HCPL-7800#50Y图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • HCPL-7800#50Y
  • 数量68000 
  • 厂家HP 
  • 封装SOP8 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • HCPL-7800-300E图
  • 深圳市誉兴微科技有限公司

     该会员已使用本站4年以上
  • HCPL-7800-300E
  • 数量12600 
  • 厂家 
  • 封装原厂封装 
  • 批号22+ 
  • 深圳原装现货,支持实单
  • QQ:2252757071QQ:2252757071 复制
  • 0755-82579431 QQ:2252757071
  • HCPL-7800#000E图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • HCPL-7800#000E
  • 数量24289 
  • 厂家AGILENT 
  • 封装DIP-8 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • HCPL-7800$300图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • HCPL-7800$300
  • 数量600 
  • 厂家AV9 
  • 封装 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • HCPL-7800图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • HCPL-7800
  • 数量69000 
  • 厂家AGI 
  • 封装SOP-8 
  • 批号16+ 
  • 中航军工集团-只做原装
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792

产品型号HCPL-7800的概述

HCPL-7800芯片的概述 HCPL-7800是一款高性能的光耦合器芯片,由安森美半导体(ON Semiconductor)生产。这种组件在工业控制、数据通信以及信号隔离等领域得到了广泛应用。HCPL-7800被设计为在电气隔离的情况下,提供稳定的信号传输。它作为一种光耦合器,通过光信号的方式在输入和输出端之间实现电气隔离,从而有效地保护下游电路和设备,防止高压或噪音对敏感设备的影响。 该芯片通常用于隔离数字信号和高压直流电源,能够处理高达1500V的瞬时隔离电压。HCPL-7800的内部结构相对简单,集成了发光二极管(LED)和光电接收器,使其在紧凑的外形中达到良好的性能。 HCPL-7800的详细参数 HCPL-7800具有以下主要技术参数: - 输入电流(IF):需要偏置电流来驱动内部LED,一般在5mA至20mA之间。 - 输出电压(VO):可以处理高达30V的输出电压,适用...

产品型号HCPL-7800的Datasheet PDF文件预览

H
High CMR Isolation Amplifiers  
Technical Data  
HCPL-7800  
HCPL-7800A  
HCPL-7800B  
applications, we recommend the  
HCPL-7800 which exhibits a  
part-to-part gain tolerance of  
± 5%. For precision applications,  
HP offers the HCPL-7800A and  
HCPL-7800B, each with part-to-  
part gain tolerances of ± 1%.  
Features  
• 15 kV/µs Common-Mode  
Rejection at VCM = 1000 V*  
• Compact, Auto-Insertable  
Standard 8-pin DIP Package  
• 4.6 µV/°C Offset Drift vs.  
Temperature  
• 0.9 mV Input Offset Voltage  
• 85 kHz Bandwidth  
• 0.1% Nonlinearity  
• Worldwide Safety Approval:  
UL 1577 (3750 V rms/1 min),  
VDE 0884 and CSA  
• Advanced Sigma-Delta(Σ)  
A/D Converter Technology  
• Fully Differential Circuit  
Topology  
• 1 µm CMOS IC Technology  
• Switch-Mode Power Supply  
Signal Isolation  
• General Purpose Analog  
Signal Isolation  
• Transducer Isolation  
Description  
The HCPL-7800 high CMR  
isolation amplifier provides a  
unique combination of features  
ideally suited for motor control  
circuit designers. The product  
provides the precision and  
stability needed to accurately  
monitor motor current in high-  
noise motor control environ-  
ments, providing for smoother  
control (less “torque ripple”) in  
various types of motor control  
applications.  
The HCPL-7800 utilizes sigma-  
delta (Σ∆) analog-to-digital  
converter technology, chopper  
stabilized amplifiers, and a fully  
differential circuit topology  
fabricated using HP’s 1 µm  
CMOS IC process. The part also  
couples our high-efficiency, high-  
speed AlGaAs LED to a high-  
speed, noise-shielded detector  
Functional Diagram  
Applications  
• Motor Phase Current  
Sensing  
• General Purpose Current  
Sensing  
• High-Voltage Power Source  
Voltage Monitoring  
I
I
DD2  
DD1  
This product paves the way for a  
smaller, lighter, easier to produce,  
high noise rejection, low cost  
solution to motor current  
sensing. The product can also be  
used for general analog signal  
isolation applications requiring  
high accuracy, stability and  
1
8
V
V
DD1  
DD2  
I
I
IN  
O
7
6
2
3
V
V
V
IN+  
+
-
+
-
OUT+  
OUT-  
V
IN-  
*The terms common-mode rejection  
(CMR) and isolation-mode rejection (IMR)  
are used interchangeably throughout this  
data sheet.  
4
5
linearity under similarly severe  
noise conditions. For general  
GND1  
GND2  
CMR SHIELD  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
1-216  
5965-3592E  
using our patented “light-pipe”  
optocoupler packaging  
technology.  
rejection, as well as excellent  
offset and gain accuracy and  
stability over time and tempera-  
ture. This performance is  
delivered in a compact, auto-  
insertable, industry standard 8-  
pin DIP package that meets  
worldwide regulatory safety  
standards (gull-wing surface  
mount option #300 also  
available).  
Together, these features deliver  
unequaled isolation-mode noise  
Ordering Information:  
HCPL-7800x  
No Specifier = ± 5% Gain Tol.; Mean Gain Value = 8.00  
A = ± 1% Gain Tol.; Mean Gain Value = 7.93  
B = ± 1% Gain Tol.; Mean Gain Value = 8.07  
Option yyy  
300 = Gull Wing Surface Mount Lead Option  
500 = Tape/Reel Package Option (1 k min.)  
Option datasheets available. Contact your Hewlett-Packard sales representative or authorized distributor for  
information.  
Package Outline Drawings  
Standard DIP Package  
9.40 (0.370)  
9.90 (0.390)  
8
1
7
6
5
4
TYPE NUMBER*  
DATE CODE  
0.20 (0.008)  
0.33 (0.013)  
6.10 (0.240)  
6.60 (0.260)  
HP 7800  
YYWW  
7.36 (0.290)  
7.88 (0.310)  
5° TYP.  
2
3
PIN ONE  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
4.70 (0.185) MAX.  
PIN DIAGRAM  
1
2
V
V
8
7
DD1  
IN+  
DD2  
PIN ONE  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
V
V
V
OUT+  
OUT–  
V
3
4
6
5
IN–  
0.76 (0.030)  
1.24 (0.049)  
0.65 (0.025) MAX.  
GND1 GND2  
2.28 (0.090)  
2.80 (0.110)  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
* TYPE NUMBER FOR: HCPL-7800 = 7800  
HCPL-7800A = 7800A  
HCPL-7800B = 7800B  
1-217  
Gull Wing Surface Mount Option 300*  
PIN LOCATION (FOR REFERENCE ONLY)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.02 (0.040)  
1.19 (0.047)  
7
6
5
8
1
4.83  
(0.190)  
TYP.  
HP 7800  
YYWW  
6.350 ± 0.25  
(0.250 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
2
3
4
MOLDED  
0.380 (0.015)  
0.635 (0.025)  
1.19 (0.047)  
1.78 (0.070)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
0.20 (0.008)  
0.33 (0.013)  
4.19  
MAX.  
(0.165)  
0.635 ± 0.25  
(0.025 ± 0.010)  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.51 ± 0.130  
(0.020 ± 0.005)  
12° NOM.  
2.540  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
TOLERANCES (UNLESS OTHERWISE SPECIFIED): xx.xx = 0.01  
xx.xxx = 0.005  
LEAD COPLANARITY  
MAXIMUM: 0.102 (0.004)  
* REFER TO OPTION 300 DATA SHEET FOR MORE INFORMATION.  
Maximum Solder Reflow Thermal Profile  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
T = 145°C, 1°C/SEC  
T = 115°C, 0.3°C/SEC  
T = 100°C, 1.5°C/SEC  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
TIME – MINUTES  
(NOTE: USE OF NON-CHLORINE ACTIVATED FLUXES IS RECOMMENDED.)  
1-218  
Regulatory Information  
The HCPL-7800 has been  
approved by the following  
organizations:  
UL  
CSA  
VDE  
Recognized under UL 1577,  
Component Recognition  
Program, File E55361.  
Approved under CSA Component  
Acceptance Notice #5, File CA  
88324.  
Approved according to VDE  
0884/06.92.  
Insulation and Safety Related Specifications  
Parameter  
Symbol Value Units  
Conditions  
Min. External Air Gap  
(External Clearance)  
Min. External Tracking  
Path (External Creepage)  
Min. Internal Plastic Gap  
(Internal Clearance)  
L(IO1)  
7.4  
8.0  
0.5  
mm  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance path along body  
Through insulation distance, conductor to conductor,  
usually the direct distance between the photoemitter  
and photodetector inside the optocoupler cavity  
L(IO2)  
Tracking Resistance  
(Comparative Tracking  
Index)  
CTI  
175  
III a  
V
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Option 300 – surface mount classification is Class A in accordance with CECC 00802.  
VDE 0884 (06.92) Insulation Characteristics  
Description  
Symbol  
Characteristic  
Unit  
Installation classification per DIN VDE 0110, Table 1  
for rated mains voltage 300 V rms  
for rated mains voltage 600 V rms  
I-IV  
I-III  
Climatic Classification  
Pollution Degree (DIN VDE 0110, Table 1)*  
Maximum Working Insulation Voltage  
40/100/21  
2
V
IORM  
848  
V peak  
V peak  
Input to Output Test Voltage, Method b**  
VPR = 1.875 x VIORM, Production test with tp = 1 sec,  
Partial discharge < 5 pC  
VPR  
1591  
Input to Output Test Voltage, Method a**  
VPR = 1.5 x VIORM, Type and sample test with tp = 60 sec,  
Partial discharge < 5 pC  
Highest Allowable Overvoltage**  
(Transient Overvoltage tTR = 10 sec)  
VPR  
1273  
6000  
V peak  
V peak  
VTR  
Safety-limiting values (Maximum values allowed in the event  
of a failure, also see Figure 27)  
Case Temperature  
Input Power  
TS  
175  
80  
°C  
mW  
mW  
PS,Input  
Output Power  
PS,Output  
250  
Insulation Resistance at TS, VIO = 500 V  
RS  
1x1012  
*This part may also be used in Pollution Degree 3 environments where the rated mains voltage is 300 V rms (per DIN VDE 0110).  
**Refer to the front of the optocoupler section of the current catalog for a more detailed description of VDE 0884 and other product  
safety requirements.  
Note: Optocouplers providing safe electrical separation per VDE 0884 do so only within the safety-limiting values to which they are  
qualified. Protective cut-out switches must be used to ensure that the safety limits are not exceeded.  
1-219  
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Symbol  
TS  
Min.  
-55  
Max.  
125  
Unit  
°C  
°C  
V
Note  
Ambient Operating Temperature  
Supply Voltages  
TA  
-40  
0.0  
100  
5.5  
VDD1, VDD2  
Steady-State Input Voltage  
Two Second Transient Input Voltage  
Output Voltages  
V
IN+, V  
-2.0  
-6.0  
-0.5  
VDD1 +0.5  
V
IN-  
VOUT+, VOUT-  
TLS  
VDD2 +0.5  
260  
V
°C  
Lead Solder Temperature  
1
(1.6 mm below seating plane, 10 sec.)  
Reflow Temperature Profile  
See Package Outline Drawings Section  
Recommended Operating Conditions  
Parameter  
Ambient Operating Temperature  
Supply Voltages  
Symbol  
Min.  
-40  
Max.  
85  
Unit  
°C  
Note  
TA  
2
3
4
5
VDD1, VDD2  
4.5  
-200  
5.5  
200  
1
V
mV  
mA  
Input Voltage  
V
IN+, V  
IN-  
Output Current  
|IO|  
1-220  
DC Electrical Specifications  
All specifications and figures are at the nominal operating condition of VIN+ = 0 V, VIN- = 0 V, TA = 25°C, VDD1  
=
5.0 V, and VDD2 = 5.0 V, unless otherwise noted.  
Parameter  
Input Offset Voltage  
Input Offset Drift vs.  
Temperature  
Abs. Value of Input  
Symbol  
Min.  
-1.8  
Typ. Max.  
Unit  
mV  
µV/°C  
Test Conditions  
Fig. Note  
1
V
-0.9  
-2.1  
0.0  
OS  
dV /dT  
1, 2  
6
7
OS  
|dV /dT|  
4.6  
µV/°C  
1
OS  
Offset Drift vs. Temperature  
Input Offset Drift vs. VDD1  
Input Offset Drift vs. VDD2  
Gain (± 5% Tol.)  
Gain - A Version (± 1% Tol.)  
Gain - B Version (± 1% Tol.)  
Gain Drift vs. Temperature  
dV /dVDD1  
30  
µV/V  
µV/V  
1, 3  
1, 4  
8
9
10  
OS  
dV /dVDD2  
-40  
OS  
G
GA  
7.61  
7.85  
7.99  
8.00 8.40  
7.93 8.01  
8.07 8.15  
0.001  
-200 mV < VIN+ < 200 mV 1, 5  
GB  
dG/dT  
|dG/dT|  
%/°C  
%/°C  
5, 6  
5
11  
12  
Abs. Value of Gain Drift vs.  
Temperature  
0.001  
Gain Drift vs. VDD1  
Gain Drift vs. VDD2  
200 mV Nonlinearity  
200 mV Nonlinearity Drift  
vs. Temperature  
200 mV Nonlinearity Drift  
vs. VDD1  
200 mV Nonlinearity Drift  
vs. VDD2  
dG/dVDD1  
dG/dVDD2  
NL200  
0.21  
%/V  
%/V  
%
5, 7  
5, 8  
5, 9  
13  
14  
15  
16  
-0.06  
0.2  
-0.001  
0.35  
0.25  
dNL200/dT  
% pts/°C  
5, 10  
dNL200/dVDD1  
dNL200/dVDD2  
NL100  
-0.005  
-0.007  
% pts/V  
% pts/V  
5, 11  
5, 12  
17  
18  
19  
100 mV Nonlinearity  
0.1  
%
-100 mV< VIN+ < 100 mV 5, 13  
14  
Maximum Input Voltage  
Before Output Clipping  
|V  
|
300  
mV  
IN+ max  
Average Input Bias Current  
Input Bias Current  
IIN  
dIIN/dT  
-670  
3
nA  
nA/°C  
15,16 20  
Temperature Coefficient  
Average Input Resistance  
RIN  
530  
kΩ  
15  
20  
Input Resistance  
dRIN/dT  
0.38  
%/°C  
Temperature Coefficient  
Input DC Common-Mode  
Rejection Ratio  
Output Resistance  
CMRRIN  
72  
dB  
21  
5
RO  
11  
Output Resistance  
dRO/dT  
0.6  
%/°C  
Temperature Coefficient  
Output Low Voltage  
Output High Voltage  
Output Common-Mode  
Voltage  
V
1.18  
3.61  
2.39 2.60  
V
V
V
|VIN+| = 500 mV  
IOUT+ = 0 A, IOUT– = 0 A  
14  
14  
22  
OL  
V
OH  
V
2.20  
-40°C < T < 85°C  
OCM  
A
4.5 V < VDD1 < 5.5 V  
Input Supply Current  
Output Supply Current  
IDD1  
IDD2  
10.7 15.5  
11.6 14.5  
mA  
mA  
17  
18  
23  
24  
VIN+ = 200 mV,  
-40°C < T < 85°C  
A
4.5 V < VDD2 < 5.5 V  
Output Short-Circuit  
Current  
|IOSC  
|
9.3  
mA  
VOUT = 0 V or VDD2  
25  
1-221  
AC Electrical Specifications  
All specifications and figures are at the nominal operating condition of VIN+ = 0 V, VIN- = 0 V, T = 25°C,  
A
VDD1 = 5.0 V, and VDD2 = 5.0 V, unless otherwise noted.  
Parameter  
Symbol Min.  
Typ. Max.  
Unit  
Test Conditions  
IM = 1 kV  
Fig.  
Note  
Rising Edge Isolation  
Mode Rejection  
IMRR  
IMRF  
IMRR  
10  
25  
kV/µs  
V
19, 20  
26  
Falling Edge Isolation  
Mode Rejection  
10  
15  
kV/µs  
Isolation Mode Rejection  
Ratio at 60 Hz  
>140  
dB  
19  
27  
Propagation Delay to 10%  
Propagation Delay to 50%  
Propagation Delay to 90%  
Rise/Fall Time (10%-90%)  
Bandwidth (-3 dB)  
tPD10  
tPD50  
tPD90  
tR/F  
2.0  
3.4  
6.3  
4.3  
85  
3.3  
5.6  
9.9  
6.6  
µs  
µs  
-40°C < T < 85°C  
21, 22  
A
µs  
µs  
f-3dB  
f-45°  
VN  
50  
kHz  
kHz  
23, 24  
Bandwidth (-45°)  
35  
RMS Input-Referred  
Noise  
300  
µV rms Bandwidth = 100 kHz 25, 26  
28  
29  
Power Supply Rejection  
PSR  
5
mV  
p-p  
Package Characteristics  
All specifications and figures are at the nominal operating condition of VIN+ = 0 V, VIN- = 0 V, T = 25°C, VDD1  
A
= 5.0 V, and VDD2 = 5.0 V, unless otherwise noted.  
Parameter  
Symbol Min. Typ. Max.  
Unit  
Test Conditions  
Fig. Note  
Input-Output Momentary  
Withstand Voltage*  
V
3750  
V rms t = 1 min., RH 50%  
30, 31  
ISO  
Input-Output Resistance  
RI-O  
1012 1013  
TA = 25°C  
TA = 100°C  
f = 1 MHz  
VI-O = 500 Vdc  
30  
1011  
0.7  
96  
Input-Output Capacitance  
CI-O  
pF  
30  
32  
Input IC Junction-to-  
θjci  
°C/W  
Case Thermal Resistance  
Output IC Junction-to-Case  
Thermal Resistance  
θjco  
114  
°C/W  
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your  
equipment level safety specification, or HP Application Note 1074, “Optocoupler Input-Output Endurance Voltage.”  
1-222  
Notes:  
as the change in magnitude per °C  
change in temperature.  
16. Data sheet value is the average change  
in nonlinearity versus temperature at  
TA = 25°C, with all other parameters  
held constant. This value is expressed  
as the number of percentage points  
that the nonlinearity will change per  
°C change in temperature. For  
General Note: Typical values represent the  
mean value of all characterization units at  
the nominal operating conditions. Typical  
drift specifications are determined by  
calculating the rate of change of the speci-  
fied parameter versus the drift parameter  
(at nominal operating conditions) for each  
characterization unit, and then averaging  
the individual unit rates. The correspond-  
ing drift figures are normalized to the  
nominal operating conditions and show  
how much drift occurs as the particular  
drift parameter is varied from its nominal  
value, with all other parameters held at  
their nominal operating values. Figures  
show the mean drift of all characterization  
units as a group, as well as the ± 2-sigma  
statistical limits. Note that the typical drift  
specifications in the tables below may  
differ from the slopes of the mean curves  
shown in the corresponding figures.  
8. Data sheet value is the average change  
in offset voltage versus input supply  
voltage at VDD1 = 5 V, with all other  
parameters held constant. This value  
is expressed as the change in offset  
voltage per volt change of the input  
supply voltage.  
9. Data sheet value is the average change  
in offset voltage versus output supply  
voltage at VDD2 = 5 V, with all other  
parameters held constant. This value  
is expressed as the change in offset  
voltage per volt change of the output  
supply voltage.  
10. Gain is defined as the slope of the  
best-fit line of differential output  
voltage (VOUT+ - VOUT-) versus  
differential input voltage (VIN+ -VIN-  
over the specified input range.  
11. Data sheet value is the average change  
in gain versus temperature at  
example, if the temperature is  
increased from 25°C to 35°C, the  
nonlinearity typically will decrease by  
0.01 percentage points (10°C times  
-0.001 % pts/°C) from 0.2% to 0.19%.  
17. Data sheet value is the average change  
in nonlinearity versus input supply  
voltage at VDD1 = 5 V, with all other  
parameters held constant. This value  
is expressed as the number of  
percentage points that the nonlinearity  
will change per volt change of the  
input supply voltage.  
)
18. Data sheet value is the average change  
in nonlinearity versus output supply  
voltage at VDD2 = 5 V, with all other  
parameters held constant. This value  
is expressed as the number of  
1. HP recommends the use of non-  
chlorine activated fluxes.  
TA = 25°C, with all other parameters  
held constant. This value is expressed  
as the percentage change in gain per  
°C change in temperature.  
2. The HCPL-7800 will operate properly  
at ambient temperatures up to 100°C  
but may not meet published specifi-  
cations under these conditions.  
3. DC performance can be best  
maintained by keeping VDD1 and VDD2  
as close as possible to 5 V. See  
application section for circuit  
recommendations.  
percentage points that the nonlinearity  
will change per volt change of the  
output supply voltage.  
12. Data sheet value is the average  
magnitude of the change in gain  
19. NL100 is the nonlinearity specified over  
an input voltage range of ± 100 mV.  
20. Because of the switched-capacitor  
nature of the input sigma-delta  
versus temperature at T = 25°C, with  
A
all other parameters held constant.  
This value is expressed as the  
percentage change in magnitude per  
°C change in temperature.  
converter, time-averaged values are  
shown.  
4. HP recommends operation with V  
= 0 V (tied to GND1). Limiting V  
to 100 mV will improve DC  
IN-  
13. Data sheet value is the average change  
in gain versus input supply voltage at  
21. This parameter is defined as the ratio  
of the differential signal gain (signal  
applied differentially between pins 2  
and 3) to the common-mode gain  
(input pins tied together and the signal  
applied to both inputs at the same  
time), expressed in dB.  
22. When the differential input signal  
exceeds approximately 300 mV, the  
outputs will limit at the typical values  
shown.  
IN+  
VDD1 = 5 V, with all other parameters  
nonlinearity and nonlinearity drift. If  
held constant. This value is expressed  
as the percentage change in gain per  
volt change of the input supply  
voltage.  
VIN- is brought above 800 mV with  
respect to GND1, an internal test  
mode may be activated. This test mode  
is not intended for customer use.  
5. Although, statistically, the average  
difference in the output resistance of  
pins 6 and 7 is near zero, the standard  
deviation of the difference is 1.3 Ω  
due to normal process variations.  
Consequently, keeping the output  
current below 1 mA will ensure the  
best offset performance.  
6. Data sheet value is the average change  
in offset voltage versus temperature at  
TA = 25°C, with all other parameters  
held constant. This value is expressed  
as the change in offset voltage per °C  
change in temperature.  
14. Data sheet value is the average change  
in gain versus output supply voltage at  
VDD2 = 5 V, with all other parameters  
held constant. This value is expressed  
as the percentage change in gain per  
volt change of the output supply  
voltage.  
23. The maximum specified input supply  
current occurs when the differential  
input voltage (VIN+ - VIN-) = 0 V. The  
input supply current decreases  
15. Nonlinearity is defined as the maxi-  
mum deviation of the output voltage  
from the best-fit gain line (see Note  
10), expressed as a percentage of the  
full-scale differential output voltage  
range. For example, an input range of  
± 200 mV generates a full-scale differ-  
ential output range of 3.2 V (± 1.6 V);  
a maximum output deviation of 6.4  
mV would therefore correspond to a  
nonlinearity of 0.2%.  
approximately 1.3 mA per 1 V  
decrease in VDD1  
.
24. The maximum specified output supply  
current occurs when the differential  
input voltage (VIN+ - VIN-) = 200 mV,  
the maximum recommended operating  
input voltage. However, the output  
supply current will continue to rise for  
differential input voltages up to  
approximately 300 mV, beyond which  
the output supply current remains  
constant.  
7. Data sheet value is the average  
magnitude of the change in offset  
voltage versus temperature at  
TA = 25°C, with all other parameters  
held constant. This value is expressed  
1-223  
25. Short circuit current is the amount of  
output current generated when either  
output is shorted to VDD2 or ground.  
26. IMR (also known as CMR or Common  
Mode Rejection) specifies the mini-  
mum rate of rise of an isolation mode  
noise signal at which small output  
perturbations begin to appear. These  
output perturbations can occur with  
both the rising and falling edges of the  
isolation-mode wave form and may be  
of either polarity. When the perturba-  
tions first appear, they occur only  
occasionally and with relatively small  
peak amplitudes (typically 20-30 mV  
at the output of the recommended  
application circuit). As the magnitude  
of the isolation mode transients  
the isolation mode gain (input pins  
tied to pin 4 and the signal applied  
between the input and the output of  
the isolation amplifier) at 60 Hz,  
expressed in dB.  
29. Data sheet value is the differential  
amplitude of the transient at the  
output of the HCPL-7800 when a  
1 Vpk-pk, 1 MHz square wave with 5 ns  
rise and fall times is applied to both  
28. Output noise comes from two primary  
sources: chopper noise and sigma-  
delta quantization noise. Chopper  
noise results from chopper stabiliza-  
tion of the output op-amps. It occurs  
at a specific frequency (typically 200  
kHz at room temperature), and is not  
attenuated by the internal output filter.  
A filter circuit can be easily added to  
the external post-amplifier to reduce  
the total rms output noise. The  
VDD1 and VDD2.  
30. This is a two-terminal measurement:  
pins 1-4 are shorted together and pins  
5-8 are shorted together.  
31. In accordance with UL1577, for  
devices with minimum VISO specified at  
3750 Vrms, each optocoupler is proof-  
tested by applying an insulation test  
voltage greater-than-or-equal-to 4500  
Vrms for one second (leak current  
detection limit, II-O < 5 µA). This test  
is performed before the method b,  
100% production test for partial  
internal output filter does eliminate  
most, but not all, of the sigma-delta  
quantization noise. The magnitude of  
the output quantization noise is very  
small at lower frequencies (below 10  
kHz) and increases with increasing  
frequency. See applications section for  
more information.  
increase, the regularity and amplitude  
of the perturbations also increase. See  
applications section for more  
discharge shown in the VDE 0884  
Insulation Characteristics Table.  
32. Case temperature was measured with a  
thermocouple located in the center of  
the underside of the package.  
information.  
27. IMRR is defined as the ratio of  
differential signal gain (signal applied  
differentially between pins 2 and 3) to  
1500  
MEAN  
± 2 SIGMA  
+5 V  
+5 V  
+15 V  
1000  
500  
0.1 µF  
HCPL-7800  
0.1 µF  
0.1 µF  
10 K  
8
7
1
2
3
4
+
V
0
OUT  
6
5
AD624CD  
GAIN = 1000  
-
10 K  
-500  
0.1 µF  
0.33 µF  
0.33 µF  
-1000  
-40 -20  
0
20  
40  
60  
80  
100  
T
– TEMPERATURE – °C  
A
-15 V  
Figure 1. Input Offset Voltage Test Circuit.  
Figure 2. Input-Referred Offset Drift  
vs. Temperature.  
1-224  
600  
400  
200  
400  
300  
200  
100  
MEAN  
± 2 SIGMA  
MEAN  
± 2 SIGMA  
0
-200  
-400  
0
-100  
-600  
-200  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
V
– INPUT SUPPLY VOLTAGE – V  
V
– OUTPUT SUPPLY VOLTAGE – V  
DD1  
DD2  
Figure 3. Input-Referred Offset Drift  
vs. VDD1 (VDD2 = 5 V).  
Figure 4. Input-Referred Offset Drift  
vs. VDD2 (VDD1 = 5 V).  
1.5  
1.0  
0.5  
MEAN  
± 2 SIGMA  
+5 V  
+5 V  
+15 V  
0.1 µF  
0.1 µF  
HCPL-7800  
0.1 µF  
10 K  
8
7
1
2
3
4
V
+
IN  
V
OUT  
0
-0.5  
-1.0  
6
5
AD624CD  
GAIN = 1  
-
10 K  
0.01 µF  
0.1 µF  
0.33 µF  
0.33 µF  
-40  
-20  
0
20  
40  
60  
80  
100  
-15 V  
T
– TEMPERATURE – °C  
A
Figure 5. Gain and Nonlinearity Test Circuit.  
Figure 6. Gain Drift vs. Temperature.  
0.3  
0.5  
0
0.5  
0.4  
0.3  
MEAN  
± 2 SIGMA  
MEAN  
± 2 SIGMA  
0.2  
0.1  
-0.5  
-1.0  
0
0.2  
0.1  
-0.1  
-1.5  
-0.2  
-0.3  
0
MEAN  
± 2 SIGMA  
-0.1  
-2.0  
-0.2  
-0.1  
0
0.1  
0.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
V
– INPUT VOLTAGE – V  
V
– INPUT SUPPLY VOLTAGE – V  
V
– OUTPUT SUPPLY VOLTAGE – V  
DD1  
IN  
DD2  
Figure 7. Gain Drift vs.  
VDD1 (VDD2 = 5 V).  
Figure 8. Gain Drift vs.  
VDD2 (VDD1 = 5 V).  
Figure 9. 200 mV Nonlinearity Error  
Plot.  
1-225  
0.15  
0.10  
0.05  
0.06  
0.04  
0.06  
0.04  
MEAN  
± 2 SIGMA  
MEAN  
± 2 SIGMA  
MEAN  
± 2 SIGMA  
0.02  
0
0.02  
0
0
-0.02  
-0.04  
-0.06  
-0.05  
-0.02  
-0.04  
-0.10  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
-40 -20  
0
20  
40  
60  
80  
100  
V
– INPUT SUPPLY VOLTAGE – V  
V
– OUTPUT SUPPLY VOLTAGE – V  
DD2  
T
– TEMPERATURE – °C  
DD1  
A
Figure 10. 200 mV Nonlinearity Drift  
vs. Temperature.  
Figure 11. 200 mV Nonlinearity Drift  
vs. VDD1 (VDD2 = 5 V).  
Figure 12. 200 mV Nonlinearity Drift  
vs. VDD2 (VDD1 = 5 V).  
0.15  
0.10  
0.05  
4.0  
3.5  
0
-200  
-400  
3.0  
0
POSITIVE  
2.5  
2.0  
OUTPUT  
(PIN 7)  
-600  
-800  
-0.05  
NEGATIVE  
OUTPUT  
(PIN 6)  
-0.10  
1.5  
1.0  
-1000  
-1200  
-0.15  
MEAN  
± 2 SIGMA  
-0.20  
-0.10  
-0.05  
0
0.05  
0.10  
-0.6 -0.4  
-0.2  
0
0.2  
0.4  
0.6  
-0.2  
-0.1  
0
0.1  
0.2  
V
– INPUT VOLTAGE – V  
V
– INPUT VOLTAGE – V  
V
– INPUT VOLTAGE – V  
IN  
IN  
IN  
Figure 13. 100 mV Nonlinearity Error  
Plot.  
Figure 14. Typical Output Voltages vs.  
Input Voltage.  
Figure 15. Typical Input Current vs.  
Input Voltage.  
2
0
12.0  
10.5  
10.0  
9.5  
T
= 85°C  
= 25°C  
= -40°C  
A
T
A
T
A
11.5  
11.0  
-2  
-4  
-6  
10.5  
10.0  
9.0  
T
T
= -40°C  
= 25°C  
= 85°C  
A
-8  
A
T
A
-10  
8.5  
-0.4 -0.3 -0.2 -0.1  
-6  
-4  
-2  
0
2
4
6
-0.4 -0.3 -0.2 -0.1  
0
0.1  
0.2 0.3 0.4  
0
0.1  
0.2 0.3 0.4  
V
– INPUT VOLTAGE – V  
V
IN  
– INPUT VOLTAGE – V  
V
– INPUT VOLTAGE – V  
IN  
IN  
Figure 16. Typical Input Current vs.  
Input Voltage.  
Figure 17. Typical Input Supply  
Current vs. Input Voltage.  
Figure 18. Typical Output Supply  
Current vs. Input Voltage.  
1-226  
330 pF  
5.11 K  
+15 V  
+5 V  
0.1 µF  
78L05  
HCPL-7800  
0.1 µF  
8
7
1
2
3
4
IN  
OUT  
1.00 K  
1.00 K  
-
V
OUT  
0.1 µF  
0.1 µF  
6
5
OP-42  
0.1 µF  
+
9 V  
5.11 K  
330 pF  
PULSE GEN.  
-15 V  
-
+
V
IM  
Figure 19. Isolation Mode Rejection Test Circuit.  
10  
DELAY TO 90%  
RISE/FALL TIME  
DELAY TO 50%  
DELAY TO 10%  
8
6
1000 V  
0 V  
V
IM  
4
2
0
50 mV PERTURBATION  
(DEFINITION OF FAILURE)  
-40  
-20  
0
20  
40  
60  
80 100  
0 V  
V
O
T
– TEMPERATURE – °C  
A
Figure 20. Typical IMR Failure Waveform.  
Figure 21. Typical Propagation Delays  
and Rise/Fall Time vs. Temperature.  
1-227  
V
50%  
IN  
tPD90  
tPD50  
tPD10  
90%  
V
OUT  
50%  
10%  
t R/F  
10.0 K  
+15 V  
+5 V  
+5 V  
0.1 µF  
HCPL-7800  
0.1 µF  
0.1 µF  
8
7
1
2.00 K  
2
3
4
V
-
IN  
V
OUT  
6
5
OP-42  
0.1 µF  
+
2.00 K  
0.01 µF  
10.0 K  
-15 V  
Figure 22. Propagation Delay and Rise/Fall Time Test Circuit.  
3.0  
2.5  
0
0
48  
44  
110  
100  
NO BANDWIDTH LIMITING  
BANDWIDTH LIMITED TO 100 kHz  
BANDWIDTH LIMITED TO 10 kHz  
-5  
-10  
3 dB BANDWIDTH  
45 DEGREE PHASE  
BANDWIDTH  
-1  
-15  
2.0  
1.5  
1.0  
40  
36  
90  
80  
-2  
-30  
-3  
-4  
-45  
-60  
32  
70  
60  
0.5  
AMPLITUDE  
PHASE  
0
28  
100  
0
50  
V
100  
150  
200  
250  
-40  
-20  
0
20  
40  
60  
80  
100  
500 1000  
5000 10000 50000 100000  
– INPUT VOLTAGE – mV  
T
– TEMPERATURE – °C  
f – FREQUENCY – Hz  
A
IN  
Figure 23. Typical Amplitude and  
Phase Response vs. Frequency.  
Figure 24. Typical 3 dB and 45°  
Bandwidths vs. Temperature.  
Figure 25. Typical RMS Input-Referred  
Noise vs. Input Voltage.  
1-228  
FLOATING  
POSITIVE  
SUPPLY  
HV+  
C5  
75 pF  
GATE DRIVE  
CIRCUIT  
R3  
10.0 K  
+5 V  
+15 V  
C8  
0.1 µF  
IN  
OUT  
U1  
78L05  
C4  
0.1 µF  
C2  
C1  
0.1 µF  
8
7
1
2
3
4
R1  
2.00 KΩ  
0.1 µF  
U2  
-
U3  
+
C3  
0.01 µF  
V
OUT  
R5  
39 Ω  
HCPL-7800  
6
5
MC34081  
MOTOR  
R2  
2.00 KΩ  
-
+
R
SENSE  
C7  
0.1 µF  
C6  
75 pF  
R4  
10.0 KΩ  
-15 V  
HV-  
Figure 26. Recommended Application Circuit.  
400  
OUTPUT POWER, P  
S
INPUT POWER, P  
S
300  
200  
100  
0
0
20 40 60 80 100 120 140 160 180  
175  
T
– TEMPERATURE – °C  
A
Figure 27. Dependence of Safety-  
Limiting Parameters on Ambient  
Temperature.  
Applications Information  
Functional Description  
signal is decoded and converted  
into accurate analog voltage  
levels, which are then filtered to  
produce the final output signal.  
the converter data to be  
transmitted, essentially converting  
the widths of the sigma-delta  
output pulses into the positions  
of the encoder output pulses. A  
significant benefit of this coding  
scheme is that any non-ideal  
characteristics of the LED (such  
as non-linearity and drift over  
time and temperature) have little,  
if any, effect on the performance  
of the HCPL-7800.  
Figure 28 shows the primary  
functional blocks of the HCPL-  
7800. In operation, the sigma-  
delta analog-to-digital converter  
converts the analog input signal  
into a high-speed serial bit  
stream, the time average of which  
is directly proportional to the  
input signal. This high speed  
stream of digital data is encoded  
and optically transmitted to the  
detector circuit. The detected  
To help maintain device accuracy  
over time and temperature,  
internal amplifiers are chopper-  
stabilized. Additionally, the  
encoder circuit eliminates the  
effects of pulse-width distortion of  
the optically transmitted data by  
generating one pulse for every  
edge (both rising and falling) of  
1-229  
Circuit Information  
µF capacitors close to the  
exhibit better offset performance  
than op-amps with JFET or  
MOSFET input stages.  
The recommended application  
circuit is shown in Figure 26. A  
floating power supply (which in  
many applications could be the  
same supply that is used to drive  
the high-side power transistor) is  
regulated to 5 V using a simple  
three-terminal voltage regulator.  
The input of the HCPL-7800 is  
connected directly to the current  
sensing resistor. The differential  
output of the isolation amplifier is minimize any stray coupling by  
converted to a ground-referenced maintaining the maximum  
single-ended output voltage with a possible distance between the  
simple differential amplifier  
circuit. Although the application  
circuit is relatively simple, a few  
general recommendations should  
be followed to ensure optimal  
performance.  
isolation amplifier. In either case,  
it is recommended that twisted-  
pair wire be used to connect the  
isolation amplifier to the current-  
sensing resistor to minimize  
electro-magnetic interference of  
the sense signal.  
In addition, the op-amp should  
also have enough bandwidth and  
slew rate so that it does not  
adversely affect the response  
speed of the overall circuit. The  
post-amplifier circuit includes a  
pair of capacitors (C5 and C6)  
that form a single-pole low-pass  
filter; these capacitors allow the  
bandwidth of the post-amp to be  
adjusted independently of the gain  
and are useful for reducing the  
output noise from the isolation  
amplifier. Many different op-amps  
could be used in the circuit,  
To obtain optimal CMR perfor-  
mance, the layout of the printed  
circuit board (PCB) should  
input and output sides of the  
circuit and ensuring that any  
ground plane on the PCB does not  
pass directly below the HCPL-  
7800. An example single-sided  
PCB layout for the recommended  
application circuit is shown in  
Figure 29. The trace pattern is  
shown in “X-ray” view as it would  
including: MC34082A (Motorola),  
TL032A, TLO52A, and TLC277  
(Texas Instruments), LF412A  
(National Semiconductor).  
As shown in Figure 26, 0.1 µF  
bypass capacitors should be  
located as close as possible to the be seen from the top of the PCB;  
The gain-setting resistors in the  
post-amp should have a tolerance  
of 1% or better to ensure  
input and output power supply  
pins of the HCPL-7800. Notice  
that pin 2 (VIN+) is bypassed with  
a 0.01 µF capacitor to reduce  
input offset voltage that can be  
caused by the combination of  
a mirror image of this layout can  
be used to generate a PCB.  
adequate CMRR and adequate  
gain tolerance for the overall  
circuit. Resistor networks can be  
used that have much better ratio  
tolerances than can be achieved  
using discrete resistors. A resistor  
network also reduces the total  
number of components for the  
circuit as well as the required  
board space.  
An inexpensive 78L05 three-  
terminal regulator is shown in the  
recommended application circuit.  
long input leads and the switched- Because the performance of the  
capacitor nature of the input  
circuit.  
isolation amplifier can be affected  
by changes in the power supply  
voltages, using regulators with  
tighter output voltage tolerances  
will result in better overall circuit  
performance. Many different  
regulators that provide tighter  
output voltage tolerances than the  
78L05 can be used, including:  
TL780-05 (Texas Instruments),  
LM340LAZ-5.0 and LP2950CZ-  
5.0 (National Semiconductor).  
With pin 3 (V ) tied directly to  
IN-  
pin 4 (GND1), the power-supply  
return line also functions as the  
sense line for the negative side of  
the current-sensing resistor; this  
allows a single twisted pair of  
wire to connect the isolation  
amplifier to the sense resistor. In  
some applications, however,  
better performance may be  
The current-sensing resistor  
should have a relatively low value  
of resistance to minimize power  
dissipation, a fairly low  
inductance to accurately reflect  
high-frequency signal compo-  
nents, and a reasonably tight  
tolerance to maintain overall  
circuit accuracy. Although  
decreasing the value of the sense  
resistor decreases power  
dissipation, it also decreases the  
full-scale input voltage making  
iso-amp offset voltage effects  
more significant. These two  
obtained by connecting pins 2  
The op-amp used in the external  
post-amplifier circuit should be of  
sufficiently high precision so that  
it does not contribute a significant  
amount of offset or offset drift  
relative to the contribution from  
and 3 (VIN+ and V ) directly  
IN-  
across the sense resistor with  
twisted pair wire and using a  
separate wire for the power  
supply return line. Both input  
pins should be bypassed with 0.01 the isolation amplifier. Generally,  
op-amps with bipolar input stages  
1-230  
conflicting considerations,  
therefore, must be weighed  
against each other in selecting an  
appropriate sense resistor for a  
particular application. To  
maintain circuit accuracy, it is  
recommended that the sense  
resistor and the isolation amplifier  
circuit be located as close as  
possible to one another. Although  
it is possible to buy current-  
sensing resistors from established  
vendors (e.g., the LVR-1, -3 and  
-5 resistors from Dale), it is also  
possible to make a sense resistor  
using a short piece of wire or  
even a trace on a PC board.  
Figures 30 and 31 illustrate the  
response of the overall isolation  
amplifier circuit shown in Figure  
26. Figure 30 shows the response  
of the circuit to a ± 200 mV 20  
kHz sine wave input and Figure  
31 the response of the circuit to a  
± 200 mV 20 kHz square wave  
input. Both figures demonstrate  
the fast, well-behaved response of  
the HCPL-7800.  
the time scale is different from  
the previous figures). The first  
wave form is the output of the  
application circuit with the filter  
capacitors removed to show the  
actual response of the isolation  
amplifier. The second wave form  
is the response of the same circuit  
with the capacitors installed. The  
recovery time and overshoot are  
relatively independent of the  
amplitude and polarity of the  
overdrive signal, as well as its  
duration.  
Figure 32 shows how quickly the  
isolation amplifier recovers from  
an overdrive condition generated  
by a 2 kHz square wave swinging  
between 0 and 500 mV (note that  
For more information, refer to  
Application Note 1059.  
VOLTAGE  
CLOCK  
VOLTAGE  
REGULATOR  
GENERATOR  
REGULATOR  
ISOLATION  
BOUNDARY  
Σ∆  
LED DRIVE  
CIRCUIT  
DETECTOR  
CIRCUIT  
DECODER  
AND D/A  
ISO-AMP  
OUTPUT  
ISO-AMP  
INPUT  
ENCODER  
FILTER  
MODULATOR  
Figure 28. HCPL-7800 Block Diagram.  
Figure 29. PC Board Trace Pattern and Loading Diagram Example.  
1-231  
Figure 30. Application Circuit Sine Wave Response.  
Figure 31. Application Circuit Square Wave Response.  
Figure 32. Application Circuit Overload Recovery Waveform.  
1-232  
WWW.ALLDATASHEET.COM  
Copyright © Each Manufacturing Company.  
All Datasheets cannot be modified without permission.  
This datasheet has been download from :  
www.AllDataSheet.com  
100% Free DataSheet Search Site.  
Free Download.  
No Register.  
Fast Search System.  
www.AllDataSheet.com  
配单直通车
HCPL-7800产品参数
型号:HCPL-7800
是否Rohs认证: 不符合
生命周期:Transferred
IHS 制造商:HEWLETT PACKARD CO
零件包装代码:DIP
包装说明:DIP, DIP8,.3
针数:8
Reach Compliance Code:unknown
ECCN代码:EAR99
HTS代码:8542.33.00.01
风险等级:5.21
Is Samacsys:N
放大器类型:ISOLATION AMPLIFIER
标称带宽 (3dB):85 MHz
最大共模电压:3750 V
最小绝缘电压:3750 V
JESD-30 代码:R-PDIP-T8
JESD-609代码:e0
功能数量:1
端子数量:8
最高工作温度:85 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:DIP
封装等效代码:DIP8,.3
封装形状:RECTANGULAR
封装形式:IN-LINE
电源:5 V
认证状态:Not Qualified
子类别:Isolation Amplifiers
供电电压上限:5.5 V
标称供电电压 (Vsup):5 V
表面贴装:NO
技术:CMOS
温度等级:INDUSTRIAL
端子面层:Tin/Lead (Sn/Pb)
端子形式:THROUGH-HOLE
端子节距:2.54 mm
端子位置:DUAL
最大电压增益:8.4
最小电压增益:7.61
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!