欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • LTC6655CHLS8-5
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • LTC6655CHLS8-5#PBF图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • LTC6655CHLS8-5#PBF 现货库存
  • 数量5469 
  • 厂家ADI(亚德诺) 
  • 封装LCC-8 
  • 批号23+ 
  • 百分百原装正品,可原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • LTC6655CHLS8-5#PBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LTC6655CHLS8-5#PBF 现货库存
  • 数量
  • 厂家ADI 
  • 封装8-Lead LCC (5mm x 5mm) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • LTC6655CHLS8-5#PBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LTC6655CHLS8-5#PBF 现货库存
  • 数量8888 
  • 厂家ADI 
  • 封装原封装 
  • 批号新批次 
  • 全球渠道、原厂正品、信誉保障、闪电发货
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • LTC6655CHLS8-5#PBF图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • LTC6655CHLS8-5#PBF
  • 数量7536 
  • 厂家Analog Devices Inc. 
  • 封装8-CLCC(5x5) 
  • 批号23+ 
  • PMIC电压基准原装现货
  • QQ:3004306594QQ:3004306594 复制
  • 0755-82777852 QQ:3004306594
  • LTC6655CHLS8-5#PBF图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • LTC6655CHLS8-5#PBF
  • 数量3219 
  • 厂家Analog Devices Inc. 
  • 封装8-CLCC 
  • 批号22+ 
  • 支持检测.现货.原装价优
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • LTC6655CHLS8-5#PBF图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • LTC6655CHLS8-5#PBF
  • 数量350 
  • 厂家LINEAR/凌特 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • LTC6655CHLS8-5#PBF图
  • 集好芯城

     该会员已使用本站13年以上
  • LTC6655CHLS8-5#PBF
  • 数量13476 
  • 厂家LINEAR/凌特 
  • 封装8-LCC 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • LTC6655CHLS8-5#PBF图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • LTC6655CHLS8-5#PBF
  • 数量3587 
  • 厂家ADI/LT 
  • 封装8-CLCC 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • LTC6655CHLS8-5#PBF图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站6年以上
  • LTC6655CHLS8-5#PBF
  • 数量15300 
  • 厂家Analog Devices Inc. 
  • 封装8-CLCC 
  • 批号24+ 
  • 只做原装★真实库存★含13点增值税票!
  • QQ:2885134615QQ:2885134615 复制
    QQ:2353549508QQ:2353549508 复制
  • 0755-83201583 QQ:2885134615QQ:2353549508
  • LTC6655CHLS8-5#PBF IC图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • LTC6655CHLS8-5#PBF IC
  • 数量12500 
  • 厂家ADI/亚德诺 
  • 封装CLCC-8 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • LTC6655CHLS8-5图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • LTC6655CHLS8-5
  • 数量26007 
  • 厂家LT 
  • 封装CLCC-8 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • LTC6655CHLS8-5#PBF图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • LTC6655CHLS8-5#PBF
  • 数量865000 
  • 厂家LINEAR 
  • 封装8-LCC 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • LTC6655CHLS8-5#PBF图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • LTC6655CHLS8-5#PBF
  • 数量2368 
  • 厂家ADI-亚德诺 
  • 封装8-CLCC 
  • 批号▉▉:2年内 
  • ▉▉¥78.2元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • LTC6655CHLS8-5#PBF图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • LTC6655CHLS8-5#PBF
  • 数量3587 
  • 厂家ADI/LT 
  • 封装8-CLCC 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • LTC6655CHLS8-5#PBF图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • LTC6655CHLS8-5#PBF
  • 数量3000 
  • 厂家LINEAR 
  • 封装CLCC-8 5*5 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • LTC6655CHLS8-5#PBF图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • LTC6655CHLS8-5#PBF
  • 数量32500 
  • 厂家ADI(亚德诺) 
  • 封装LCC-8 
  • 批号1年内 
  • 全新原装 正品保障
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • LTC6655CHLS8-5#PBF图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • LTC6655CHLS8-5#PBF
  • 数量98622 
  • 厂家ADI/亚德诺 
  • 封装LCC-8 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • LTC6655CHLS8-5#PBF图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • LTC6655CHLS8-5#PBF
  • 数量500 
  • 厂家LINEAR/凌特 
  • 封装8-LCC 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • LTC6655CHLS8-5#PBF图
  • 深圳市鹏和科技有限公司

     该会员已使用本站16年以上
  • LTC6655CHLS8-5#PBF
  • 数量5000 
  • 厂家LINEAR 
  • 封装8-LCC 
  • 批号23+ 
  • 只做原装公司现货
  • QQ:1259658843QQ:1259658843 复制
  • 0755- QQ:1259658843
  • LTC6655CHLS8-5#PBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LTC6655CHLS8-5#PBF
  • 数量
  • 厂家ADI 
  • 封装8-Lead LCC (5mm x 5mm) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • LTC6655CHLS8-5图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • LTC6655CHLS8-5
  • 数量6500000 
  • 厂家亚德诺/凌力尔特 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008961396QQ:3008961396 复制
  • 0755-21008751 QQ:3008961396
  • LTC6655CHLS8-5#PBF图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • LTC6655CHLS8-5#PBF
  • 数量5000 
  • 厂家LINEAR TECHNOLOGY 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • LTC6655CHLS8-5#PBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LTC6655CHLS8-5#PBF
  • 数量
  • 厂家ADI 
  • 封装8-Lead LCC (5mm x 5mm) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • LTC6655CHLS8-5#PBF图
  • 深圳亿景融荣科技有限公司

     该会员已使用本站2年以上
  • LTC6655CHLS8-5#PBF
  • 数量2880 
  • 厂家AD 
  • 封装8-Lead LCC (5mm x 5mm) 
  • 批号24+ 
  • QQ:1958522749QQ:1958522749 复制
    QQ:2560388062QQ:2560388062 复制
  • 86-0755-27742156 QQ:1958522749QQ:2560388062
  • LTC6655CHLS8-5#PBF图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • LTC6655CHLS8-5#PBF
  • 数量9500 
  • 厂家ADI(亚德诺) 
  • 封装8-CLCC 
  • 批号24+ 
  • 绝对原装正品,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • LTC6655CHLS8-5#PBF图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • LTC6655CHLS8-5#PBF
  • 数量8000 
  • 厂家LINEAR/凌特 
  • 封装8-LCC 
  • 批号21+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • LTC6655CHLS8-5#PBF图
  • 深圳市恒意创鑫电子有限公司

     该会员已使用本站10年以上
  • LTC6655CHLS8-5#PBF
  • 数量9000 
  • 厂家LINEAR/凌特 
  • 封装8-LCC 
  • 批号22+ 
  • 全新原装公司现货,支持实单
  • QQ:1493457560QQ:1493457560 复制
  • 0755-83235429 QQ:1493457560
  • LTC6655CHLS8-5图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • LTC6655CHLS8-5
  • 数量8260 
  • 厂家Linear Technology/Analog Devices 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • LTC6655CHLS8-5#PBF图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • LTC6655CHLS8-5#PBF
  • 数量7870 
  • 厂家Linear Technology/Analog Devices 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • LTC6655CHLS8-5#PBF图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • LTC6655CHLS8-5#PBF
  • 数量98500 
  • 厂家LINEAR/凌特 
  • 封装8-LCC 
  • 批号23+ 
  • 真实库存全新原装正品!专业配单
  • QQ:308365177QQ:308365177 复制
  • 0755-13418564337 QQ:308365177
  • LTC6655CHLS8-5#PBF图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • LTC6655CHLS8-5#PBF
  • 数量932 
  • 厂家ADI/LT 
  • 封装CLCC-8 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:104元
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807

产品型号LTC6655CHLS8-5#PBF的Datasheet PDF文件预览

LTC6655  
0.25ppm Noise, Low Drift  
Precision References  
FeaTures  
DescripTion  
The LTC®6655 is a complete family of precision bandgap  
voltage references, offering exceptional noise and drift  
performance. This low noise and drift is ideally suited for  
thehighresolutionmeasurementsrequiredbyinstrumenta-  
tion and test equipment. In addition, the LTC6655 is fully  
specified over the temperature range of –40°C to 125°C,  
ensuring its suitability for demanding automotive and  
industrialapplications.Advancedcurvaturecompensation  
allowsthisbandgapreferencetoachieveadriftoflessthan  
2ppm/°C with a predictable temperature characteristic  
and an output voltage accurate to 0.025ꢀ, reducing or  
eliminating the need for calibration.  
n
Low Noise: 0.25ppm (0.1Hz to 10Hz)  
P-P  
625nV for the LTC6655-2.5  
P-P  
n
Low Drift: 2ppm/°C Max  
n
High Accuracy: 0.025ꢀ Max  
No Humidity Sensitivity (LS8 Package)  
n
n
Thermal Hysteresis (LS8): 30ppm (–40°C to 85°C)  
n
Long-Term Drift (LS8): 20ppm/√kHr  
n
100ꢀ Tested at –40°C, 25°C and 125°C  
n
Load Regulation: <10ppm/mA  
n
Sinks and Sources Current: 5mA  
n
Low Dropout: 500mV  
n
Maximum Supply Voltage: 13.2V  
n
Low Power Shutdown: <20µA Max  
The LTC6655 can be powered from as little as 500mV  
above the output voltage to as much as 13.2V. Superior  
loadregulationwithsourceandsinkcapability,coupledwith  
exceptionallinerejection,ensuresconsistentperformance  
over a wide range of operating conditions. A shutdown  
mode is provided for low power applications.  
n
Available Output Voltages: 1.25V, 2.048V, 2.5V, 3V,  
3.3V, 4.096V, 5V  
n
Available in an 8-Lead MSOP and High Stability  
Hermetic 5mm × 5mm LS8 Packages  
applicaTions  
The LTC6655 references are offered in an 8-lead MSOP  
package and an 8-lead LS8 package. The LS8 is a 5mm  
× 5mm surface mount hermetic package that provides  
outstanding stability.  
n
Instrumentation and Test Equipment  
n
n
n
n
n
High Resolution Data Acquisition Systems  
Weigh Scales  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Precision Battery Monitors  
Precision Regulators  
Technology Corporation. All other trademarks are the property of their respective owners.  
Medical Equipment  
Typical applicaTion  
Low Frequency 0.1Hz to 10Hz Noise (LTC6655-2.5)  
Basic Connection  
LTC6655-2.5  
3V < V ≤ 13.2V  
V
C
V
V
IN  
OUT  
IN  
OUT_F  
OUT_S  
C
IN  
500nV/DIV  
SHDN  
V
0.1µF  
OUT  
10µF  
GND  
6655 TA01a  
6655 TA01b  
1s/DIV  
6655fc  
1
For more information www.linear.com/LTC6655  
LTC6655  
absoluTe MaxiMuM raTings (Note 1)  
Operating Temperature Range (Note 2).. –40°C to 125°C  
Storage Temperature Range (Note 2)..... –65°C to 150°C  
Lead Temperature Range (Soldering, 10 sec)  
Input Voltage  
V to GND.......................................... –0.3V to 13.2V  
IN  
SHDN to GND ........................... –0.3V to (V + 0.3V)  
Output Voltage:  
IN  
(Note 3).................................................................300°C  
V
OUT_F  
V
....................................... –0.3V to (V + 0.3V)  
IN  
..................................................... –0.3V to 6V  
OUT_S  
Output Short-Circuit Duration...................... Indefinite  
pin conFiguraTion  
TOP VIEW  
GND*  
TOP VIEW  
8
SHDN  
1
2
3
7
6
5
V
V
OUT_F  
OUT_S  
SHDN  
1
2
3
4
8 GND*  
V
7 V  
6 V  
IN  
OUT_F  
OUT_S  
V
IN  
GND*  
GND  
5 GND*  
GND*  
GND*  
4
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
= 150°C, θ = 300°C/W  
GND  
LS8 PACKAGE  
8-PIN LEADLESS CHIP CARRIER (5mm × 5mm)  
T
JMAX  
JA  
*CONNECT PINS TO DEVICE GND (PIN 4)  
T
JMAX  
= 150°C, θ = 120°C/W  
JA  
*CONNECT PINS TO DEVICE GND (PIN 4)  
6655fc  
2
For more information www.linear.com/LTC6655  
LTC6655  
orDer inForMaTion  
PART  
MARKING*  
LEAD FREE FINISH  
TAPE AND REEL  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Ceramic LCC (5mm × 5mm)  
8-Lead Ceramic LCC (5mm × 5mm)  
8-Lead Ceramic LCC (5mm × 5mm)  
8-Lead Ceramic LCC (5mm × 5mm)  
SPECIFIED TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LTC6655BHMS8-1.25#PBF  
LTC6655CHMS8-1.25#PBF  
LTC6655BHMS8-2.048#PBF LTC6655BHMS8-2.048#TRPBF LTFDH  
LTC6655CHMS8-2.048#PBF LTC6655CHMS8-2.048#TRPBF LTFDH  
LTC6655BHMS8-2.5#PBF  
LTC6655CHMS8-2.5#PBF  
LTC6655BHMS8-3#PBF  
LTC6655CHMS8-3#PBF  
LTC6655BHMS8-3.3#PBF  
LTC6655CHMS8-3.3#PBF  
LTC6655BHMS8-1.25#TRPBF  
LTC6655CHMS8-1.25#TRPBF  
LTFDG  
LTFDG  
LTC6655BHMS8-2.5#TRPBF  
LTC6655CHMS8-2.5#TRPBF  
LTC6655BHMS8-3#TRPBF  
LTC6655CHMS8-3#TRPBF  
LTC6655BHMS8-3.3#TRPBF  
LTC6655CHMS8-3.3#TRPBF  
LTFCY  
LTFCY  
LTFDJ  
LTFDJ  
LTFDK  
LTFDK  
LTC6655BHMS8-4.096#PBF LTC6655BHMS8-4.096#TRPBF LTFDM  
LTC6655CHMS8-4.096#PBF LTC6655CHMS8-4.096#TRPBF LTFDM  
LTC6655BHMS8-5#PBF  
LTC6655CHMS8-5#PBF  
LTC6655BHLS8-2.5 #PBF  
LTC6655CHLS8-2.5 #PBF  
LTC6655BHMS8-5#TRPBF  
LTC6655CHMS8-5#TRPBF  
N/A  
N/A  
N/A  
N/A  
LTFDN  
LTFDN  
665525  
665525  
66555  
66555  
LTC6655BHLS8-5 #PBF  
LTC6655CHLS8-5 #PBF  
Consult LTC Marketing for parts specified with wider operating temperature ranges.*The temperature grade is identified by a label on the shipping container.  
†This product is only offered in trays. For more information refer to http//www.linear.com/packaging/  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
6655fc  
3
For more information www.linear.com/LTC6655  
LTC6655  
aVailable opTions  
OUTPUT VOLTAGE  
INITIAL ACCURACY  
TEMPERATURE COEFFICIENT  
PART NUMBER  
1.250  
0.025ꢀ  
0.05ꢀ  
2ppm/°C  
5ppm/°C  
LTC6655BHMS8-1.25  
LTC6655CHMS8-1.25  
2.048  
2.500  
0.025ꢀ  
0.05ꢀ  
2ppm/°C  
5ppm/°C  
LTC6655BHMS8-2.048  
LTC6655CHMS8-2.048  
0.025ꢀ  
0.05ꢀ  
2ppm/°C  
5ppm/°C  
LTC6655BHMS8-2.5  
LTC6655CHMS8-2.5  
0.025ꢀ  
0.05ꢀ  
2ppm/°C  
5ppm/°C  
LTC6655BHLS8-2.5  
LTC6655CHLS8-2.5  
3.000  
3.300  
4.096  
5.000  
0.025ꢀ  
0.05ꢀ  
2ppm/°C  
5ppm/°C  
LTC6655BHMS8-3.0  
LTC6655CHMS8-3.0  
0.025ꢀ  
0.05ꢀ  
2ppm/°C  
5ppm/°C  
LTC6655BHMS8-3.3  
LTC6655CHMS8-3.3  
0.025ꢀ  
0.05ꢀ  
2ppm/°C  
5ppm/°C  
LTC6655BHMS8-4.096  
LTC6655CHMS8-4.096  
0.025ꢀ  
0.05ꢀ  
2ppm/°C  
5ppm/°C  
LTC6655BHMS8-5  
LTC6655CHMS8-5  
0.025ꢀ  
0.05ꢀ  
2ppm/°C  
5ppm/°C  
LTC6655BHLS8-5  
LTC6655CHLS8-5  
See Order Information section for complete part number listing.  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = VOUT + 0.5V, VOUT_S connected to VOUT_F , unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage  
LTC6655B  
LTC6655C  
–0.025  
–0.05  
0.025  
0.05  
l
l
Output Voltage Temperature Coefficient  
(Note 4)  
LTC6655B  
LTC6655C  
1
2.5  
2
5
ppm/°C  
ppm/°C  
Line Regulation  
V
+ 0.5V ≤ V ≤ 13.2V, SHDN = V  
IN  
5
3
25  
40  
ppm/V  
ppm/V  
OUT  
IN  
l
l
l
l
l
l
Load Regulation (Note 5)  
I
= 5mA  
LTC6655MS8  
LTC6655LS8  
LTC6655MS8  
LTC6655LS8  
ppm/mA  
ppm/mA  
SOURCE  
15  
15  
3
ppm/mA  
ppm/mA  
I
= 5mA  
10  
20  
ppm/mA  
ppm/mA  
SINK  
30  
ppm/mA  
ppm/mA  
45  
Operating Voltage (Note 6)  
LTC6655-1.25, LTC6655-2.048, LTC6655-2.5  
= 5mA, V Error ≤ 0.1ꢀ  
I
3
13.2  
V
SOURCE  
OUT  
LTC6655-3, LTC6655-3.3, LTC6655-4.096, LTC6655-5  
l
l
I
I
= 5mA, V  
Error ≤ 0.1ꢀ  
V
OUT  
V
OUT  
+ 0.5  
+ 0.2  
13.2  
13.2  
V
V
SOURCE  
OUT  
Error ≤ 0.1ꢀ  
= 0mA, V  
OUT  
OUT  
6655fc  
4
For more information www.linear.com/LTC6655  
LTC6655  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = VOUT + 0.5V, VOUT_S connected to VOUT_F , unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Short-Circuit Current  
Short V  
Short V  
to GND  
20  
20  
mA  
mA  
OUT  
OUT  
to V  
IN  
l
l
Shutdown Pin (SHDN)  
Logic High Input Voltage  
Logic High Input Current, SHDN = 2V  
2.0  
V
µA  
12  
l
l
Logic Low Input Voltage  
Logic Low Input Current, SHDN = 0.8V  
0.8  
15  
V
µA  
Supply Current  
No Load  
5
7
mA  
mA  
l
l
7.5  
Shutdown Current  
SHDN Tied to GND  
20  
µA  
Output Voltage Noise (Note 7)  
0.1Hz ≤ f ≤ 10Hz  
10Hz ≤ f ≤ 1kHz  
0.25  
0.67  
ppm  
P-P  
ppm  
RMS  
Turn-On Time  
0.1ꢀ Settling, C  
= 2.7µF  
400  
µs  
OUT  
Long-Term Drift of Output Voltage (Note 8) LTC6655MS8  
LTC6655LS8  
60  
20  
ppm/√kHr  
ppm/√kHr  
Hysteresis (Note 9)  
LTC6655MS8  
∆T = 0°C to 70°C  
∆T = –40°C to 85°C  
∆T = –40°C to 125°C  
20  
30  
60  
ppm  
ppm  
ppm  
LTC6655LS8  
∆T = 0°C to 70°C  
∆T = –40°C to 85°C  
∆T = –40°C to 125°C  
5
30  
80  
ppm  
ppm  
ppm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Precision may be affected if the parts are stored outside of the  
specified temperature range. Large temperature changes may cause  
changes in device performance due to thermal hysteresis. For best  
performance, extreme temperatures should be avoided whenever possible.  
noise measurements will yield larger and smaller peak values in a given  
measurement interval. By repeating the measurement for 1000 intervals,  
each 10 seconds long, it is shown that there are time intervals during  
which the noise is higher than in a typical single interval, as predicted by  
statistical theory. In general, typical values are considered to be those for  
which at least 50ꢀ of the units may be expected to perform similarly or  
better. For the 1000 interval test, a typical unit will exhibit noise that is  
less than the typical value listed in the Electrical Characteristics table in  
more than 50ꢀ of its measurement intervals. See Application Note 124 for  
noise testing details. RMS noise is measured with a spectrum analyzer in a  
shielded environment.  
Note 3: The stated temperature is typical for soldering of the leads during  
manual rework. For detailed IR reflow recommendations, refer to the  
Applications Information section.  
Note 8: Long-term stability typically has a logarithmic characteristic and  
therefore, changes after 1000 hours tend to be much smaller than before  
that time. Total drift in the second thousand hours is normally less than  
one-third that of the first thousand hours with a continuing trend toward  
reduced drift with time. Long-term stability is also affected by differential  
stresses between the IC and the board material created during board  
assembly.  
Note 9: Hysteresis in output voltage is created by mechanical stress  
that differs depending on whether the IC was previously at a higher or  
lower temperature. Output voltage is always measured at 25°C, but  
the IC is cycled to the hot or cold temperature limit before successive  
measurements. Hysteresis is roughly proportional to the square of the  
temperature change. For instruments that are stored at well controlled  
temperatures (within 20 or 30 degrees of operational temperature),  
hysteresis is usually not a significant error source. Typical hysteresis is the  
worst case of 25°C to cold to 25°C or 25°C to hot to 25°C, preconditioned  
by one thermal cycle.  
Note 4: Temperature coefficient is measured by dividing the maximum  
change in output voltage by the specified temperature range.  
Note 5: Load regulation is measured on a pulse basis from no load to  
the specified load current. Load current does not include the 2mA sense  
current. Output changes due to die temperature change must be taken into  
account separately.  
Note 6: Excludes load regulation errors. Minimum supply for the  
LTC6655-1.25, LTC6655-2.048 and LTC6655-2.5 is set by internal circuitry  
supply requirements, regardless of load condition. Minimum supply for  
the LTC6655-3, LTC6655-3.3, LTC6655-4.096 and LTC6655-5 is specified  
by load current.  
Note 7: Peak-to-peak noise is measured with a 2-pole highpass filter at  
0.1Hz and 3-pole lowpass filter at 10Hz. The unit is enclosed in a still-air  
environment to eliminate thermocouple effects on the leads, and the  
test time is 10 seconds. Due to the statistical nature of noise, repeating  
6655fc  
5
For more information www.linear.com/LTC6655  
LTC6655  
Typical perForMance characTerisTics  
Characteristic curves are similar for most voltage options of the LTC6655. Curves from the LTC6655-1.25, LTC6655-2.5 and the  
LTC6655-5 represent the range of performance across the entire family of references. Characteristic curves for other output voltages  
fall between these curves and can be estimated based on their voltage output.  
1.25V Low Frequency  
0.1Hz to 10Hz Noise  
1.25V Output Voltage  
Temperature Drift  
1.25V Load Regulation (Sourcing)  
20  
1.2504  
1.2502  
1.2500  
1.2498  
1.2496  
3 TYPICAL UNITS  
125°C  
25°C  
–40°C  
10  
0
200nV/  
DIV  
–10  
–20  
–30  
–40  
6655 G01  
–50 –25  
0
25  
50  
75 100 125  
0.001  
0.01  
0.1  
1
10  
1s/DIV  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
6655 G03  
6655 G02  
1.25V Output Voltage Noise  
Spectrum  
1.25V Sinking Current with a  
3.3µF Output Capacitor  
1.25V Load Regulation (Sinking)  
200  
160  
120  
80  
40  
35  
30  
25  
20  
15  
10  
5
125°C  
25°C  
–40°C  
5mA  
I
OUT  
0mA  
V
OUT  
10mV/DIV  
40  
6655 G06  
2.7µF  
10µF  
100µF  
C
OUT  
= 3.3µF  
200µs/DIV  
0
0
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
FREQUENCY (kHz)  
6655 G04  
6655 G05  
1.25V Sourcing Current with a  
3.3µF Output Capacitor  
1.25V Shutdown Supply Current  
vs Input Voltage  
1.25V VOUT Distribution  
60  
50  
14  
12  
T
= 25°C  
A
125°C  
25°C  
–40°C  
0mA  
I
OUT  
10  
8
–5mA  
40  
30  
V
6
OUT  
10mV/DIV  
20  
10  
0
4
6655 G07  
C
OUT  
= 3.3µF  
200µs/DIV  
2
0
1.2495  
1.2498  
1.2500  
(V)  
1.2503  
1.2505  
8
12  
14  
0
2
4
6
10  
V
INPUT VOLTAGE (V)  
OUT  
6655 G09  
6655 G08  
6655fc  
6
For more information www.linear.com/LTC6655  
LTC6655  
Typical perForMance characTerisTics  
Characteristic curves are similar for most voltage options of the LTC6655. Curves from the LTC6655-1.25, LTC6655-2.5 and the  
LTC6655-5 represent the range of performance across the entire family of references. Characteristic curves for other output voltages  
fall between these curves and can be estimated based on their voltage output.  
2.5V Low Frequency  
0.1Hz to 10Hz Noise  
2.5V Output Voltage  
Temperature Drift  
2.5V Load Regulation (Sourcing)  
10  
0
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
3 TYPICAL UNITS  
–10  
–20  
–30  
–40  
–50  
500nV/  
DIV  
125°C  
25°C  
–40°C  
6655 G10  
–50  
0
50  
100  
150  
0.001  
0.01  
0.1  
1
10  
1s/DIV  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
6655 G12  
6655 G11  
2.5V Supply Current  
vs Input Voltage  
2.5V Shutdown Supply Current  
vs Input Voltage  
2.5V Load Regulation (Sinking)  
8
7
6
5
4
3
2
1
0
160  
140  
120  
100  
80  
14  
12  
10  
8
125°C  
25°C  
–40°C  
60  
6
40  
4
20  
125°C  
25°C  
125°C  
2
0
25°C  
–40°C  
–40°C  
–20  
0
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
0.001  
0.01  
0.1  
1
10  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
6655 G13  
6655 G14  
6655 G15  
2.5V Minimum VIN – VOUT  
Differential (Sourcing)  
2.5V Minimum VIN – VOUT  
Differential (Sinking)  
2.5V Output Voltage Noise  
Spectrum  
10  
1
120  
100  
80  
60  
40  
20  
0
10  
1
C
= 2.7µF  
OUT  
C
= 10µF  
OUT  
C
= 100µF  
OUT  
0.1  
0.1  
125°C  
125°C  
25°C  
–40°C  
25°C  
–40°C  
0.01  
0.01  
–0.15  
–0.05  
0.05  
0.15  
0.01  
0.1  
1
0.01  
0.1  
1
10  
100  
1000  
INPUT – OUTPUT VOLTAGE (V)  
INPUT – OUTPUT VOLTAGE (V)  
FREQUENCY (kHz)  
6655 G17  
6655 G16  
6655 F01  
6655fc  
7
For more information www.linear.com/LTC6655  
LTC6655  
Typical perForMance characTerisTics  
Characteristic curves are similar for most voltage options of the LTC6655. Curves from the LTC6655-1.25, LTC6655-2.5 and the  
LTC6655-5 represent the range of performance across the entire family of references. Characteristic curves for other output voltages  
fall between these curves and can be estimated based on their voltage output.  
2.5V Temperature Drift  
Distribution  
2.5V SHDN Input Voltage  
2.5V VOUT Distribution  
Thresholds vs VIN  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
14  
12  
T
= 25°C  
–40°C TO 125°C  
A
10  
V
TH_UP  
8
6
4
2
V
TH_DN  
0
2.4992  
2.4996  
2.5004  
2.5008  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8  
2
4
6
8
(V)  
10  
12  
14  
2.5000  
(V)  
V
V
DRIFT (ppm/C)  
IN  
OUT  
6655 G21  
6655 G19  
6655 G20  
2.5V Output Impedance  
vs Frequency  
2.5V Power Supply Rejection  
Ratio vs Frequency  
2.5V Line Regulation  
120  
2.502  
2.501  
2.500  
2.499  
2.498  
10  
1
C
C
C
= 2.7µF  
= 10µF  
= 100µF  
OUT  
OUT  
OUT  
100  
80  
60  
40  
20  
0
0.1  
0.01  
C
C
C
= 2.7µF  
= 10µF  
= 100µF  
125°C  
OUT  
OUT  
OUT  
25°C  
–40°C  
0.001  
0.01  
0.1  
1
10  
100  
0.001 0.01  
0.1  
1
10  
100 1000  
0
2
4
6
8
10  
12  
14  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
INPUT VOLTAGE (V)  
6655 G22  
6655 G24  
6655 G23  
6655fc  
8
For more information www.linear.com/LTC6655  
LTC6655  
Typical perForMance characTerisTics  
Characteristic curves are similar for most voltage options of the LTC6655. Curves from the LTC6655-1.25, LTC6655-2.5 and the  
LTC6655-5 represent the range of performance across the entire family of references. Characteristic curves for other output voltages  
fall between these curves and can be estimated based on their voltage output.  
5V Low Frequency  
0.1Hz to 10Hz Noise  
5V Output Voltage  
Temperature Drift  
5V Load Regulation (Sourcing)  
10  
0
5.0010  
5.0005  
5.0000  
4.9995  
4.9990  
4.9985  
3 TYPICAL UNITS  
–10  
–20  
–30  
–40  
–50  
500nV/  
DIV  
125°C  
25°C  
–40°C  
6655 G25  
–50 –25  
0
25  
50  
75 100 125  
0.01  
0.1  
1
10  
1s/DIV  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
6655 G26  
6655 G27  
5V Supply Current  
vs Input Voltage  
5V Output Voltage Noise  
Spectrum  
5V Load Regulation (Sinking)  
200  
180  
160  
140  
100  
80  
60  
40  
20  
0
6
5
4
3
125°C  
25°C  
–40°C  
120  
100  
80  
60  
40  
20  
0
2
1
0
125°C  
25°C  
2.7µF  
10µF  
100µF  
–40°C  
–20  
0.01  
0.1  
1
10  
0
2
4
6
8
10  
12  
14  
0.01  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
FREQUENCY (kHz)  
6655 G30  
6655 G28  
6655 G29  
5V Minimum VIN-VOUT  
Differential (Sourcing)  
5V Minimum VIN-VOUT  
Differential (Sinking)  
5V Start-Up Response with a  
3.3µF Output Capacitor  
10  
1
10  
1
V
IN  
2V/DIV  
V
OUT  
2V/DIV  
0.1  
0.1  
0.01  
125°C  
25°C  
–40°C  
125°C  
25°C  
–40°C  
6655 G33  
C
OUT  
= 3.3µF  
400µs/DIV  
0.01  
0.01  
0.1  
1
–0.3  
–0.2  
–0.1  
0
0.1  
INPUT-OUTPUT VOLTAGE (V)  
INPUT-OUTPUT VOLTAGE (V)  
6655 G31  
6655 G32  
6655fc  
9
For more information www.linear.com/LTC6655  
LTC6655  
pin FuncTions  
V
(Pin 6): V  
Sense Pin. Connect this pin at the  
SHDN (Pin 1): Shutdown Input. This active low input  
powers down the device to <20µA. If left open, an inter-  
nal pull-up resistor puts the part in normal operation. It  
is recommended to tie this pin high externally for best  
performance during normal operation.  
OUT_S  
OUT  
load and route with a wide metal trace to minimize load  
regulation errors. This pin sinks 2mA. Output error is  
R
2mA,regardlessofloadcurrent.Forloadcurrents  
TRACE  
<100µA, tie directly to V  
pin.  
OUT_F  
V
(Pin 7): V  
Force Pin. This pin sources and  
OUT  
V
(Pin 2): Power Supply. Bypass V with a 0.1µF, or  
IN  
OUT_F  
IN  
sinks current to the load. An output capacitor of 2.7µF to  
larger, capacitor to GND.  
100µF is required.  
GND (Pin 4): Device Ground. This pin is the main ground  
and must be connected to a noise-free ground plane.  
GND (Pins 3, 5, 8): Internal Function. Ground these  
pins.  
blocK DiagraM  
V
IN  
2
+
V
OUT_F  
SHDN  
1
7
6
BANDGAP  
V
OUT_S  
GND  
6655 BD  
4
GND  
3,5,8  
6655fc  
10  
For more information www.linear.com/LTC6655  
LTC6655  
applicaTions inForMaTion  
Bypass and Load Capacitors  
For very low noise applications where every nanovolt  
counts, film capacitors should be considered for their  
low noise and lack of piezoelectric effects. Film capaci-  
tors such as polyester, polystyrene, polycarbonate, and  
polypropylenehave good temperature stability. Additional  
caremustbetakenaspolystyreneandpolypropylenehave  
an upper temperature limit of 85°C to 105°C. Above these  
temperatures, the working voltages need to be derated  
according to manufacturer’s specifications. Another type  
of film capacitor is polyphenylene sulfide (PPS). These  
devices work over a wide temperature range, are stable,  
and have large capacitance values beyond 1μF. In general,  
film capacitors are found in surface mount and leaded  
packages. Table 1 is a partial list of capacitor companies  
and some of their available products.  
The LTC6655 voltage references require a 0.1µF or larger  
input capacitor located close to the part to improve power  
supply rejection. An output capacitorwith a valuebetween  
2.7µF and 100µF is also required.  
The output capacitor has a direct effect on the stability,  
turn-on time and settling behavior. Choose a capacitor  
with low ESR to insure stability. Resistance in series with  
the output capacitor (ESR) introduces a zero in the output  
buffer transfer function and could cause instability. The  
2.7μF to 100μF range includes several types of capacitors  
thatarereadilyavailableasthrough-holeandsurfacemount  
components. It is recommended to keep ESR less than or  
equal to 0.1Ω. Capacitance and ESR are both frequency  
dependent. At higher frequencies capacitance drops and  
ESR increases. To insure stable operation the output ca-  
pacitor should have the required values at 100kHz.  
In voltage reference applications, film capacitor lifetime  
is affected by temperature and applied voltage. When  
polyester capacitors are operated beyond their rated  
temperatures(somecapacitorsarenotratedforoperation  
above 85°C) they need to be derated. Voltage derating is  
usually accomplished as a ratio of applied voltage to rated  
voltagelimit.Contactspecificlmcapacitormanufacturers  
to determine exact lifetime and derating information.  
In order to achieve the best performance, caution should  
be used when choosing a capacitor. X7R ceramic ca-  
pacitors are small, come in appropriate values and are  
relatively stable over a wide temperature range. However,  
for a low noise application X7R capacitors may not be  
suitable since they may exhibit a piezoelectric effect. The  
mechanical vibrations cause a charge displacement in the  
ceramic dielectric and the resulting perturbation can look  
like noise. If X7R capacitors are necessary, a thorough  
bench evaluation should be completed to verify proper  
performance.  
The lifetime of X7R capacitors is long, especially for  
reference applications. Capacitor lifetime is degraded by  
operating near or exceeding the rated voltage, at high  
temperature,withACrippleorsomecombinationofthese.  
Most reference applications have AC ripple only during  
transient events.  
Table 1. Film Capacitor Companies  
COMPANY  
Cornell Dublier  
Dearborn Electronics  
Tecate  
DIELECTRIC  
Polyester  
AVAILABLE CAPACITANCE TEMPERATURE RANGE  
TYPE  
DME  
0.5µF to 10µF  
0.1µF to 12µF  
0.01µF to 18µF  
10µF to 22µF  
–55°C to 125°C  
–55°C to 125°C  
–40°C to 105°C  
–55°C to 100°C  
–55°C to 125°C  
–55°C to 100°C  
–55°C to 125°C  
–55°C to 140°C  
Polyester  
218P, 430P, 431P, 442P, and 410P  
901, 914, and 914D  
MKS 4, MKS 2-XL  
MKT1820  
Polyester  
Wima  
Polyester  
Vishay  
Polyester  
1000pF to 15µF  
0.01µF to 10µF  
0.01µF to 15µF  
0.01µF to 6.8µF  
Vishay  
Polycarbonate  
Polyphenylene Sulfide (PPS)  
Polyphenylene Sulfide (PPS)  
MKC1862, 632P  
Dearborn Electronics  
Wima  
820P, 832P, 842P, 860P, and 880P  
SMD-PPS  
6655fc  
11  
For more information www.linear.com/LTC6655  
LTC6655  
applicaTions inForMaTion  
120  
100  
80  
60  
40  
20  
0
The choice of output capacitor also affects the bandwidth  
of the reference circuitry and resultant noise peaking. As  
shown in Figure 1, the bandwidth is inversely proportional  
to the value of the output capacitor.  
C
= 2.7µF  
OUT  
C
= 10µF  
OUT  
C
= 100µF  
OUT  
Noise peaking is related to the phase margin of the output  
buffer.Higherpeakinggenerallyindicateslowerphasemar-  
gin.Otherfactorsaffectingnoisepeakingaretemperature,  
input voltage, and output load current.  
Start-Up and Load Transient Response  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Results for the transient response plots (Figures 3 to 8)  
were produced with the test circuit shown in Figure 2  
unless otherwise indicated.  
6655 F01  
Figure 1. Output Voltage Noise Spectrum  
The turn-on time is slew limited and determined by the  
short-circuit current, the output capacitor, and output  
voltage as shown in the equation:  
V
100Ω  
OUT  
7
6
1,2  
V
IN  
LTC6655-2.5  
3,4,5,8  
V
0.5V  
3V  
GEN  
C
OUT  
C
IN  
3.3µF  
0.1µF  
6655 F02  
COUT  
tON = VOUT  
ISC  
Figure 2. Transient Load Test Circuit  
For example, the LTC6655-2.5V, with a 3.3µF output  
capacitor and a typical short-circuit current of 20mA, the  
start-up time would be approximately:  
V
IN  
2V/DIV  
3.310–6F  
2.5V •  
= 412µs  
0.02A  
V
OUT  
1V/DIV  
The resulting turn-on time is shown in Figure 3. Here  
the output capacitor is 3.3µF and the input capacitor is  
0.1µF.  
6655 F03  
200µs/DIV  
C
= 3.3µF  
OUT  
Figure 4 shows the output response to a 500mV step on  
IN  
sinking is shown in Figures 5 and 6, respectively.  
Figure 3. Start-Up Response  
V . The output response to a current step sourcing and  
Figure 7 shows the output response as the current goes  
from sourcing to sinking.  
3.5V  
V
IN  
3V  
Shutdown Mode  
The LTC6655 family of references can be shut down by  
tying the SHDN pin to ground. There is an internal pull-up  
resistor tied to this pin. If left unconnected this pin rises to  
V
OUT  
50mV/DIV  
6655 F04  
C
= 3.3µF  
400µs/DIV  
V and the part is enabled. Due to the low internal pull-up  
OUT  
IN  
current, it is recommended that the SHDN pin be pulled  
high externally for normal operation to prevent accidental  
Figure 4. Output Response with a 500mV Step On VIN  
6655fc  
12  
For more information www.linear.com/LTC6655  
LTC6655  
applicaTions inForMaTion  
shutdown due to system noise or leakage currents. The  
turn-on/turn-off response due to shutdown is shown in  
Figure 8.  
0mA  
OUT  
I
–5mA  
Tocontrolshutdownfromalowvoltagesource,aMOSFET  
can be used as a pull-down device as shown in Figure 9.  
Note that an external resistor is unnecessary. A MOSFET  
with a low drain-to-source leakage over the operating  
temperaturerangeshouldbechosentoavoidinadvertently  
pulling down the SHDN pin. A resistor may be added from  
V
OUT  
10mV/DIV  
6655 F05  
C
OUT  
= 3.3µF  
200µs/DIV  
Figure 5. Output Response with a 5mA Load Step Sourcing  
SHDN to V to overcome excessive MOSFET leakage.  
IN  
The SHDN thresholds have some dependency on V  
IN  
5mA  
and temperature as shown in the Typical Performance  
Characteristics section. Avoid leaving SHDN at a voltage  
between the thresholds as this will cause an increase in  
supply current due to shoot-through current.  
I
OUT  
0mA  
V
OUT  
10mV/DIV  
3V ≤ V ≤ 13.2V  
IN  
C1  
1µF  
V
IN  
6655 F06  
V
V
OUT  
OUT_F  
C
= 3.3µF  
200µs/DIV  
OUT  
LTC6655-2.5  
GND  
C2  
Figure 6. Output Response with 5mA Load Step Sinking  
SHDN  
V
10µF  
OUT_S  
2N7002  
TO µC  
6655 F09  
2mA  
I
OUT  
Figure 9. Open-Drain Shutdown Circuit  
–2mA  
Long-Term Drift  
V
OUT  
Long-term drift cannot be extrapolated from accelerated  
high temperature testing. This erroneous technique gives  
drift numbers that are wildly optimistic. The only way  
long-term drift can be determined is to measure it over  
the time interval of interest.  
10mV/DIV  
6655 F07  
C
= 3.3µF  
200µs/DIV  
OUT  
Figure 7. Output Response Showing a  
Sinking to Sourcing Transition  
TheLTC6655long-termdriftdatawascollectedon80parts  
that were soldered into printed circuit boards similar to a  
real world application. The boards were then placed into a  
SHDN  
2V/DIV  
constant temperature oven with a T = 35°C, their outputs  
A
were scanned regularly and measured with an 8.5 digit  
DVM. Typical long-term drift is illustrated in Figure 10a.  
The hermetic LS8 package provides additional stability as  
shown in Figure 10b.  
V
OUT  
1V/DIV  
6655 F08  
1ms/DIV  
C
= 3.3µF  
OUT  
Figure 8. Shutdown Response with 5mA Source Load  
6655fc  
13  
For more information www.linear.com/LTC6655  
LTC6655  
applicaTions inForMaTion  
120  
30  
25  
20  
15  
10  
5
4 TYPICAL UNITS  
LTC6655-2.5  
80  
40  
0
–40  
–80  
0
0
500  
1000  
1500  
2000  
2500  
–90 –70  
–50 –30 –10 10 30  
50 70 90  
110  
HOURS  
DISTRIBUTION (ppm)  
6655 F11  
6655 F10  
Figure 11. Hysteresis Plot –40°C to 125°C  
Figure 10a. Long-Term Drift MS8  
200  
160  
120  
80  
more stable in environments where humidity may be a  
concern. However, PC board material may absorb water  
and apply mechanical stress to the LTC6655LS8. Proper  
board materials and layout are essential.  
40  
For best stability, the PC board layout is critical. Change  
in temperature and position of the PC board, as well as  
aging, can alter the mechanical stress applied to compo-  
nentssolderedtotheboard.FR4andsimilarmaterialsalso  
absorb water, causing the board to swell. Even conformal  
coating or potting of the board does not always eliminate  
this effect, though it may delay the symptoms by reducing  
the rate of absorption.  
0
–40  
–80  
–120  
–160  
–200  
0
600  
1200  
1800  
2400  
3000  
HOURS  
6655 F10b  
Figure 10b. LT6655-2.5V LS8  
Figure 12a shows a tab cut through the PC board on three  
sides of an LTC6655, which significantly reduces stress  
on the IC, as described in Application Note 82. For even  
better performance, Figure 12b shows slots cut through  
the PC board on all four sides. The slots should be as  
long as possible, and the corners just large enough to  
accommodate routing of traces. It has been shown that  
for PC boards designed in this way, humidity sensitivity  
can be reduced to less than 35ppm for a change in relative  
humidity of approximately 60ꢀ. Mounting the reference  
near the center of the board, with slots on four sides, can  
further reduce the sensitivity to less than 10ppm.  
Hysteresis  
Thermal hysteresis is a measure of change of output  
voltage as a result of temperature cycling. Figure 11  
illustrates the typical hysteresis based on data taken from  
theLTC6655-2.5.Aproprietarydesigntechniqueminimizes  
thermal hysteresis.  
Humidity Sensitivity  
Plastic mould compounds absorb water. With changes in  
relative humidity, plastic packaging materials change the  
amount of pressure they apply to the die inside, which  
can cause slight changes in the output of a voltage refer-  
ence, usually on the order of 100ppm. The LS8 package is  
hermetic, so it is not affected by humidity, and is therefore  
An additionaladvantageofslotting the PC board is thatthe  
LTC6655 is thermally isolated from surrounding circuitry.  
This can help reduce thermocouple effects and improve  
accuracy.  
6655fc  
14  
For more information www.linear.com/LTC6655  
LTC6655  
applicaTions inForMaTion  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
5mA LOAD  
NO LOAD  
LS8  
6655 F12b  
10  
15  
0
5
Figure 12a. LTC6655-2.5 Tab Cutout  
V
(V)  
IN  
6655 F12  
Figure 13. LTC6655-2.5 Power Consumption  
125  
115  
NO LOAD  
105  
LS8  
5mA LOAD  
95  
85  
75  
65  
55  
6655 F12a  
Figure 12b. LTC6655-2.5 Side Cutout  
3
6
9
15  
0
12  
V
(V)  
IN  
6655 F13  
Power Dissipation  
Figure 14. LTC6655-2.5 Maximum  
Ambient Operating Temperature  
Power dissipation for the LTC6655 depends on V and  
IN  
load current. Figure 13 illustrates the power consump-  
tion versus V under a no-load and 5mA load condition  
IN  
the absolute maximum junction temperature rating of the  
devicewouldbeexceeded.Althoughthemaximumjunction  
temperature is 150°C, for best performance it is recom-  
mended to not exceed a junction temperature of 125°C.  
The plot in Figure 14 shows the recommended maximum  
at room temperature for the LTC6655-2.5. Other voltage  
options display similar behavior.  
The MSOP8 package has a thermal resistance (θ )  
JA  
equal to 300°C/W. Under the maximum loaded condition,  
the increase in die temperature is over 35°C. If operated  
attheseconditionswithanambienttemperatureof125°C,  
ambient temperature limits for differing V and load con-  
IN  
ditions using a maximum junction temperature of 125°C.  
6655fc  
15  
For more information www.linear.com/LTC6655  
LTC6655  
applicaTions inForMaTion  
PC Board Layout  
The V  
pin sinks 2mA, which is unusual for a Kelvin  
OUT_S  
connection. However, this is required to achieve the ex-  
The LTC6655 reference is a precision device that is fac-  
tory trimmed to an initial accuracy of 0.025ꢀ, as shown  
in the Typical Performance Characteristic section. The  
mechanical stress caused by soldering parts to a printed  
circuit board may cause the output voltage to shift and  
the temperature coefficient to change.  
ceptional low noise performance. The I • R drop on the  
V
line directly affects load regulation. The V  
OUT_S  
OUT_S  
trace should be as short and wide as practical to minimize  
series resistance The V trace adds error as R  
OUT_S  
TRACE  
• 2mA, so a 0.1Ω trace adds 200µV error. The V  
pin  
OUT_F  
is not as important as the V  
pin in this regard. An  
OUT_S  
To reduce the effects of stress-related shifts, mount the  
reference near the short edge of a printed circuit board  
or in a corner. In addition, slots can be cut into the board  
on two sides of the device to reduce mechanical stress.  
A thicker and smaller board is stiffer and less prone to  
bend. Finally, use stress relief, such as flexible standoffs,  
when mounting the board.  
I•RdropontheV  
pinincreasestheminimumsupply  
OUT_F  
voltagewhensourcingcurrent, butdoesnotdirectlyaffect  
load regulation. For light loading of the output (maximum  
output current <100µA), V  
should be tied to V  
OUT_S  
OUT_F  
by the shortest possible path to reduce errors caused by  
resistance in the sense trace.  
Careful attention to grounding is also important, espe-  
cially when sourcing current. The return load current can  
produce an I • R drop causing poor load regulation. Use  
a “star” ground connection and minimize the ground to  
load metal resistance. Although there are several pins that  
are required to be connected to ground, Pin 4 is the actual  
ground for return current.  
Additional precautions include making sure the solder  
joints are clean and the board is flux free to avoid leakage  
paths. A sample PCB layout is shown in Figure 15.  
V
IN  
Optimal Noise Performance  
TheLTC6655offersextraordinarilylownoiseforabandgap  
reference—only 0.25ppm in 0.1Hz to 10Hz. As a result,  
system noise performance may be dominated by system  
design and physical layout.  
GND  
V
OUT  
6655 F14  
Figure 15. Sample PCB Layout  
Some care is required to achieve the best possible noise  
performance. The use of dissimilar metals in component  
leads and PC board traces creates thermocouples. Varia-  
tions in thermal resistance, caused by uneven air flow,  
create differential lead temperatures, thereby causing  
thermoelectric voltage noise at the output of the refer-  
ence. Minimizing the number of thermocouples, as well  
as limiting airflow, can substantially reduce these errors.  
Additional information can be found in Linear Technology  
ApplicationNote82.Positiontheinputandloadcapacitors  
close to the part. Although the LTC6655 has a DC PSRR  
of over 100dB, the power supply should be as stable as  
possible to guarantee optimal performance. A plot of the  
0.1Hz to 10Hz low frequency noise is shown in the Typical  
Load Regulation  
To take advantage of the V  
Kelvin force/sense pins,  
OUT  
the V  
OUT_F  
pin should be connected separately from the  
OUT_S  
V
pin as shown in Figure 16.  
7
2
2mA  
6
LTC6655-2.5  
LOAD  
STAR  
+
4
6655 F15  
MINIMIZE RESISTANCE  
OF METAL  
Figure 16. Kelvin Connection for Good Load Regulation  
6655fc  
16  
For more information www.linear.com/LTC6655  
LTC6655  
applicaTions inForMaTion  
Performance Characteristic section. Noise performance  
can be further improved by wiring several LTC6655s in  
parallel as shown in the Typical Applications section. With  
this technique the noise is reduced by √N, where N is the  
number of LTC6655s in parallel.  
the LTC6655-2.5 measures less than 0.25ppm  
least 50ꢀ of the 10 second observations.  
in at  
P-P  
As mentioned above, the statistical distribution of noise  
is such that if observed for long periods of time, the  
peak error in output voltage due to noise may be much  
larger than that observed in a smaller interval. The likely  
maximum error due to noise is often estimated using the  
RMSvalue,multipliedbyanestimatedcrestfactor,assumed  
tobeintherangeof6to8.4. Thismaximumpossiblevalue  
will only be observed if the output voltage is measured  
for very long periods of time. Therefore, in addition to the  
commonmethod,amorethoroughapproachtomeasuring  
noisehasbeenusedfortheLTC6655(describedindetailin  
Linear Technology’s AN124) that allows more information  
to be obtained from the result. In particular, this method  
characterizes the noise over a significantly greater length  
of time, resulting in a more complete description of low  
frequency noise. The peak-to-peak voltage is measured  
for 10 second intervals over hundreds of intervals. In ad-  
dition, anelectronicpeak-detectcircuitstoresanobjective  
valueforeachinterval. Theresultsarethensummarizedin  
terms of the fraction of measurement intervals for which  
observed noise is below a specified level. For example,  
Noise Specification  
Noise in any frequency band is a random function based  
on physical properties such as thermal noise, shot noise,  
andickernoise.Themostprecisewaytospecifyarandom  
error such as noise is in terms of its statistics, for example  
asanRMSvalue.Thisallowsforrelativelysimplemaximum  
error estimation, generally involving assumptions about  
noise bandwidth and crest factor. Unlike wideband noise,  
low frequency noise, typically specified in a 0.1Hz to 10Hz  
band, has traditionally been specified in terms of expected  
error, illustrated as peak-to-peak error. Low frequency  
noise is generally measured with an oscilloscope over a  
10secondtimeframe. Thisisapragmaticapproach, given  
that it can be difficult to measure noise accurately at low  
frequencies, and that it can also be difficult to agree on the  
statistical characteristics of the noise, since flicker noise  
dominates the spectral density. While practical, a random  
sampling of 10 second intervals is an inadequate method  
for representation of low frequency noise, especially for  
systems where this noise is a dominant limit of system  
performance.Giventherandomnatureofnoise,theoutput  
voltage may be observed over many time intervals, each  
giving different results. Noise specifications that were  
determined using this method are prone to subjectivity,  
and will tend toward a mean statistical value, rather than  
the maximum noise that is likely to be produced by the  
device in question.  
the LTC6655-2.5 measures less than 0.27ppm in 80ꢀ  
P-P  
of the measurement intervals, and less than 0.295ppm  
P-P  
in 95ꢀ of observation intervals. This statistical variation  
in noise is illustrated in Table 2 and Figure 18. The test  
circuit is shown in Figure 17.  
Table 2  
Low Frequency Noise (ppm  
)
P-P  
50ꢀ  
60ꢀ  
70ꢀ  
80ꢀ  
90ꢀ  
0.246  
0.252  
0.260  
0.268  
0.292  
Because the majority of voltage reference data sheets  
express low frequency noise as a typical number, and as  
it tends to be illustrated with a repeatable plot near the  
meanofadistributionofpeak-to-peakvalues,theLTC6655  
datasheetprovidesasimilarlydefinedtypicalspecification  
in order to allow a reasonable direct comparison against  
This method of testing low frequency noise is superior to  
morecommonmethods.Theresultsyieldacomprehensive  
statistical description, rather than a single observation. In  
addition, the direct measurement of output voltage over  
time gives an actual representation of peak noise, rather  
than an estimate based on statistical assumptions such  
as crest factor. Additional information can be derived from  
a measurement of low frequency noise spectral density,  
-
similar products. Data produced with this method gener  
ally suggests that in a series of 10 second output voltage  
measurements,atleasthalftheobservationsshouldhavea  
peak-to-peakvaluethatisbelowthisnumber.Forexample,  
as shown in Figure 19.  
6655fc  
17  
For more information www.linear.com/LTC6655  
LTC6655  
applicaTions inForMaTion  
+
6655fc  
18  
For more information www.linear.com/LTC6655  
LTC6655  
applicaTions inForMaTion  
of expansion and contraction. After a part undergoes the  
extreme heat of a lead-free IR reflow profile, like the one  
shown in Figure 20, the output voltage shifts. After the  
device expands, due to the heat, and then contracts, the  
stresses on the die have changed position. This shift is  
similar, but more extreme than thermal hysteresis.  
35  
30  
25  
20  
15  
10  
5
Experimental results of IR reflow shift are shown below  
in Figure 21. These results show only shift due to reflow  
and not mechanical stress.  
0
450  
750  
850  
950  
550  
650  
300  
PEAK-TO-PEAK NOISE (nV)  
380s  
T
= 260°C  
P
6655 F17  
RAMP  
DOWN  
T
= 217°C  
L
225  
150  
75  
Figure 18. Low Frequency Noise Histogram of the LTC6655-2.5  
T
= 200°C  
S(MAX)  
t
P
T
= 190°C  
S
30s  
200  
160  
120  
80  
T = 150°C  
t
L
RAMP TO  
150°C  
130s  
40s  
120s  
4
0
0
2
6
8
10  
MINUTES  
6655 F19  
40  
Figure 20. Lead-Free Reflow Profile  
0
0.1  
1
10  
100  
FREQUENCY (Hz)  
8
7
6
5
4
3
2
1
0
6655 F18  
Figure 19. LTC6655-2.5 Low Frequency Noise Spectrum  
It should be noted from Figure 19 that the LTC6655 has  
not only a low wideband noise, but an exceptionally low  
flicker noise corner of 1Hz! This substantially reduces  
low frequency noise, as well as long-term variation in  
peak noise.  
IR Reflow Shift  
–0.029 –0.023 –0.017 –0.011 –0.005  
OUTPUT VOLTAGE SHIFT DUE TO IR REFLOW (%)  
6655 F20  
The mechanical stress of soldering a part to a board can  
cause the output voltage to shift. Moreover, the heat of  
an IR reflow or convection soldering oven can also cause  
the output voltage to shift. The materials that make up a  
semiconductor device and its package have different rates  
Figure 21. Output Voltage Shift Due to IR Reflow  
6655fc  
19  
For more information www.linear.com/LTC6655  
LTC6655  
Typical applicaTions  
Extended Supply Range Reference  
Extended Supply Range Reference  
4V TO 30V  
6V TO 80V  
R1  
R2  
100k 4.7k  
ON SEMI  
R1  
LTC6655-2.5  
MMBT5551  
C1  
0.1µF  
V
IN  
V
V
OUT_F  
OUT_S  
OUT  
BZX84C12  
C1  
0.1µF  
SHDN  
V
C2  
10µF  
BZX84C12  
0.1µF  
GND  
6655 TA02  
V
SHDN  
IN  
V
V
OUT  
OUT_F  
LTC6655-2.5  
C2  
V
OUT_S  
10µF  
GND  
6655 TA03  
Boosted Output Current  
Boosted Output Current  
4V TO 13.2V  
V
OUT  
+ 1.8V TO 13.2V  
C4  
1µF  
C1  
R1  
1µF  
220Ω  
R2  
1k  
LTC6655-2.5  
Q1  
SHDN  
V
OUT_F  
2N2222  
2N2905  
35mA MAX  
C3  
0.1µF  
V
OUT  
V
V
IN  
OUT_S  
V
SHDN  
IN  
GND  
C1  
0.1µF  
C2  
4.7µF  
V
V
OUT  
OUT_F  
LTC6655-2.5  
V
6655 TA05  
C2  
I
SET BY NPN  
OUT_S  
MAX  
10µF  
GND  
6655 TA04  
6655fc  
20  
For more information www.linear.com/LTC6655  
LTC6655  
Typical applicaTions  
Output Voltage Boost  
V
V
IN  
OUT  
V
V
IN  
OUT_F  
V
+ 0.5V TO 13.2V  
2.5V TO 4.5V  
OUT  
C2  
10µF  
C1  
1µF  
R
LTC6655-2.5  
SHDN  
V
OUT_S  
R = 0k to 1k  
6655 TA07  
GND  
V
= VOLTAGE OPTION + 0.002 • R  
FOR R USE A POTENTIOMETER THAT  
CAN HANDLE 2mA, IS LOW NOISE AND  
HAS A LOW TEMPERATURE COEFFICIENT  
OUT  
THIS EXAMPLE USES 2.5V AS THE  
VOLTAGE OPTION  
Low Noise Precision Voltage Boost Circuit  
V
V
IN  
OUT  
V
V
IN  
OUT_F  
V
OUT  
+ 0.5V TO 13.2V  
5V  
V
IN  
C2  
10µF  
C1  
1µF  
LTC6655-2.5  
SHDN  
R1  
LT1677  
+
+
10k  
V
OUT_S  
R
LOAD  
GND  
R2  
10k  
6655 TA08  
R3  
5k  
V
= VOLTAGE OPTION • (1 + R1/R2)  
OUT  
FOR R1 AND R2 USE VISHAY TRIMMED  
RESISTOR ARRAY (VSR144 OR MPM).  
WITH A PRECISION ARRAY THE  
THIS EXAMPLE USES 2.5V AS THE  
VOLTAGE OPTION  
MATCHING AND LOW TC WILL HELP  
PRESERVE LOW DRIFT. R3 = R1||R2  
6655fc  
21  
For more information www.linear.com/LTC6655  
LTC6655  
Typical applicaTions  
Low Noise Statistical Averaging Reference  
eN = eN/√N; Where N is the Number of LTC6655s in Parallel  
LTC6655-2.5  
3V TO  
13.2V  
SHDN  
V
OUT_F  
R1  
32.4Ω  
V
OUT  
V
IN  
V
OUT_S  
GND  
C1  
0.1µF  
C2  
2.7µF  
C9  
4.7µF  
LTC6655-2.5  
SHDN  
V
OUT_F  
R2  
32.4Ω  
V
IN  
V
OUT_S  
GND  
C3  
0.1µF  
C4  
2.7µF  
LTC6655-2.5  
SHDN  
V
OUT_F  
R3  
32.4Ω  
V
IN  
V
OUT_S  
GND  
C5  
0.1µF  
C6  
2.7µF  
LTC6655-2.5  
SHDN  
V
OUT_F  
R4  
32.4Ω  
V
IN  
V
OUT_S  
6655 TA06a  
GND  
C7  
0.1µF  
C8  
2.7µF  
Low Frequency Noise (0.1Hz to 10Hz)  
with Four LTC6655-2.5 in Parallel  
200nV/  
DIV  
6655 TA06b  
1s/DIV  
320nV  
P-P  
0.1Hz to 10Hz  
6655fc  
22  
For more information www.linear.com/LTC6655  
LTC6655  
pacKage DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-ꢀꢂꢂ0 Rev F)  
0.889 0.ꢀꢁ7  
(.035 .005)  
5.ꢁ3  
3.ꢁ0 – 3.45  
(.ꢁ0ꢂ)  
(.ꢀꢁꢂ – .ꢀ3ꢂ)  
MIN  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 3)  
0.5ꢁ  
(.0ꢁ05)  
REF  
0.ꢂ5  
(.0ꢁ5ꢂ)  
BSC  
0.4ꢁ 0.038  
(.0ꢀꢂ5 .00ꢀ5)  
TYP  
8
7 ꢂ 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 4)  
4.90 0.ꢀ5ꢁ  
(.ꢀ93 .00ꢂ)  
DETAIL “A”  
0.ꢁ54  
(.0ꢀ0)  
0° – ꢂ° TYP  
GAUGE PLANE  
3
4
0.53 0.ꢀ5ꢁ  
(.0ꢁꢀ .00ꢂ)  
ꢀ.ꢀ0  
(.043)  
MAX  
0.8ꢂ  
(.034)  
REF  
DETAIL “A”  
0.ꢀ8  
(.007)  
SEATING  
PLANE  
0.ꢁꢁ – 0.38  
0.ꢀ0ꢀꢂ 0.0508  
(.009 – .0ꢀ5)  
(.004 .00ꢁ)  
0.ꢂ5  
(.0ꢁ5ꢂ)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
ꢀ. DIMENSIONS IN MILLIMETER/(INCH)  
ꢁ. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.ꢀ0ꢁmm (.004") MAX  
6655fc  
23  
For more information www.linear.com/LTC6655  
LTC6655  
pacKage DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
LS8 Package  
8-Pin Leadless Chip Carrier (5mm × 5mm)  
(Reference LTC DWG # 05-08-1852 Rev Ø)  
8
2.50 0.15  
PACKAGE OUTLINE  
7
1
2
3
6
5
2.54 0.15  
1.50 0.15  
4
0.70 0.05  
5.00 SQ 0.15  
5.80 SQ 0.15  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
5.00 SQ 0.15  
4.20 SQ 0.10  
8
1.45 0.10  
0.95 0.10  
R0.20 REF  
8
2.00 REF  
PIN 1  
1
2
1
2
7
6
7
6
TOP MARK  
(SEE NOTE 5)  
2.54 0.15  
4.20 0.10  
5
3
3
5
R0.20 REF  
1.00 TYP  
LS8 0609 REV Ø  
4
4
0.70 TYP  
0.10 TYP  
0.64 TYP  
NOTE:  
1. ALL DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS PACKAGE DO NOT INCLUDE PLATING BURRS  
PLATING BURRS, IF PRESENT, SHALL NOT EXCEED 0.30mm ON ANY SIDE  
4. PLATING—ELECTO NICKEL MIN 1.25UM, ELECTRO GOLD MIN 0.30UM  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
6655fc  
24  
For more information www.linear.com/LTC6655  
LTC6655  
reVision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
02/10 Voltage Options Added (1.250, 2.048, 3.000, 3.300, 4.096, 5.000), Reflected Throughout the Data Sheet  
1 to 22  
B
12/12 Addition of 5mm x 5mm hermetic LS8 package  
Update to Electrical Characteristics to include LS8 package  
Addition of long-term drift and hysteresis plots for LS8 package  
Addition of Humidity Sensitivity information  
1, 2, 3, 12, 22  
3, 4  
13  
13  
Addition of Related Parts  
22  
C
06/13  
T
JMAX  
changed from 125°C to 150°C  
2
Addition of 5V Option in the LS8 package  
Addition of PC board layout guidance  
3, 4  
14, 15  
6655fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LTC6655  
Typical applicaTion  
Low Noise Precision 24-Bit Analog-to-Digital Converter Application  
2.5k  
5V  
V
REF  
7.5V  
R
REF  
1nF  
400Ω  
CH0  
CH1  
CH2  
CH3  
5k  
MUXOUTN  
ADCINN  
+
50Ω  
1/2  
LTC6241  
R
TD  
CH4  
CH5  
–2.5V  
CH6  
CH7  
CH8  
MUXOUTP  
ADCINP  
2.5k  
CH9  
0.01µF  
0.01µF  
THERMOCOUPLE  
CH10  
CH11  
CH12  
CH13  
CH14  
CH15  
COM  
LTC2449  
1nF  
+
50Ω  
1/2  
LTC6241  
SDI  
SCK  
SDO  
CS  
SPI INTERFACE  
BUSY  
EXT  
LTC6655  
V
V
2
1
7
6
REF  
+
V
REF  
IN  
OUT_F  
REF  
f
0.1µF  
O
SHDN  
GND  
3,5,8  
V
OUT_S  
GND  
4
10µF  
6655 TA09  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
0.05% Max, 5ppm/°C Max, 1ppm (Peak-to-Peak) Noise  
LT®1236  
Precision Low Drift Low Noise Reference  
LT1236LS8  
Precision Low Noise, Low Profile Hermetic Voltage Reference  
0.05% Max, 5ppm/°C Max, 0.3µV Noise, 5mm × 5mm Hermetic  
P-P  
Package  
LT1460  
Micropower Series References  
0.075% Max, 10ppm/°C Max, 20mA Output Current  
0.04% Max, 3ppm/°C Max, 50mA Output Current  
0.05% Max, 10ppm/°C Max, 60mA Supply, SOT23 Package  
0.5% Max, 5.6µA Supply, SOT23 Package  
LT1461  
Micropower Series Low Dropout  
LT1790  
Micropower Precision Series References  
Micropower Reference with Buffer Amplifier  
Precision Low Drift Low Noise Reference  
Tiny Micropower Series Reference  
LT6650  
LTC6652  
LT6660  
0.05% Max, 5ppm/°C Max, –40°C to 125°C, MSOP8  
0.2% Max, 20ppm/°C Max, 20mA Output Current, 2mm × 2mm DFN  
LTC6652LS8  
High Precision, Buffered Voltage Reference Family in  
5mm × 5mm Hermetic QFN Package  
0.05% Max Initial Error, 5ppm/°C Max Drift, Shutdown Current <2µA,  
–40°C to 125°C Operation  
LT6654LS8  
Precision, Low Noise, High Output Drive Voltage Reference  
Family in 5mm × 5mm Hermetic QFN Package  
1.6ppm Peak-to-Peak Noise (0.1Hz to 10Hz, Sink/Source 10mA,  
5ppm/°C Max Drift, –40°C to 125°C Operation  
6655fc  
LT 0613 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
LINEAR TECHNOLOGY CORPORATION 2009  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC6655  
配单直通车
LTC6655CHLS8-5#PBF产品参数
型号:LTC6655CHLS8-5#PBF
Brand Name:Linear Technology
是否Rohs认证:符合
生命周期:Transferred
IHS 制造商:LINEAR TECHNOLOGY CORP
零件包装代码:LCC
包装说明:LCC-8
针数:8
制造商包装代码:LS8
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:3.8
Is Samacsys:N
模拟集成电路 - 其他类型:THREE TERMINAL VOLTAGE REFERENCE
JESD-30 代码:S-CQCC-N8
长度:5 mm
功能数量:1
输出次数:1
端子数量:8
最高工作温度:125 °C
最低工作温度:-40 °C
最大输出电压:5.0025 V
最小输出电压:4.9975 V
标称输出电压:5 V
封装主体材料:CERAMIC, METAL-SEALED COFIRED
封装代码:HQCCN
封装等效代码:LCC8,.2SQ
封装形状:SQUARE
封装形式:CHIP CARRIER, HEAT SINK/SLUG
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified
座面最大高度:1.55 mm
子类别:Voltage References
最大供电电压 (Vsup):13.2 V
最小供电电压 (Vsup):5.2 V
表面贴装:YES
技术:CMOS
最大电压温度系数:5 ppm/ °C
温度等级:AUTOMOTIVE
端子形式:NO LEAD
端子节距:1.27 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED
微调/可调输出:NO
最大电压容差:0.05%
宽度:5 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!