欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • HCPL-7840/A7840图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HCPL-7840/A7840 现货库存
  • 数量5000 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • HCPL-7840-500E图
  • 深圳市楷兴电子科技有限公司

     该会员已使用本站7年以上
  • HCPL-7840-500E 现货库存
  • 数量89700 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号21+ 
  • 全新进口原装现货,代理渠道假一赔十
  • QQ:2881475151QQ:2881475151 复制
  • 0755-83016042 QQ:2881475151
  • HCPL-7840-500E图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • HCPL-7840-500E 现货库存
  • 数量18150 
  • 厂家AVAGO/安华高 
  • 封装SOP8 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • HCPL-7840图
  • 集好芯城

     该会员已使用本站13年以上
  • HCPL-7840 现货库存
  • 数量23745 
  • 厂家Agilent Technologies Inc 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • HCPL-7840图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • HCPL-7840 现货库存
  • 数量4203 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • HCPL-7840-500E图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • HCPL-7840-500E 现货库存
  • 数量6536 
  • 厂家AVAGO/安华高 
  • 封装SOP-8 
  • 批号23+ 
  • 原装现货,特价销售
  • QQ:3004306594QQ:3004306594 复制
  • 0755-82777852 QQ:3004306594
  • HCPL-7840-560E图
  • 深圳市千喜电子实业有限公司

     该会员已使用本站4年以上
  • HCPL-7840-560E 现货库存
  • 数量60000 
  • 厂家代理英飞凌/NXP/圣邦微 
  • 封装现货型号超2000+上亿库存/欢迎询价 
  • 批号23+ 
  • 主营/英飞凌INFINEON全系列优势现货/NXP/TI/ST/圣邦微/询价为准谢谢!
  • QQ:415263630QQ:415263630 复制
  • 15889658433 QQ:415263630
  • HCPL-7840-500E图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • HCPL-7840-500E 现货库存
  • 数量18500 
  • 厂家Avago(安华高) 
  • 封装SMD-8_6.3mm 
  • 批号24+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • HCPL-7840图
  • 北京力通科信电子有限公司

     该会员已使用本站10年以上
  • HCPL-7840 现货库存
  • 数量47 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号0932+ 
  • 14元原装现货13661385246
  • QQ:2355365902QQ:2355365902 复制
    QQ:2355365899QQ:2355365899 复制
  • 010-82625766 QQ:2355365902QQ:2355365899
  • HCPL-7840-300E图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • HCPL-7840-300E 现货库存
  • 数量1958 
  • 厂家AVAGO 
  • 封装原包 
  • 批号2021+ 
  • 现货特价来电准没错
  • QQ:1220294187QQ:1220294187 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-89345486 QQ:1220294187QQ:1017582752
  • HCPL-7840-500E图
  • 深圳市驰天熠电子有限公司

     该会员已使用本站1年以上
  • HCPL-7840-500E 现货库存
  • 数量38455 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装,优势价格,支持配单
  • QQ:3003795629QQ:3003795629 复制
    QQ:534325024QQ:534325024 复制
  • 86-15802056765 QQ:3003795629QQ:534325024
  • HCPL-7840图
  • 深圳市浩兴林电子有限公司

     该会员已使用本站16年以上
  • HCPL-7840 现货库存
  • 数量10000 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号2021+ 
  • ★特价全新原装柜台现货
  • QQ:382716594QQ:382716594 复制
    QQ:351622092QQ:351622092 复制
  • 0755-82532799 QQ:382716594QQ:351622092
  • HCPL-7840-500E图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • HCPL-7840-500E 现货库存
  • 数量8728 
  • 厂家Avago 
  • 封装SMD-8 
  • 批号24+ 
  • 只做原装正品现货销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • HCPL-7840-000E图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • HCPL-7840-000E 现货库存
  • 数量3000 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • HCPL-7840图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HCPL-7840 现货库存
  • 数量6120 
  • 厂家AGILENT 
  • 封装SOP8 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • HCPL-7840-000E图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • HCPL-7840-000E 现货库存
  • 数量29500 
  • 厂家AVAGO 
  • 封装DIP8 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • HCPL-7840图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • HCPL-7840 现货库存
  • 数量8000 
  • 厂家Agilent Technologies Inc 
  • 封装 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • HCPL-7840-000E图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • HCPL-7840-000E 现货热卖
  • 数量43520 
  • 厂家AVAGO/安华高 
  • 封装DIP8 
  • 批号2023+ 
  • 全新原装,一定原装房间仓库现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • HCPL-7840-560E图
  • 深圳市金嘉锐电子有限公司

     该会员已使用本站14年以上
  • HCPL-7840-560E 优势库存
  • 数量32560 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号2024+ 
  • 【原装优势★★★绝对有货】
  • QQ:2643490444QQ:2643490444 复制
  • 0755-22929859 QQ:2643490444
  • HCPL-7840-500E图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • HCPL-7840-500E 优势库存
  • 数量3600 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号23+ 
  • 一级代理原装现货
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • HCPL-7840-000E图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • HCPL-7840-000E 优势库存
  • 数量1000 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872153 QQ:1484215649QQ:729272152
  • HCPL-7840-500E图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • HCPL-7840-500E 热卖库存
  • 数量18150 
  • 厂家AVAGO/安华高 
  • 封装SOP8 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • HCPL-7840-560E图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • HCPL-7840-560E 热卖库存
  • 数量3485 
  • 厂家AVAGO(安华高) 
  • 封装22+ 
  • 批号SOP 
  • 全新原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • HCPL-7840-000E图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • HCPL-7840-000E 热卖库存
  • 数量24554 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号1807+ 
  • ?专注AVAGO!实单可谈!
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • HCPL-7840图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • HCPL-7840
  • 数量5300 
  • 厂家Avago(安华高) 
  • 封装 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • HCPL-7840图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • HCPL-7840
  • 数量865000 
  • 厂家AVAGO/安华高 
  • 封装0716+ 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • HCPL-7840-000E图
  • 麦尔集团

     该会员已使用本站10年以上
  • HCPL-7840-000E
  • 数量300 
  • 厂家AVAGO 
  • 封装十五周年庆典 
  • 批号N/A 
  • 原装现货,正品原装
  • QQ:1716771758QQ:1716771758 复制
    QQ:2574148071QQ:2574148071 复制
  • 88266576 QQ:1716771758QQ:2574148071
  • HCPL-7840-000E图
  • 北京云中青城科技有限公司

     该会员已使用本站8年以上
  • HCPL-7840-000E
  • 数量500 
  • 厂家BROADCOM 
  • 封装 
  • 批号20+ 
  • 不是原装不要钱,可含税
  • QQ:1290208342QQ:1290208342 复制
    QQ:260779663QQ:260779663 复制
  • 010-62669145 QQ:1290208342QQ:260779663
  • HCPL-7840-000E图
  • 北京杰创宏达电子有限公司

     该会员已使用本站12年以上
  • HCPL-7840-000E
  • 数量1600 
  • 厂家AVAGO 
  • 封装光藕 
  • 批号2024+ 
  • 授权代理商
  • QQ:2355548602QQ:2355548602 复制
    QQ:2355548609QQ:2355548609 复制
  • 010-61190909 QQ:2355548602QQ:2355548609
  • HCPL-7840-500E图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • HCPL-7840-500E
  • 数量2015 
  • 厂家AGILENT 
  • 封装SOP/DIP 
  • 批号19889 
  • ★一级代理原装现货,特价热卖!
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • HCPL-7840图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • HCPL-7840
  • 数量2955 
  • 厂家AVAGO/安华高 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • HCPL-7840-000E图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • HCPL-7840-000E
  • 数量5600 
  • 厂家AVAGO/安华高 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • HCPL-7840-000E图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • HCPL-7840-000E
  • 数量5000 
  • 厂家AVA 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • HCPL-7840-000E图
  • 深圳德田科技有限公司

     该会员已使用本站7年以上
  • HCPL-7840-000E
  • 数量
  • 厂家新年份 
  • 封装9600 
  • 批号 
  • 原装正品现货,可出样品!!!
  • QQ:229754250QQ:229754250 复制
  • 0755-83254070 QQ:229754250
  • HCPL-7840-000E.图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • HCPL-7840-000E.
  • 数量
  • 厂家AVAGO 
  • 封装长期收购 
  • 批号N/A 
  • 长期收购此型号
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • HCPL-7840-000E图
  • 首天国际(深圳)科技有限公司

     该会员已使用本站16年以上
  • HCPL-7840-000E
  • 数量92845 
  • 厂家AVAGO 
  • 封装OEM渠道,价格超越代理! 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807802 QQ:528164397QQ:1318502189

产品型号HCPL-7840的概述

HCPL-7840芯片概述 HCPL-7840是一款高性能的光隔离器件,由阿尔特拉(Avago Technologies)公司设计和制造。广泛应用于电力电子、新能源、工业控制和通信等领域,其主要作用是实现信号的光电隔离,以确保不同电气等级之间的安全和可靠性。该芯片具有优良的性能指标,支持高速数据传输,同时提供有效的电气隔离,具有良好的抗干扰能力。 HCPL-7840的详细参数 HCPL-7840具备多种参数以满足不同应用需求。以下是一些核心参数: - 输入电流(IF): 适用范围通常为10mA至20mA,为保证光电隔离效果所需的最小输入电流。 - 输出电流(VOH): 当输入信号为逻辑高时,芯片能够提供高达20mA的输出电流,以满足负载需求。 - 光耦电阻(Riso): 在测试条件下提供至多3000V的电气隔离。 - 传输延迟(td): 通常在0.5至1.0毫秒之间,适用于高速信号传输...

产品型号HCPL-7840的Datasheet PDF文件预览

H
Analog Isolation Amplifier  
Technical Data  
HCPL-7840  
Features  
Description  
environments such as those  
generated by the high switching  
rates of power IGBTs.  
• High Common Mode  
Rejection (CMR): 15 kV/µs  
at VCM = 1000V  
• 5% Gain Tolerance  
• 0.1% Nonlinearity  
• Low Offset Voltage and Off-  
set Temperature Coefficient  
• 100 kHz Bandwidth  
• Performance Specified Over  
-40°C to 85°C Temperature  
Range  
• Recognized Under UL 1577  
and CSA Approved for  
Dielectric Withstand Proof  
Test Voltage of 2500 Vac, 1  
Minute  
The HCPL-7840 isolation ampli-  
fier provides accurate, electrically  
isolated and amplified representa-  
tions of voltage and current.  
Low offset voltage together with  
a low offset voltage temperature  
coefficient permits accurate use  
of auto-calibration techniques.  
When used with a shunt resistor  
in the current path, the HCPL-  
7840 offers superior reliability,  
cost effectiveness, size and  
autoinsertability compared with  
the traditional solutions such as  
current transformers and Hall-  
effect sensors.  
Gain tolerance of 5% with 0.1%  
nonlinearity further provide the  
performance necessary for  
accurate feedback and control.  
A wide operating temperature  
range with specified performance  
allows the HCPL-7840 to be used  
in hostile industrial environments.  
The HCPL-7840 consists of a  
sigma-delta analog-to-digital  
converter optically coupled to a  
digital-to-analog converter.  
• Standard 8-Pin DIP Package  
Superior performance in design  
critical specifications such as  
common-mode rejection, offset  
voltage, nonlinearity, operating  
temperature range and regulatory  
compliance make the HCPL-7840  
the clear choice for designing  
reliable, lower-cost, reduced-size  
products such as motor  
Functional Diagram  
Applications  
• Motor Phase and Rail  
Current Sensing  
• Inverter Current Sensing  
• Switched Mode Power  
Supply Signal Isolation  
I
I
DD2  
DD1  
V
8
7
V
V
DD1  
1
2
DD2  
V
+
IN+  
OUT+  
+
V
3
4
IN–  
6
5
V
OUT–  
• General Purpose Current  
Sensing and Monitoring  
GND1  
GND2  
SHIELD  
controllers and inverters.  
• General Purpose Analog  
Signal Isolation  
Common-mode rejection of  
15 kV/µs makes the HCPL-7840  
suitable for noisy electrical  
A 0.1 F bypass capacitor must be connected between pins 1 and 4 and between pins 5 and 8.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
1-248  
5965-4784E  
Ordering Information  
HCPL-7840#xxx  
No option = Standard DIP Package, 50 per tube  
300 = Gull Wing Surface Mount Lead Option, 50 per tube  
500 = Tape/Reel Package Option (1 K min.), 1000 per reel  
Option data sheets available. Contact your Hewlett-Packard sales representative or authorized distributor for  
more information.  
Package Outline Drawings  
Standard DIP Package  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
1
7
6
5
DATE CODE  
HP 7840  
YYWW  
7.62 ± 0.25  
(0.300 ± 0.010)  
2
3
4
6.35 ± 0.25  
(0.250 ± 0.010)  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
0.20 (0.008)  
0.33 (0.013)  
5° TYP.  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.65 (0.025) MAX.  
2.54 ± 0.25  
(0.100 ± 0.010)  
Gull Wing Surface Mount Option 300  
PAD LOCATION (FOR REFERENCE ONLY)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.016 (0.040)  
1.194 (0.047)  
7
6
5
8
4.826  
TYP.  
(0.190)  
HP 7840  
YYWW  
6.350 ± 0.25  
(0.250 ± 0.010)  
9.398 (0.370)  
9.960 (0.390)  
1
3
2
4
0.381 (0.015)  
0.635 (0.025)  
1.194 (0.047)  
1.778 (0.070)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
0.20 (0.008)  
0.33 (0.013)  
4.19  
MAX.  
(0.165)  
0.635 ± 0.25  
(0.025 ± 0.010)  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.130  
(0.025 ± 0.005)  
12° NOM.  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
TOLERANCES (UNLESS OTHERWISE SPECIFIED):  
LEAD COPLANARITY  
MAXIMUM: 0.102 (0.004)  
xx.xx = 0.01  
xx.xxx = 0.005  
1-249  
Maximum Solder Reflow Thermal Profile  
Regulatory Information  
The HCPL-7840 has been  
approved by the following  
organizations:  
260  
240  
T = 145°C, 1°C/SEC  
220  
200  
180  
160  
140  
120  
100  
80  
T = 115°C, 0.3°C/SEC  
UL Recognized under UL 1577,  
Component Recognition  
Program, File E55361.  
CSA Approved under CSA  
Component Acceptance Notice  
#5, File CA 88324.  
T = 100°C, 1.5°C/SEC  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
TIME – MINUTES  
(NOTE: USE OF NON-CHLORINE ACTIVATED FLUXES IS RECOMMENDED.)  
Insulation and Safety Related Specifications  
Parameter  
Symbol Value Units  
Conditions  
Min. External Air Gap  
(External Clearance)  
Min. External Tracking Path  
(External Creepage)  
Min. Internal Plastic Gap  
(Internal Clearance)  
L(IO1)  
7.1  
mm  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Through insulation distance, conductor to  
conductor, usually the direct distance  
between the photoemitter and photodetector  
inside the optocoupler cavity.  
L(IO2)  
7.4  
0.08  
Tracking Resistance  
(Comparative Tracking Index)  
Isolation Group  
CTI  
200  
IIIa  
Volts DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Option 300 - surface mount classification is Class A in accordance with CECC 00802.  
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Ambient Operating Temperature  
Supply Voltages  
Symbol  
TS  
Min.  
-55  
-40  
Max.  
125  
85  
Unit  
°C  
°C  
V
Note  
TA  
VDD1, VDD2  
0.0  
5.5  
Steady-State Input Voltage  
2 Second Transient Input Voltage  
Output Voltages  
Lead Solder Temperature  
(10 sec., 1.6 mm below seating plane)  
V
IN+, V  
-2.0  
-6.0  
-0.5  
VDD1 +0.5  
V
1
IN-  
VOUT+, VOUT-  
TLS  
VDD2 +0.5  
260  
V
°C  
Solder Reflow Temperature Profile  
See Maximum Solder Reflow Thermal Profile Section  
1-250  
Recommended Operating Conditions  
Parameter  
Ambient Operating Temperature  
Supply Voltages  
Symbol  
Min.  
-40  
4.5  
Max.  
85  
5.5  
Unit  
°C  
V
Note  
TA  
VDD1, VDD2  
Input Voltage  
V
IN+,V  
-200  
200  
mV  
1
IN-  
DC Electrical Specifications  
All specifications, typicals and figures are at the nominal operating conditions of VIN+ = 0 V, VIN- = 0 V,  
TA = 25°C, VDD1 = 5 V and VDD2 = 5 V, unless otherwise noted.  
Parameter  
Symbol Min. Typ. Max. Unit  
Test Conditions  
Fig. Note  
Input Offset Voltage  
VOS  
-1.2 -0.2 1.0 mV  
-3.0 -0.2 2.0  
1
1,2,3  
2
-40°C TA 85°C  
4.5 (VDD1, VDD2) 5.5 V  
Gain  
G
7.60 8.00 8.40 V/V -200 VIN+ 200 mV  
5
7.44 8.00 8.56  
-200 VIN+ 200 mV  
-40°C TA 85°C  
4.5 (VDD1, VDD2) 5.5 V  
5,6,7  
200 mV Nonlinearity  
100 mV Nonlinearity  
NL200  
NL100  
0.1  
0.2  
0.4  
%
-200 VIN+ 200 mV  
5, 8  
5,8,9  
10,12  
3
-200 VIN+ 200 mV  
-40°C TA 85°C  
4.5 (VDD1, VDD2) 5.5 V  
0.05 0.1  
0.2  
-100 VIN+ 100 mV  
5, 8  
5,8,9  
11,12  
-100 VIN+ 100 mV  
-40°C TA 85°C  
4.5 (VDD1, VDD2) 5.5 V  
Maximum Input Voltage  
Before Output Clipping  
|V  
|
320  
mV  
4
IN+  
MAX  
Average Input Bias Current  
Average Input Resistance  
Input DC Common-Mode  
Rejection Ratio  
IIN  
RIN  
CMRRIN  
-0.57  
480  
69  
µA  
kΩ  
dB  
13  
4
5
Output Resistance  
Output Low Voltage  
Output High Voltage  
Output Common-Mode  
Voltage  
Input Supply Current  
Output Supply Current  
Output Short-Circuit Current |IOSC  
RO  
VOL  
VOH  
VOCM  
1
1.28  
3.84  
V
V
V
V
IN+ = 400 mV  
4
6
VIN+ = -400 mV  
-400 < VIN+ < 400 mV  
-40°C TA 85°C  
2.20 2.56 2.80  
IDD1  
IDD2  
8.7 15.5 mA 4.5 (VDD1, VDD2) 5.5 V 14  
8.8 14.5 mA  
11 mA VOUT = 0 V or VDD2  
15  
|
7
1-251  
AC Electrical Specifications  
All specifications, typicals and figures are at the nominal operating conditions of VIN+ = 0 V, VIN- = 0 V,  
TA = 25°C, VDD1 = 5 V and VDD2 = 5 V, unless otherwise noted.  
Parameter  
Common Mode  
Rejection  
Symbol Min. Typ. Max. Unit  
Test Conditions  
kV/µs VCM = 1 kV  
4.5 (VDD1, VDD2) 5.5 V  
Fig. Note  
CMR  
10  
15  
16  
8
Common Mode  
Rejection Ratio  
at 60 Hz  
CMRR  
>140  
dB  
9
Propagation Delay  
to 50%  
tPD50  
3.7  
6.5  
µs  
V
IN+ = 0 to 100 mV step  
17,18  
-40°C TA 85°C  
4.5 (VDD1, VDD2) 5.5 V  
Propagation Delay  
to 90%  
Rise/Fall Time  
(10-90%)  
tPD90  
tR/F  
5.7  
3.4  
9.9  
6.6  
Small-Signal  
Bandwidth  
(-3 dB)  
f-3 dB  
50  
100  
kHz  
-40°C TA 85°C  
4.5 (VDD1, VDD2) 5.5 V  
17, 19,  
20  
Small-Signal  
Bandwidth (-45°)  
RMS Input-  
Referred Noise  
Power Supply  
Rejection  
f-45°  
VN  
33  
0.6  
570  
mVrms In recommended  
application circuit  
mVP-P  
21, 23  
10  
11  
PSR  
Package Characteristics  
All specifications, typicals and figures are at the nominal operating conditions of VIN+ = 0 V, VIN- = 0 V,  
TA = 25°C, VDD1 = 5 V and VDD2 = 5 V, unless otherwise noted.  
Parameter  
Symbol Min. Typ. Max. Unit  
Test Conditions  
Fig. Note  
Input-Output Momentary  
Withstand Voltage*  
Input-Output Resistance  
Input-Output Capacitance  
V
2500  
Vrms  
t = 1 min., RH 50%  
12,13  
ISO  
RI-O  
CI-O  
1012  
0.6  
V
I-O = 500 Vdc  
f = 1 MHz  
I-O = 0 Vdc  
13  
pF  
V
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating, refer to the VDE 0884 Insulation Characteristics Table (if applicable),  
your equipment level safety specification, or HP Application Note 1074, “Optocoupler Input-Output Endurance Voltage.”  
1-252  
Notes:  
7. Short-circuit current is the amount of  
output current generated when either  
output is shorted to VDD2 or ground.  
HP does not recommend operation  
under these conditions.  
delta quantization noise. Chopper  
noise results from chopper stabiliza-  
tion of the output op-amps. It occurs  
at a specific frequency (typically 500  
kHz) and is not attenuated by the on-  
chip output filter. The on-chip filter  
does eliminate most, but not all, of  
the sigma-delta quantization noise.  
An external filter circuit may be  
easily added to the external post-  
amplifier to reduce the total RMS  
output noise. See applications section  
for more information.  
1. If VIN- is brought above VDD1 - 2 V  
with respect to GND1 an internal test  
mode may be activated. This test  
mode is not intended for customer  
use.  
2. Exact offset value is dependent on  
layout of external bypass capacitors.  
The offset value in the data sheet  
corresponds to HP’s recommended  
layout (see Figures 25 and 26).  
3. Nonlinearity is defined as half of the  
peak-to-peak output deviation from  
the best-fit gain line, expressed as a  
percentage of the full-scale differen-  
tial output voltage.  
8. CMR (also known as IMR or Isolation  
Mode Rejection) specifies the  
minimum rate of rise of a common  
mode noise signal applied across the  
isolation boundary at which small  
output perturbations begin to appear.  
These output perturbations can occur  
with both the rising and falling edges  
of the common mode waveform and  
may be of either polarity. A CMR  
failure is defined as a perturbation  
exceeding 200 mV at the output of  
the recommended application circuit  
(Figure 23). See applications section  
for more information on CMR.  
11. Data sheet value is the amplitude of  
the transient at the differential output  
of the HCPL-7840 when a 1 VP-P  
,
4. Because of the switched capacitor  
nature of the sigma-delta A/D  
converter, time-averaged values are  
shown.  
1 MHz square wave with 100 ns rise  
and fall times (measured at pins 1  
and 8) is applied to both VDD1 and  
VDD2  
.
5. CMRRIN is defined as the ratio of the  
gain for differential inputs applied  
between pins 2 and 3 to the gain for  
common mode inputs applied to both  
pins 2 and 3 with respect to pin 4.  
6. When the differential input signal  
exceeds approximately 320 mV, the  
outputs will limit at the typical values  
shown.  
9. CMRR is defined as the ratio of  
differential signal gain (signal applied  
differentially between pins 2 and 3)  
to the common mode gain (input pins  
tied to pin 4 and the signal applied  
between the input and the output of  
the isolation amplifier) at 60 Hz,  
expressed in dB.  
12. In accordance with UL1577, each  
isolation amplifer is proof tested by  
applying an insulation test voltage  
3000 VRMS for 1 second (leakage  
current detection limit II-O 5 µA).  
13. Device considered a two terminal  
device: Pins 1, 2, 3 and 4 connected  
together; pins 5, 6, 7 and 8  
10. Output noise comes from two primary  
sources: chopper noise and sigma-  
connected together.  
V
V
DD2  
DD1  
+15 V  
0.1 µF  
1
2
8
7
0.1 µF  
10 K  
+
V
HCPL-7840  
OUT  
0.1 µF  
10 K  
6
5
3
4
AD624CD  
GAIN = 100  
0.1 µF  
0.47  
µF  
0.47  
µF  
-15 V  
Figure 1. Input Offset Voltage Test Circuit.  
0.3  
0.2  
0.1  
4.0  
3.5  
0.6  
vs. V  
vs. V  
(V  
= 5 V)  
= 5 V)  
DD1 DD2  
V
V
= 5 V  
= 5 V  
DD1  
DD2  
0.4  
0.2  
0
(V  
DD2 DD1  
NEGATIVE  
OUTPUT  
POSITIVE  
OUTPUT  
3.0  
2.5  
2.0  
T
= 25°C  
A
-0.2  
-0.4  
0
V
V
= 5 V  
= 5 V  
= 25°C  
DD1  
DD2  
1.5  
1.0  
-0.6  
-0.8  
T
A
-0.1  
-40 -20  
0
20 40 60  
80 100  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
-0.6 -0.4 -0.2  
0
0.2  
0.4  
0.6  
T
– TEMPERATURE – °C  
V
– SUPPLY VOLTAGE – V  
V
– INPUT VOLTAGE – V  
A
DD  
IN  
Figure 2. Input Offset Change vs.  
Temperature.  
Figure 3. Input Offset Change vs.  
VDD1 and VDD2  
Figure 4. Output Voltages vs. Input  
Voltage.  
.
1-253  
V
V
DD1  
DD2  
+15 V  
+15 V  
0.1 µF  
0.1 µF  
1
2
8
7
0.1 µF  
0.1 µF  
10 K  
404  
V
IN  
+
+
V
HCPL-7840  
OUT  
13.2  
10 K  
6
5
3
4
AD624CD  
GAIN = 4  
AD624CD  
GAIN = 10  
0.01 µF  
0.1 µF  
0.1 µF  
0.47  
µF  
0.47  
µF  
-15 V  
-15 V  
10 K  
0.47  
µF  
Figure 5. Gain and Nonlinearity Test Circuit.  
0.1  
0
0.15  
0.10  
0.05  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
200 mV ERROR  
100 mV ERROR  
vs. V  
(V  
DD1 DD2  
= 5 V)  
= 5 V)  
vs. V (V  
DD2 DD1  
V
= 5 V  
= 5 V  
= 0 V  
DD1  
DD2  
V
V
T
= 25°C  
A
-0.1  
-0.2  
-0.3  
IN–  
= 25°C  
T
A
V
V
= 5 V  
= 5 V  
DD1  
DD2  
-0.02  
-0.05  
-0.10  
-0.4  
-0.5  
-0.04  
-0.06  
-40 -20  
0
20 40 60  
80 100  
-0.2  
-0.1  
0
0.1  
0.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
T
– TEMPERATURE – °C  
V
– INPUT VOLTAGE – V  
V
– SUPPLY VOLTAGE – V  
A
IN+  
DD  
Figure 6. Gain Change vs.  
Temperature.  
Figure 7. Gain Change vs. VDD1 and  
VDD2  
Figure 8. Nonlinearity Error Plot vs.  
Input Voltage.  
.
0.20  
0.12  
0.060  
vs. V  
vs. V  
(V  
DD1 DD2  
= 5 V)  
= 5 V)  
vs. V  
(V  
DD1 DD2  
= 5 V)  
= 5 V)  
200 mV NL  
100 mV NL  
(V  
DD2 DD1  
vs. V (V  
DD2 DD1  
0.15  
0.10  
0.11  
0.10  
0.055  
0.050  
T
= 25°C  
T = 25°C  
A
A
V
V
V
= 5 V  
= 5 V  
DD1  
DD2  
= 0 V  
IN–  
= 25 °C  
T
A
0.05  
0
0.09  
0.08  
0.045  
0.040  
-40 -20  
0
20 40  
60 80 100  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
T
– TEMPERATURE – °C  
V
– SUPPLY VOLTAGE – V  
V
– SUPPLY VOLTAGE – V  
DD  
A
DD  
Figure 9. Nonlinearity vs.  
Temperature.  
Fibure 10. 200 mV Nonlinearity vs.  
DD1 and VDD2  
Figure 11. 100 mV Nonlinearity vs.  
DD1 and VDD2  
V
.
V
.
1-254  
2
0
11  
10  
9
T
T
T
= 85°C  
= 25°C  
= -40°C  
T
T
T
= 85°C  
= 25°C  
= -40°C  
A
A
A
A
A
A
5.00  
0.50  
-2  
-4  
-6  
V
V
V
T
= 5 V  
= 5 V  
= 0 V  
DD1  
DD2  
IN–  
8
V
V
V
= 5 V  
= 5 V  
= 0 V  
DD1  
DD2  
IN–  
= 25°C  
0.05  
0.01  
A
7
V
V
= 5 V  
= 5 V  
-8  
DD1  
DD2  
-10  
6
-6  
-4  
V
-2  
0
2
4
6
0
±0.10  
±0.20  
±0.30  
±0.40  
-0.4  
-0.2  
V – INPUT VOLTAGE – V  
IN+  
0
0.2  
0.4  
– INPUT VOLTAGE – V  
FS – FULL-SCALE INPUT VOLTAGE – V  
IN+  
Figure 12. Nonlinearity vs. Full-Scale  
Input Voltage.  
Figure 13. Input Current vs. Input  
Voltage.  
Figure 14. Input Supply Current vs.  
Input Voltage.  
10 K  
150 pF  
V
DD2  
78L05  
+15 V  
IN OUT  
0.1 µF  
1
8
7
10.0  
0.1  
µF  
0.1  
µF  
V
V
V
= 5 V  
= 5 V  
= 0 V  
DD1  
DD2  
IN–  
0.1 µF  
2 K  
2 K  
2
9.5  
V
HCPL-7840  
9 V  
OUT  
+
6
5
3
4
MC34081  
0.1 µF  
9.0  
8.5  
8.0  
T
T
T
= 85°C  
= 25°C  
= -40°C  
A
A
A
10 K  
150  
pF  
PULSE GEN.  
-15 V  
-0.4  
-0.2  
0
0.2  
0.4  
+
V
– INPUT VOLTAGE – V  
V
IN+  
CM  
Figure 16. Common Mode Rejection  
Test Circuit.  
Figure 15. Output Supply Current vs.  
Input Voltage.  
10 K  
V
V
DD2  
DD1  
+15 V  
0.1 µF  
9
1
2
8
7
DELAY TO 90%  
DELAY TO 50%  
RISE/FALL TIME  
0.1 µF  
0.1 µF  
8
7
6
5
2 K  
2 K  
V
IN  
V
HCPL-7840  
OUT  
+
6
5
3
4
MC34081  
0.1 µF  
0.01 µF  
4
3
2
V
V
= 5 V  
= 5 V  
10 K  
DD1  
DD2  
V
V
= 0 V  
IN–  
IN+  
= 0 TO 100 mV STEP  
60 80 100  
– TEMPERATURE – °C  
-15 V  
-40 -20  
0
20 40  
T
A
V
IMPEDANCE LESS THAN 10 .  
IN  
Figure 18. Propagation Delays and  
Rise/Fall Time vs. Temperature.  
Figure 17. Propagation Delay, Rise/Fall Time and Bandwidth Test Circuit.  
1-255  
2.5  
0
160  
140  
V
V
V
= 200 mV  
= 100 mV  
= 0 mV  
IN+  
IN+  
IN+  
V
V
= 5 V  
= 5 V  
DD1  
DD2  
2.0  
1.5  
-1  
V
V
= 5 V  
= 5 V  
= 25 °C  
DD1  
DD2  
T
V
V
= 25°C  
= 5 V  
120  
100  
80  
A
DD1  
DD2  
T
A
= 5 V  
-2  
-3  
-4  
1.0  
0.5  
0
60  
40  
5
10  
50 100  
f – FREQUENCY – KHz  
500  
1
5
10  
50 100  
500  
-40 -20  
0
20 40  
60 80 100  
f – FREQUENCY – kHz  
T
– TEMPERATURE – °C  
A
Figure 19. Amplitude Response vs.  
Frequency.  
Figure 20. 3 dB Bandwidth vs.  
Temperature  
Figure 21. RMS Input-Referred Noise  
vs. Recommended Application Circuit  
Bandwidth.  
Applications Information  
Functional Description  
finally, the differential output of  
the isolation amplifier is  
required because of the high-  
speed digital nature of the signals  
inside the isolation amplifier. A  
0.01 µF bypass capacitor (C3) is  
also recommended at the input  
pin(s) due to the switched-  
capacitor nature of the input  
circuit. The input bypass capaci-  
tor should be at least 1000 pF to  
maintain gain accuracy of the  
isolation amplifier.  
converted to a ground-referenced  
single-ended output voltage with  
a simple differential amplifier  
circuit (U3 and associated com-  
ponents). Although the applica-  
tion circuit is relatively simple, a  
few recommendations should be  
followed to ensure optimal  
performance.  
Figure 22 shows the primary  
functional blocks of the HCPL-  
7840. In operation, the sigma-  
delta modulator converts the  
analog input signal into a high-  
speed serial bit stream. The time  
average of this bit stream is  
directly proportional to the input  
signal. This stream of digital data  
is encoded and optically trans-  
mitted to the detector circuit. The  
detected signal is decoded and  
converted back into an analog  
signal, which is filtered to obtain  
the final output signal.  
Supplies and Bypassing  
Inductive coupling between the  
input power-supply bypass  
capacitor and the input circuit,  
including the input bypass  
As mentioned above, an inexpen-  
sive 78L05 three-terminal  
regulator can be used to reduce  
the gate-drive power supply  
voltage to 5 V. To help attenuate  
high frequency power supply  
noise or ripple, a resistor or  
inductor can be used in series  
with the input of the regulator to  
form a low-pass filter with the  
regulator’s input bypass  
capacitor and the input leads of  
the HCPL-7840, can introduce  
additional DC offset in the circuit.  
Several steps can be taken to  
minimize the mutual coupling  
between the two parts of the  
circuit, thereby improving the  
offset performance of the design.  
Separate the two bypass  
capacitors C2 and C3 as much as  
possible (even putting them on  
opposite sides of the PC board),  
while keeping the total lead  
lengths, including traces, of each  
bypass capacitor less than 20  
mm. PC board traces should be  
made as short as possible and  
Application Circuit  
The recommended application  
circuit is shown in Figure 23. A  
floating power supply (which in  
many applications could be the  
same supply that is used to drive  
the high-side power transistor) is  
regulated to 5 V using a simple  
three-terminal voltage regulator  
(U1). The voltage from the cur-  
rent sensing resistor, or shunt  
(Rsense), is applied to the input  
of the HCPL-7840 through an RC  
anti-aliasing filter (R5, C3). And  
capacitor.  
As shown in Figure 23, 0.1 µF  
bypass capacitors (C2, C4)  
should be located as close as  
possible to the input and output  
power supply pins of the HCPL-  
7840. The bypass capacitors are  
1-256  
placed close together or over  
ground plane to minimize loop  
area and pickup of stray magnetic  
fields. Avoid using sockets, as  
they will typically increase both  
loop area and inductance. And  
finally, using capacitors with  
small body size and orienting  
them perpendicular to each other  
on the PC board can also help.  
For more information concerning  
this effect, see Application Note  
1078, Designing with Hewlett-  
Packard Isolation Amplifiers.  
shunt with a lower tempco can  
help minimize this effect. The  
Application Note 1078, Design-  
ing with Hewlett-Packard  
Isolation Amplifiers, contains  
additional information on  
input bypass capacitor, and the  
wires or traces connecting the  
two. Undamped ringing of the  
input circuit near the input  
sampling frequency can alias into  
the baseband producing what  
might appear to be noise at the  
output of the device. To be  
effective, the damping resistor  
should be at least 39 .  
designing with current shunts.  
The recommended method for  
connecting the isolation amplifier  
to the shunt resistor is shown in  
Figure 23. Pin 2 (VIN+) is con-  
nected to the positive terminal of  
the shunt resistor, while pin 3  
PC Board Layout  
In addition to affecting offset, the  
layout of the PC board can also  
affect the common mode rejec-  
tion (CMR) performance of the  
isolation amplifier, due primarily  
to stray capacitive coupling  
between the input and the output  
circuits. To obtain optimal CMR  
performance, the layout of the  
printed circuit board (PCB)  
should minimize any stray coup-  
ling by maintaining the maximum  
possible distance between the  
input and output sides of the  
circuit and ensuring that any  
ground plane on the PCB does  
not pass directly below the  
HCPL-7840. Using surface mount  
components can help achieve  
many of the PCB objectives  
(V ) is shorted to pin 4 (GND1),  
IN-  
Shunt Resistor Selection  
with the power-supply return  
path functioning as the sense line  
to the negative terminal of the  
current shunt. This allows a  
The current-sensing shunt resis-  
tor should have low resistance (to  
minimize power dissipation), low  
inductance (to minimize di/dt  
induced voltage spikes which  
could adversely affect operation),  
and reasonable tolerance (to  
maintain overall circuit accuracy).  
The value of the shunt should be  
chosen as a compromise between  
minimizing power dissipation by  
making the shunt resistance  
smaller and improving circuit  
accuracy by making it larger and  
utilizing the full input range of  
the HCPL-7840. Hewlett-Packard  
recommends four different shunts  
which can be used to sense  
average currents in motor drives  
up to 35 A and 35 hp. Table 1  
shows the maximum current and  
horsepower range for each of the  
LVR-series shunts from Dale.  
Even higher currents can be  
sensed with lower value shunts  
available from vendors such as  
Dale, IRC, and Isotek (Isabellen-  
huette). When sensing currents  
large enough to cause significant  
heating of the shunt, the tempera-  
ture coefficient of the shunt can  
introduce nonlinearity due to the  
signal dependent temperature  
rise of the shunt. Using a heat  
sink for the shunt or using a  
single pair of wires or PC board  
traces to connect the isolation  
amplifier circuit to the shunt  
resistor. In some applications,  
however, supply currents flowing  
through the power-supply return  
path may cause offset or noise  
problems. In this case, better  
performance may be obtained by  
connecting pin 3 to the negative  
terminal of the shunt resistor  
separate from the power supply  
return path. When connected this  
way, both input pins should be  
bypassed. Whether two or three  
wires are used, it is recom-  
discussed in the preceding para-  
graphs. An example through-hole  
PCB layout illustrating some of  
the more important layout  
recommendations is shown in  
Figures 25 and 26. See Applica-  
tion Note 1078, Designing with  
Hewlett-Packard Isolation  
mended that twisted-pair wire or  
very close PC board traces be  
used to connect the current shunt  
to the isolation amplifier circuit  
to minimize electromagnetic  
interference to the sense signal.  
Amplifiers, for more information  
on PCB layout considerations.  
The 68 resistor in series with  
the input lead forms a low-pass  
anti-aliasing filter with the input  
bypass capacitor with a 200 kHz  
bandwidth. The resistor performs  
another important function as  
well; it dampens any ringing  
Post-Amplifier Circuit  
The recommended application  
circuit (Figure 23) includes a  
post-amplifier circuit that serves  
three functions: to reference the  
output signal to the desired level  
(usually ground), to amplify the  
signal to appropriate levels, and  
which might be present in the  
circuit formed by the shunt, the  
1-257  
to help filter output noise. The  
particular op-amp used in the  
post-amp is not critical; however,  
it should have low enough offset  
and high enough bandwidth and  
slew rate so that it does not  
adversely affect circuit perfor-  
mance. The offset of the op-amp  
should be low relative to the out-  
put offset of the HCPL-7840, or  
less than about 5 mV.  
between low noise and fast  
response times. The overall  
recommended application circuit  
has a bandwidth of 66 kHz, a rise  
time of 5.2 µs and delay to 90%  
of 8.5 µs.  
how the output noise changes as  
a function of the post-amplifier  
bandwidth. The post-amplifier  
circuit exhibits a first-order low-  
pass filter characteristic. For the  
same filter bandwidth, a higher-  
order filter can achieve even  
better attenuation of modulation  
noise due to the second-order  
noise shaping of the sigma-delta  
modulator. For more information  
on the noise characteristics of the  
HCPL-7840, see Application Note  
1078, Designing with Hewlett-  
Packard Isolation Amplifiers.  
The gain-setting resistors in the  
post-amp should have a tolerance  
of 1% or better to ensure adequate  
CMRR and gain tolerance for the  
overall circuit. Resistor networks  
with even better ratio tolerances  
can be used which offer better  
performance, as well as reducing  
the total component count and  
board space.  
To maintain overall circuit band-  
width, the post-amplifier circuit  
should have a bandwidth at least  
twice the minimum bandwidth of  
the isolation amplifier, or about  
200 kHz. To obtain a bandwidth  
of 200 kHz with a gain of 5, the  
op-amp should have a gain-  
The HCPL-7840 can also be used  
to isolate signals with amplitudes  
larger than its recommended  
input range through the use of a  
resistive voltage divider at its  
input. The only restrictions are  
that the impedance of the divider  
be relatively small (less than  
1 Kso that the input resistance  
(480 K) and input bias current  
(0.6 A) do not affect the accuracy  
of the measurement. An input  
bypass capacitor is still required,  
although the 68 series damping  
resistor is not (the resistance of  
the voltage divider provides the  
same function). The low pass  
filter formed by the divider  
The post-amplifier circuit can be  
easily modified to allow for  
bandwidth greater than 1 MHz.  
The post-amplifier circuit  
single-supply operation. Figure  
24 shows a schematic for a post  
amplifier for use in 5 V single  
supply applications. One addi-  
tional resistor is needed and the  
gain is decreased to 1 to allow  
circuit operation over the full  
input voltage range. See Applica-  
tion Note 1078, Designing with  
Hewlett-Packard Isolation  
includes a pair of capacitors (C5  
and C6) that form a single-pole  
low-pass filter. These capacitors  
allow the bandwidth of the post-  
amp to be adjusted independently  
of the gain and are useful for  
reducing the output noise from  
the isolation amplifier (doubling  
the capacitor values halves the  
circuit bandwidth). The compo-  
nent values shown in Figure 23  
form a differential amplifier with  
a gain of 5 and a cutoff frequency  
of approximately 100 kHz and  
were chosen as a compromise  
Amplifiers, for more information  
on the post-amplifier circuit.  
Other Information  
resistance and the input bypass  
capacitor may limit the  
achievable bandwidth.  
As mentioned above, reducing the  
bandwidth of the post amplifier  
circuit reduces the amount of  
output noise. Figure 21 shows  
Table 1. Current Shunt Summary  
Maximum  
Power  
Dissipation  
Maximum  
Average  
Current  
Maximum  
Horsepower  
Range  
Shunt  
Resistance  
Shunt Resistor Part Number  
LVR-3.05-1%  
50 mΩ  
20 mΩ  
10 mΩ  
5 mΩ  
3 W  
3 W  
3 W  
5 W  
3 A  
8 A  
15 A  
35 A  
0.8-3.0 hp  
2.2-8.0 hp  
4.1-15 hp  
9.6-35 hp  
LVR-3.02-1%  
LVR-3.01-1%  
LVR-5.005-1%  
1-258  
VOLTAGE  
CLOCK  
VOLTAGE  
REGULATOR  
GENERATOR  
REGULATOR  
ISOLATION  
BOUNDARY  
Σ∆  
LED DRIVE  
CIRCUIT  
DETECTOR  
CIRCUIT  
DECODER  
AND D/A  
ISO-AMP  
OUTPUT  
ISO-AMP  
INPUT  
ENCODER  
FILTER  
MODULATOR  
Figure 22. HCPL-7840 Block Diagram.  
POSITIVE  
FLOATING  
SUPPLY  
C5  
150 pF  
HV+  
GATE DRIVE  
CIRCUIT  
R3  
• • •  
10.0 K  
U1  
78L05  
+5 V  
+15 V  
C8  
IN  
OUT  
0.1 µF  
C1  
C2  
1
2
8
7
C4  
0.1 µF  
0.1  
µF  
0.1  
µF  
R5  
68  
R1  
2.00 K  
R2  
C3  
U3  
V
U2  
OUT  
0.01  
µF  
+
6
5
3
4
MC34081  
2.00 K  
MOTOR  
C7  
+
• • •  
C6  
150 pF  
R4  
10.0 K  
R
0.1 µF  
SENSE  
HCPL-7840  
-15 V  
• • •  
HV–  
C4  
C2  
R5  
Figure 23. Recommended Application Circuit.  
C3  
Figure 25. Top Layer of Printed  
Circuit Board Layout.  
C5  
150 pF  
+5 V  
R3  
TO V  
DD1  
10.0 K  
TO V  
DD2  
OUT+  
OUT–  
TO R  
TO R  
V
V
SENSE+  
SENSE–  
+5 V  
+5 V  
C8  
0.1 µF  
R4A  
20.0 K  
Figure 26. Bottom Layer of Printed  
Circuit Board Layout.  
8
7
1
2
C4  
0.1 µF  
R1  
10.0 K  
R2  
V
U3  
U2  
OUT  
+
6
5
3
4
MC34071  
10.0 K  
C6  
R4B  
150 pF  
20.0 K  
HCPL-7840  
Figure 24. Single-Supply Post-Amplifier Circuit.  
1-259  
WWW.ALLDATASHEET.COM  
Copyright © Each Manufacturing Company.  
All Datasheets cannot be modified without permission.  
This datasheet has been download from :  
www.AllDataSheet.com  
100% Free DataSheet Search Site.  
Free Download.  
No Register.  
Fast Search System.  
www.AllDataSheet.com  
配单直通车
HCPL-7840产品参数
型号:HCPL-7840
是否Rohs认证: 不符合
生命周期:Transferred
IHS 制造商:HEWLETT PACKARD CO
零件包装代码:DIP
包装说明:DIP, DIP8,.3
针数:8
Reach Compliance Code:unknown
ECCN代码:EAR99
HTS代码:8542.33.00.01
风险等级:5.13
Is Samacsys:N
放大器类型:ISOLATION AMPLIFIER
标称带宽 (3dB):100 MHz
最大共模电压:3750 V
最小绝缘电压:3750 V
JESD-30 代码:R-PDIP-T8
JESD-609代码:e0
功能数量:1
端子数量:8
最高工作温度:85 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:DIP
封装等效代码:DIP8,.3
封装形状:RECTANGULAR
封装形式:IN-LINE
电源:5 V
认证状态:Not Qualified
子类别:Isolation Amplifiers
供电电压上限:5.5 V
标称供电电压 (Vsup):5 V
表面贴装:NO
技术:CMOS
温度等级:INDUSTRIAL
端子面层:Tin/Lead (Sn/Pb)
端子形式:THROUGH-HOLE
端子节距:2.54 mm
端子位置:DUAL
最大电压增益:8.4
最小电压增益:7.6
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!