欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • NCP1380BDR2G
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • NCP1380BDR2G图
  • 集好芯城

     该会员已使用本站13年以上
  • NCP1380BDR2G 现货库存
  • 数量27717 
  • 厂家ON(安森美) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • NCP1380BDR2G图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • NCP1380BDR2G 现货库存
  • 数量8830 
  • 厂家ON(安森美) 
  • 封装8-SOIC(0.154,3.90mm 宽) 
  • 批号22+ 
  • 原装正品现货,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • NCP1380BDR2G图
  • 深圳市恒嘉威智能科技有限公司

     该会员已使用本站7年以上
  • NCP1380BDR2G 现货库存
  • 数量14324 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号21+ 
  • 原装恒嘉威价格最实在
  • QQ:1036846627QQ:1036846627 复制
    QQ:2274045202QQ:2274045202 复制
  • -0755-23942980 QQ:1036846627QQ:2274045202
  • NCP1380BDR2G图
  • 深圳市源美盛达科技有限公司

     该会员已使用本站3年以上
  • NCP1380BDR2G 现货库存
  • 数量2500 
  • 厂家ON/安森美 
  • 封装SOIC-8 
  • 批号21 22+ 
  • 原装正品价优 实力渠道力挺实单
  • QQ:2853152900QQ:2853152900 复制
  • 0755-83220231 QQ:2853152900
  • NCP1380BDR2G图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • NCP1380BDR2G 现货热卖
  • 数量20000 
  • 厂家ON 
  • 封装sop-8 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • NCP1380BDR2G图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • NCP1380BDR2G 热卖库存
  • 数量22000 
  • 厂家TI 
  • 封装SOT23 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • NCP1380BDR2G图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • NCP1380BDR2G
  • 数量5300 
  • 厂家ON(安森美) 
  • 封装SOIC-8 
  • 批号21+ 
  • 全新原装正品,现货库存欢迎咨询
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • NCP1380BDR2G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCP1380BDR2G
  • 数量85000 
  • 厂家ON/安森美 
  • 封装16+ 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • NCP1380BDR2G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCP1380BDR2G
  • 数量98500 
  • 厂家ONS 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • NCP1380BDR2G图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • NCP1380BDR2G
  • 数量16680 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号24+ 
  • 原装原厂 现货现卖
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • NCP1380BDR2G图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • NCP1380BDR2G
  • 数量12000 
  • 厂家ON 
  • 封装SMD 
  • 批号2017+ 
  • 原厂/代理渠道价格优势
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • NCP1380BDR2G图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • NCP1380BDR2G
  • 数量3253 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号22+ 
  • 支持检测.现货价优!
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • NCP1380BDR2G图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • NCP1380BDR2G
  • 数量8800 
  • 厂家ON/安森美 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • NCP1380BDR2G图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • NCP1380BDR2G
  • 数量6500 
  • 厂家ON 
  • 封装SOP8 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • NCP1380BDR2G图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • NCP1380BDR2G
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • NCP1380BDR2G图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • NCP1380BDR2G
  • 数量30000 
  • 厂家ON 
  • 封装SOP 
  • 批号23+ 
  • 代理全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • NCP1380BDR2G?图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • NCP1380BDR2G?
  • 数量16380 
  • 厂家0N 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • NCP1380BDR2G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP1380BDR2G
  • 数量5000 
  • 厂家ON/安森美 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • NCP1380BDR2G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • NCP1380BDR2G
  • 数量60000 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • NCP1380BDR2G图
  • 集好芯城

     该会员已使用本站13年以上
  • NCP1380BDR2G
  • 数量16680 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • NCP1380BDR2G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • NCP1380BDR2G
  • 数量18310 
  • 厂家ON 
  • 封装SOIC-8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • NCP1380BDR2G图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • NCP1380BDR2G
  • 数量178955 
  • 厂家ON 
  • 封装SOP8 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • NCP1380BDR2G图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • NCP1380BDR2G
  • 数量30000 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • NCP1380BDR2G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP1380BDR2G
  • 数量27048 
  • 厂家ON/安森美 
  • 封装SOP8 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • NCP1380BDR2G图
  • 深圳市正纳电子有限公司

     该会员已使用本站2年以上
  • NCP1380BDR2G
  • 数量11128 
  • 厂家ON(安森美) 
  • 封装N/A 
  • 批号22+ 
  • 只做原装 实单来谈★★☆
  • QQ:2881664480QQ:2881664480 复制
  • 0755-82524192 QQ:2881664480
  • NCP1380BDR2G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCP1380BDR2G
  • 数量61249 
  • 厂家ON 
  • 封装SOP8 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • NCP1380BDR2G图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • NCP1380BDR2G
  • 数量9500 
  • 厂家ON(安森美) 
  • 封装8-SOIC(0.154,3.90mm 宽) 
  • 批号24+ 
  • 绝对原装正品,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • NCP1380BDR2G图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • NCP1380BDR2G
  • 数量21935 
  • 厂家ON 
  • 封装SOP-8 
  • 批号2024+ 
  • 中航军工集团-只做原装
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • NCP1380BDR2G图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • NCP1380BDR2G
  • 数量660000 
  • 厂家ON Semiconductor(安森美) 
  • 封装 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • NCP1380BDR2G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCP1380BDR2G
  • 数量5000 
  • 厂家ONS 
  • 封装8-SOIC 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • NCP1380BDR2G图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • NCP1380BDR2G
  • 数量3365 
  • 厂家on 
  • 封装8-SOIC 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • NCP1380BDR2G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCP1380BDR2G
  • 数量5000 
  • 厂家Fairchild Semiconductor 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • NCP1380BDR2G图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • NCP1380BDR2G
  • 数量65400 
  • 厂家ON 
  • 封装SOP-8 
  • 批号NEW 
  • 【◆全新原装现货◆绝对价格优势◆质量保证◆】
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • NCP1380BDR2G图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • NCP1380BDR2G
  • 数量9328 
  • 厂家ON-安森美 
  • 封装SOP-8.贴片 
  • 批号▉▉:2年内 
  • ▉▉¥8.9元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025

产品型号NCP1380BDR2G的概述

芯片NCP1380BDR2G的概述 NCP1380BDR2G是一款高效率的电源管理集成电路,专为各种电源适配器和LED驱动应用设计。其独特的特性使之在实现高效和低待机功耗方面具有显著的优势。该芯片采用小型封装,便于在有限空间内实现高性能电源管理,广泛应用于消费电子产品、通信设备及工业设备等多个领域。 芯片NCP1380BDR2G的详细参数 NCP1380BDR2G的技术参数中,主要包括工作电压范围、输出电流及功耗等。该芯片的输入电压范围一般在85VAC至265VAC之间,适合全球范围内的电源应用。它的输出功率可达20W,能够满足大部分小型电源的需求。待机功耗极低,通常低于100mW,符合各类节能标准。 此外,NCP1380BDR2G具有出色的电流控制精度,输出电流稳定,可在0.5mA至5A的范围内调节。这使得它非常适合于驱动LED灯及其他电子负载。该芯片工作时的效率高达78%,在某些条...

产品型号NCP1380BDR2G的Datasheet PDF文件预览

NCP1380  
Quasi-Resonant  
Current-Mode Controller for  
High-Power Universal  
Off-Line Supplies  
http://onsemi.com  
The NCP1380 hosts a highperformance circuitry aimed to  
powering quasiresonant converters. Capitalizing on a proprietary  
valleylockout system, the controller shifts gears and reduces the  
switching frequency as the power loading becomes lighter. This  
results in a stable operation despite switching events always occurring  
QUASIRESONANT PWM  
CONTROLLER FOR HIGH  
POWER ACDC WALL  
ADAPTERS  
th  
in the drainsource valley. This system works down to the 4 valley  
and toggles to a variable frequency mode beyond, ensuring an  
excellent standby power performance.  
MARKING  
To improve the safety in overload situations, the controller includes  
an Over Power Protection (OPP) circuit which clamps the delivered  
power at highline. Safetywise, a fixed internal timer relies on the  
feedback voltage to detect a fault. Once the timer elapses, the  
controller stops and stays latched for option A and C or enters  
autorecovery mode for option B and D.  
DIAGRAMS  
8
SOIC8  
D SUFFIX  
CASE 751  
1380X  
ALYWX  
G
8
1
1
Particularly well suited for adapter applications, the controller  
features a pin to implement either a combined overvoltage /  
overtemperature protection (Version A and B) or a combined  
brownout/overvoltage protection (Version C and D).  
1380X = Specific Device Code  
X
A
L
= Device Option (A, B, C, or D)  
= Assembly Location  
= Wafer Lot  
Y
W
G
= Year  
= Work Week  
= PbFree Package  
Features  
QuasiResonant Peak CurrentMode Control Operation  
Valley Switching Operation with ValleyLockout for NoiseImmune  
Operation  
Frequency Foldback at Light Load to Improve the Light Load  
Efficiency  
PIN CONNECTIONS  
ZCD 1  
8 CT  
Adjustable Over Power Protection  
AutoRecovery or Latched Internal Output ShortCircuit Protection  
2
3
4
FAULT  
VCC  
FB  
CS  
7
6
5
Fixed Internal 80 ms Timer for ShortCircuit Protection  
Combined Overvoltage and Overtemperature Protection (A and B  
Versions)  
DRV  
GND  
Combined Overvoltage Protection and BrownOut (C and D  
Versions)  
+500 mA / 800 mA Peak Current Source/Sink Capability  
Internal Temperature Shutdown  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 25 of this data sheet.  
Direct Optocoupler Connection  
Extended V Range Operation Up to 28 V  
CC  
Extremely Low NoLoad Standby Power  
SO8 Package  
These Devices are PbFree and are RoHS Compliant  
Typical Applications  
High Power acdc Converters for TVs, SetTop Boxes etc.  
Offline Adapters for Notebooks  
© Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
December, 2009 Rev. 1  
NCP1380/D  
NCP1380  
TYPICAL APPLICATION EXAMPLE  
HVBulk  
Vout  
GND  
NCP1380 A/B  
ZCD / OPP 1  
8
2
7
OVP / OTP  
6
5
3
4
GND  
Figure 1. Typical Application Schematic for A and B Versions  
HVBulk  
Vout  
GND  
NCP1380 C/D  
1
ZCD / OPP  
8
7
6
5
2
3
4
BO / OVP  
GND  
Figure 2. Typical Application Schematic for C and D Versions  
http://onsemi.com  
2
NCP1380  
PIN FUNCTION DESCRIPTION  
Pin N5  
1
Pin Name  
Function  
Pin Description  
ZCD  
Zero Crossing Detection  
Connected to the auxiliary winding, this pin detects the core  
reset event.  
Also, injecting a negative voltage smaller than 0.3 V on this  
pin will perform over power protection.  
Adjust the over power protection  
2
FB  
Feedback pin  
Hooking an optocoupler collector to this pin will allow  
regulation.  
3
4
5
6
7
CS  
Current sense  
This pin monitors the primary peak.  
The controller ground  
GND  
DRV  
Driver output  
Supplies the controller  
The driver’s output to an external MOSFET  
This pin is connected to an external auxiliary voltage.  
V
CC  
Fault  
Over voltage and Over temperature  
protection (A and B versions)  
Pulling this pin down with an NTC or up with a zener diode  
allows to latch the controller.  
Overvoltage and Brownout  
protection (C and D versions)  
This pin observes the HV rail and protects the circuit in  
case of low main conditions. It also offers a way to latch the  
circuit in case of over voltage event.  
8
C
Timing capacitor  
A capacitor connected to this pin acts as the timing  
capacitor in foldback mode.  
T
NCP1380 OPTIONS  
AutoRecovery  
Overcurrent  
Protection  
Latched  
Overcurrent  
Protection  
OTP  
OVP  
Yes  
Yes  
Yes  
Yes  
BrownOut  
NCP1380 / A  
NCP1380 / B  
NCP1380 / C  
NCP1380 / D  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
http://onsemi.com  
3
NCP1380  
INTERNAL CIRCUIT ARCHITECTURE  
VDD  
BO r eset  
VCCstop  
aux  
VCC  
latch  
V
management  
CC  
VDD  
VDD  
faul t  
Rpullup  
gr a nd  
reset  
FB  
LOGIC BLOCK  
VDD  
ICt  
clamp  
DRV  
gate  
Ct  
gr a nd  
reset  
+
DRV  
Ct setpoint  
R
Q
Q
Ct  
S
Discharge  
CsStop  
ZCD  
A:  
GN D  
+
demag  
l a tc he d  
10 V  
ESD  
Vth  
S
DRV  
Q
Up  
3 ms blanking  
IpFlag  
TIM ER  
Q
Laux  
Down  
P W Mr eset  
Reset  
R
SS end  
40 ms  
Ti me Out  
gr a nd  
reset  
/ 4  
The 40 ms Time Out is active  
only during s oftsta r t  
V
OVP  
VCC  
noise delay  
VDD  
I
OTP(REF)  
5 ms  
SS end  
Ti me Out  
+
I
= 17.5% V  
ILIMIT  
PWMreset  
IpFlag  
peak(VCO)  
Fault  
CS  
+
LEB 1  
Rsense  
noise delay  
OPP  
+
+
V
OTP  
V
ILIMIT  
Soft-ꢀsꢀtarꢀt  
SS end  
Softsta rt e nd ? the n 1  
else 0  
CsS top  
SS end  
+
LEB 2  
LEB 2 is shorter than LEB 1  
V
CS(stop)  
Figure 3. Internal Circuit Architecture for Versions A and B  
http://onsemi.com  
4
NCP1380  
VDD  
BO reset  
VCCstop  
aux  
VCC  
latch  
V
management  
faul t  
CC  
VDD  
VDD  
Rpullup  
gr a nd  
reset  
FB  
LOGIC BLOCK  
VDD  
ICt  
clamp  
DRV  
gate  
Ct  
gr a nd  
reset  
DRV  
+
Ct se tpoint  
R
Q
Q
S
Ct  
discharge  
ZCD  
C :  
l a tc he d  
GN D  
+
demag  
CsS top  
10 V  
ESD  
Vth  
IpFlag  
S
R
DRV  
Q
Q
3 ms blanking  
Up  
TIMER  
Laux  
Down  
Res et  
SS end  
P W Mreset  
40 ms  
Time Out  
gr a nd  
reset  
/ 4  
The 40 ms Time Out is active  
only during s oftsta r t  
noise delay  
5 ms  
Time Out  
+
VCC  
HV  
SS end  
= 17.5% V  
I
P W Mreset  
IpFlag  
peak(VCO)  
ILIMIT  
VOVP  
VDD  
IBO  
CS  
+
LEB 1  
Rsense  
OVP/BO  
OPP  
VBO  
noise delay  
+
+
V
ILIMIT  
Soft-start  
Softsta r t e nd ? the n 1  
Rclamp  
Vclamp  
BO r es et  
else 0  
CsS top  
SS end  
+
LEB 2  
LEB 2 is shorter than LEB 1  
V
CS(stop)  
Figure 4. Internal Circuit Architecture for Versions C and D  
http://onsemi.com  
5
NCP1380  
MAXIMUM RATINGS TABLE  
Symbol  
Rating  
Value  
Unit  
V
Maximum Power Supply voltage, V pin, continuous voltage  
0.3 to 28  
$30  
V
mA  
CC(MAX)  
CC(MAX)  
CC  
I
Maximum current for V pin  
CC  
V
Maximum driver pin voltage, DRV pin, continuous voltage  
Maximum current for DRV pin  
0.3 to 20  
$1000  
V
mA  
DRV(MAX)  
DRV(MAX)  
I
V
Maximum voltage on low power pins (except pins DRV and V  
)
CC  
0.3 to 10  
$10  
V
mA  
MAX  
MAX  
CC  
I
Current range for low power pins (except pins ZCD, DRV and V  
)
I
Maximum current for ZCD pin  
+3 / 2  
mA  
°C/W  
°C  
ZCD(MAX)  
R
Thermal Resistance JunctiontoAir  
Maximum Junction Temperature  
120  
q
JA  
T
150  
J(MAX)  
Operating Temperature Range  
40 to +125  
°C  
Storage Temperature Range  
60 to +150  
°C  
ESD Capability, HBM model (Note 1)  
ESD Capability, CDM model (Note 1)  
4
2
kV  
kV  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MilStd883, Method 3015.  
Charged Device Model 2000 V per JEDEC Standard JESD22C101D  
2. This device contains latchup protection and exceeds 100 mA per JEDEC Standard JESD78.  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, V = 3 V,  
FB  
J
CC  
ZCD  
V
= 0 V, V  
= 1.5 V, C = 680 pF) For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
CS  
fault  
T
J
J
CC  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
SUPPLY SECTION STARTUP AND SUPPLY CIRCUITS  
Supply Voltage  
V
V
V
Startup Threshold  
V
V
increasing  
16  
8.3  
7.2  
6.2  
6
17  
9
8.0  
7.2  
7
18  
9.4  
9.2  
8.2  
8
CC(on)  
CC(off)  
CC  
CC  
Minimum Operating Voltage  
decreasing  
V
V
Hysteresis V  
V  
CC(HYS)  
CC(latch)  
CC(reset)  
CC(on)  
CC(off)  
Clamped V when latchedoff  
V
CC  
decreasing, I = 30 mA  
CC  
CC  
V
Internal logic reset  
t
V
V
noise filter  
CC(reset)  
5
ms  
mA  
VCC(off)  
CC(off)  
t
noise filter  
20  
VCC(reset)  
I
Startup current  
FB pin open  
10  
4.0  
20  
5.0  
CC(start)  
V
= V  
0.5 V  
CC  
CC(on)  
I
Current that discharges V when the controller  
gets latched  
V
CC  
= 12 V  
3.0  
30  
mA  
mA  
CC(disch)  
CC  
I
Current into V that keeps the controller latched  
(Note 3)  
V
V
= V  
CC(latch)  
CC  
CC  
CC(latch)  
Supply Current  
Device Disabled/Fault (Note 3) B, C, and D only  
Device Enabled/No output load on pin 5  
Device Switching (F  
Device Switching VCO mode  
mA  
I
I
> V  
1.7  
1.7  
2.65  
2.0  
2.0  
2.0  
3.0  
CC1  
CC2  
CC  
sw  
CC(off)  
F
= 10 kHz  
I
I
= 65 kHz)  
C
C
= 1 nF, F = 65 kHz  
= 1 nF, V = 1.25 V  
FB  
CC3A  
CC3B  
SW  
DRV  
DRV  
SW  
CURRENT COMPARATOR CURRENT SENSE  
V
Current Sense Voltage Threshold  
Leading Edge Blanking Duration for V  
Input Bias Current (Note 3)  
V
= 4 V, V increasing  
0.76  
210  
2  
0.8  
275  
0.84  
330  
2
V
ILIM  
LEB  
FB  
CS  
t
Minimum on time minus t  
DRV high  
ns  
mA  
ILIM  
ILIM  
I
bias  
3. Guaranteed by design.  
4. The peak current setpoint goes down as the load decreases. It is frozen below I  
(I  
= cst)  
peak(VCO) peak  
5. If negative voltage in excess to 300 mV is applied to ZCD pin, the current setpoint decrease is no longer guaranteed to be linear  
6. Minimum value for T = 125°C  
J
7. NTC with R  
= 8.8 kW.  
110  
http://onsemi.com  
6
 
NCP1380  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, V = 3 V,  
FB  
J
CC  
ZCD  
V
= 0 V, V  
= 1.5 V, C = 680 pF) For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
CS  
fault  
T
J
J
CC  
Symbol  
CURRENT COMPARATOR CURRENT SENSE  
Propagation Delay  
Condition  
Min  
Typ  
Max  
Unit  
t
V
V
> V to DRV turnoff  
ILIM  
125  
175  
ns  
%
ILIM  
peak(VCO)  
CS  
I
Percentage of maximum peak current level at  
which VCO takes over (Note 4)  
= 0.4 V, V increasing  
15.4  
17.5  
19.6  
FB  
CS  
V
Setpoint decrease for V  
= 300 mV (Note 5)  
V
V
= 300 mV, V = 4 V,  
35  
37.5  
40  
%
OPP(MAX)  
ZCD  
ZCD  
CS  
FB  
increasing  
V
Threshold for immediate fault protection activation  
Leading Edge Blanking Duration for V  
1.125  
1.200  
120  
1.275  
V
CS(stop)  
t
ns  
BCS  
CS(stop)  
DRIVE OUTPUT GATE DRIVE  
Drive Resistance  
W
R
SNK  
R
SRC  
DRV Sink  
V
DRV  
V
DRV  
= 10 V  
= 2 V  
12.5  
20  
DRV Source  
Drive current capability  
DRV Sink  
DRV Source  
mA  
I
V
DRV  
V
DRV  
= 10 V  
= 2 V  
800  
500  
SNK  
SRC  
I
t
Rise Time (10% to 90%)  
Fall Time (90% to 10%)  
DRV Low Voltage  
C
= 1 nF, V  
from 0 to  
from 0 to  
40  
75  
ns  
ns  
V
r
DRV  
DRV  
DRV  
12 V  
t
C
DRV  
12 V  
= 1 nF, V  
25  
60  
f
V
V
= V + 0.2 V  
CC(off)  
= 1 nF, R  
8.4  
10.5  
9.1  
13.0  
DRV(low)  
CC  
C
= 33 kW  
DRV  
DRV  
V
DRV High Voltage (Note 6)  
V
= V  
15.5  
V
DRV(high)  
CC  
CC(MAX)  
C
= 1 nF  
DRV  
DEMAGNETIZATION INPUT ZERO VOLTAGE DETECTION CIRCUIT  
V
ZCD threshold voltage  
ZCD hysteresis  
V
V
decreasing  
increasing  
35  
15  
55  
35  
90  
55  
mV  
mV  
V
ZCD(TH)  
ZCD  
ZCD  
V
ZCD(HYS)  
Input clamp voltage  
High state  
Low state  
V
I
I
= 3.0 mA  
= 2.0 mA  
8
0.9  
10  
0.7  
12  
0.3  
CH  
pin1  
pin1  
V
CL  
t
Propagation Delay  
V
decreasing from 4 V to  
150  
250  
ns  
DEM  
ZCD  
0.3 V  
C
Internal input capacitance  
10  
pF  
ms  
ms  
PAR  
t
Blanking delay after ontime  
Timeout after last demag transition  
2.30  
3.15  
4.00  
BLANK  
t
During softstart  
After the end of softstart  
28  
5.0  
41  
5.9  
54  
6.7  
outSS  
t
out  
R
Pulldown resistor (Note 3)  
140  
320  
500  
kW  
ZCD(pdown)  
TIMING CAPACITOR  
V
Maximum voltage on C pin  
V
V
< V  
FB(TH)  
5.15  
18  
5.40  
20  
5.65  
22  
V
CT(MAX)  
T
FB  
I
Source current  
= 0 V  
mA  
mV  
CT  
CT(MIN)  
CT  
V
Minimum voltage on C pin, discharge switch  
90  
T
activated  
C
Recommended timing capacitor value  
220  
pF  
T
3. Guaranteed by design.  
4. The peak current setpoint goes down as the load decreases. It is frozen below I  
(I  
= cst)  
peak(VCO) peak  
5. If negative voltage in excess to 300 mV is applied to ZCD pin, the current setpoint decrease is no longer guaranteed to be linear  
6. Minimum value for T = 125°C  
J
7. NTC with R  
= 8.8 kW.  
110  
http://onsemi.com  
7
NCP1380  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, V = 3 V,  
FB  
J
CC  
ZCD  
V
= 0 V, V  
= 1.5 V, C = 680 pF) For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
CS  
fault  
T
J
J
CC  
Symbol  
FEEDBACK SECTION  
Condition  
Min  
Typ  
Max  
Unit  
R
Internal pullup resistor  
15  
3.8  
18  
4.0  
0.3  
22  
4.2  
kW  
FB(pullup)  
I
Pin FB to current setpoint division ratio  
ratio  
V
FB pin threshold under which C is clamped to  
0.26  
0.34  
V
V
FB(TH)  
T
V
CT(MAX)  
Valley threshold  
FB voltage where 1 valley ends and 2 valley  
starts  
FB voltage where 2 valley ends and 3 valley  
starts  
FB voltage where 3 valley ends and 4 valley  
starts  
FB voltage where 4 valley ends and VCO starts  
st  
nd  
V
H2D  
V
H3D  
V
H4D  
V
FB  
V
FB  
V
FB  
V
FB  
V
FB  
V
FB  
V
FB  
V
FB  
decreases  
1.316  
1.128  
0.846  
0.732  
1.316  
1.504  
1.692  
1.880  
1.4  
1.2  
0.9  
0.8  
1.4  
1.6  
1.8  
2.0  
1.484  
1.272  
0.954  
0.828  
1.484  
1.696  
1.908  
2.120  
nd  
rd  
decreases  
decreases  
decreases  
increases  
increases  
increases  
increases  
rd  
th  
th  
V
HVCOD  
th  
V
FB voltage where VCO ends and 4 valley starts  
HVCOI  
th  
rd  
V
H4I  
V
H3I  
V
H2I  
FB voltage where 4 valley ends and 3 valley  
starts  
rd  
nd  
FB voltage where 3 valley ends and 2 valley  
starts  
nd  
st  
FB voltage where 2 valley ends and 1 valley  
starts  
FAULT PROTECTION (ALL VERSIONS)  
T
SHDN  
Thermal Shutdown  
Device switching (F  
around 65 kHz)  
140  
170  
°C  
SW  
T
Thermal Shutdown Hysteresis  
Overload Timer  
40  
85  
°C  
ms  
ms  
SHDN(HYS)  
t
V
V
= 4 V, V > V  
75  
2.8  
95  
4.8  
OVLD  
FB  
CS  
ILIM  
t
Softstart duration  
= 4 V, V ramping up,  
3.8  
SSTART  
FB  
CS  
st  
measured from 1 DRV  
pulse to V  
= 90% of  
CS(peak)  
V
ILIM  
R
Clamp series resistor  
1.3  
1.55  
2.5  
30  
1.8  
kW  
V
Fault(clamp)  
V
Fault detection level for OVP  
Delay before latch confirmation  
V
Fault  
increasing  
2.35  
22.5  
2.65  
37.5  
OVP  
latch(delay)  
t
ms  
FAULT PROTECTION A & B VERSIONS  
I
Reference current for direct connection of an  
NTC (Note 7)  
V
V
= V + 0.2 V  
OTP  
85  
91  
97  
mA  
OTP(REF)  
Fault  
V
OTP  
Fault detection level for OTP  
decreasing  
0.744  
1.13  
0.8  
0.856  
1.57  
V
V
Fault  
V
Clamped voltage (Fault pin left open)  
Fault pin open  
1.35  
Fault(clamp)  
FAULT PROTECTION C & D VERSIONS  
V
BrownOut level  
V
V
decreasing  
0.744  
9
0.8  
10  
0.856  
11  
V
mA  
ms  
V
BO  
BO  
Fault  
I
Sourced hysteresis current V  
> V  
= V + 0.2 V  
BO  
Fault  
BO  
Fault  
t
Delay before entering and exiting Brownout  
22.5  
1.0  
30  
37.5  
1.4  
BO(delay)  
V
Clamped voltage (Fault pin left open)  
Fault pin open  
1.2  
Fault(clamp)  
3. Guaranteed by design.  
4. The peak current setpoint goes down as the load decreases. It is frozen below I  
(I  
= cst)  
peak(VCO) peak  
5. If negative voltage in excess to 300 mV is applied to ZCD pin, the current setpoint decrease is no longer guaranteed to be linear  
6. Minimum value for T = 125°C  
J
7. NTC with R  
= 8.8 kW.  
110  
http://onsemi.com  
8
 
NCP1380  
9.00  
17.30  
17.25  
17.20  
17.15  
17.10  
17.05  
17.00  
8.95  
8.90  
8.85  
8.80  
8.75  
8.70  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. VCC(on) vs. Junction Temperature  
Figure 6. VCC(off) vs. Junction Temperature  
1.90  
1.80  
1.70  
1.60  
1.50  
1.40  
1.30  
2.80  
2.70  
2.60  
2.50  
2.40  
2.30  
2.20  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. ICC2 vs. Junction Temperature  
Figure 8. ICC3A vs. Junction Temperature  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
2.40  
2.30  
2.20  
2.10  
2.00  
1.90  
1.80  
1.70  
1.60  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
Figure 9. ICC3B vs. Junction Temperature  
T , JUNCTION TEMPERATURE (°C)  
Figure 10. ICC(start) vs. Junction Temperature  
J
J
http://onsemi.com  
9
NCP1380  
810  
805  
800  
795  
790  
785  
780  
330  
310  
290  
270  
250  
230  
210  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. VILIM vs. Junction Temperature  
Figure 12. TLEB vs. Junction Temperature  
1.265  
1.245  
1.225  
1.205  
1.185  
1.165  
1.145  
1.125  
39.0  
38.5  
38.0  
37.5  
37.0  
36.5  
36.0  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 13. VCS(stop) vs. Junction Temperature  
Figure 14. VOPP(MAX) vs. Junction Temperature  
9.4  
9.3  
9.2  
9.1  
9.0  
8.9  
8.8  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 15. VDRV(low) vs. Junction Temperature  
Figure 16. VDRV(high) vs. Junction Temperature  
http://onsemi.com  
10  
NCP1380  
55  
50  
45  
40  
35  
30  
25  
20  
15  
85  
75  
65  
55  
45  
35  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 17. VZCD(th) vs. Junction Temperature  
Figure 18. VZCD(hys) vs. Junction Temperature  
3.50  
3.40  
3.30  
3.20  
3.10  
3.0  
49.0  
47.0  
45.0  
43.0  
41.0  
39.0  
37.0  
35.0  
2.90  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. TBLANK vs. Junction Temperature  
Figure 20. ToutSS vs. Junction Temperature  
6.6  
6.4  
6.2  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
810  
805  
800  
795  
790  
785  
780  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 21. Tout vs. Junction Temperature  
Figure 22. VOTP vs. Junction Temperature  
http://onsemi.com  
11  
NCP1380  
92.0  
91.0  
90.0  
89.0  
88.0  
87.0  
86.0  
810  
805  
800  
795  
790  
785  
780  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 23. IOTP vs. Junction Temperature  
Figure 24. VBO vs. Junction Temperature  
10.4  
10.2  
10.0  
9.8  
9.6  
9.4  
9.2  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 25. IBO vs. Junction Temperature  
http://onsemi.com  
12  
NCP1380  
APPLICATION INFORMATION  
The NCP1380 implements a standard currentmode  
architecture operating in quasiresonant mode. Due to a  
proprietary circuitry, the controller prevents  
valleyjumping instability and steadily locks out in selected  
valley as the power demand goes down. Once the fourth  
valley is reached, the controller continues to reduce the  
frequency further down, offering excellent efficiency over  
a wide operating range. Thanks to a fault timer combined to  
an OPP circuitry, the controller is able to efficiently limit the  
output power at highline.  
QuasiResonance Currentmode operation:  
implementing quasiresonance operation in peak  
currentmode control, the NCP1380 optimizes the  
efficiency by switching in the valley of the MOSFET  
drainsource voltage. Thanks to a proprietary circuitry,  
the controller locksout in a selected valley and  
Fault input (A and B versions): By combining a dual  
threshold on the Fault pin, the controller allows the  
direct connection of an NTC to ground plus a zener  
diode to a monitored voltage. In case the pin is brought  
below the OTP threshold by the NTC or above the OVP  
threshold by the zener diode, the circuit permanently  
latchesoff and V is clamped to 7.2 V.  
CC  
Fault input (C and D versions): The C and D versions  
of NCP1380 include a brownout circuit which safely  
stops the controller in case the input voltage is too low.  
Restart occurs via a complete startup sequence (latch  
reset and softstart). During normal operation, the  
voltage on this pin is clamped to V  
to give enough  
clamp  
room for OVP detection. If the voltage on this pin  
increases above 2.5 V, the part latchesoff.  
Shortcircuit protection: Shortcircuit and especially  
overload protections are difficult to implement when a  
strong leakage inductance between auxiliary and power  
windings affects the transformer (where the auxiliary  
winding level does not properly collapse in presence of  
an output short). Here, when the internal 0.8 V  
remains locked until the output loading significantly  
changes. When the load becomes lighter, the controller  
th  
jumps into the next valley. It can go down to the 4  
valley if necessary. Beyond this point, the controller  
reduces its switching frequency by freezing the peak  
current setpoint. During quasiresonance operation, in  
case of very damped valleys, a 5.5 ms timer emulates  
the missing valleys.  
maximum peak current limit is activated, the timer  
starts counting up. If the fault disappears, the timer  
counts down. If the timer reaches completion while the  
error flag is still present, the controller stops the pulses.  
This protection is latched on A and C version (the user  
must unplug and replug the power supply to restart the  
controller) and autorecovery on B and D versions (if  
the fault disappears, the SMPS automatically resumes  
operation). In addition, all versions feature a winding  
shortcircuit protection, that senses the CS signal and  
Frequency reduction in lightload conditions: when  
th  
the 4 valley is left, the controller reduces the  
switching frequency which naturally improves the  
standby power by a reduction of all switching losses.  
Overpower protection (OPP): When the voltage on  
ZCD pin swings in flyback polarity, a direct image if  
the input voltage is applied on ZCD pin. We can thus  
reduce the peak current depending of V  
during the  
stops the controller if V reaches 1.5 x V  
(after a  
ZCD  
CS  
ILIM  
ontime.  
reduced LEB of t ). This additional comparator is  
BCS  
enabled only during the main LEB duration t  
noise immunity reason.  
, for  
LEB  
Internal softstart: A softstart precludes the main  
power switch from being stressed upon startup. Its  
duration is fixed and equal to 4 ms.  
NCP1380 OPERATING MODES  
NCP1380 has two operating mode: quasiresonant  
operation and VCO operation for the frequency foldback.  
The operating mode is fixed by the FB voltage as  
portrayed by Figure 26:  
Quasiresonant operation occurs for FB voltage higher  
than 0.8 V (FB decreasing) or higher than 1.4 V (FB  
increasing) which correspond to high output power and  
medium output power. The peak current is variable and  
is set by the FB voltage divided by 4.  
power.  
During VCO mode, the peak current decreases down to  
17.5% of its maximum value and is then frozen. The  
switching frequency is variable and decreases as the  
output load decreases.  
The switching frequency is set by the end of charge of  
the capacitor connected to the C pin. This capacitor is  
charged with a constant current source and the  
capacitor voltage is compared to an internal threshold  
fixed by FB voltage. When this capacitor voltage  
reaches the threshold the capacitor is rapidly discharged  
down to 0 V and a new period start.  
T
Frequency foldback or VCO mode occurs for FB  
voltage lower than 0.8 V (FB decreasing) or lower than  
1.4 V (FB increasing). This corresponds to low output  
http://onsemi.com  
13  
NCP1380  
Figure 26. Operating Valley According to FB Voltage  
VALLEY DETECTION AND SELECTION  
The valley detection is done by monitoring the  
detected, an internal counter is incremented. The  
operating valley (1st, 2nd, 3rd or 4th) is determined by  
the FB voltage as shown by Figure 26.  
voltage of the auxiliary winding of the transformer. A  
valley is detected when the voltage on pin 1 crosses  
down the 55 mV internal threshold. When a valley is  
VDD  
VDD  
Rpullup  
FB  
V
V
FB  
LOGIC BLOCK  
FBth  
VDD  
S
R
DRV  
ICt  
Q
Q
Ct  
+
Ct setpoint  
Time Out  
CS comparator  
Ct  
Discharge  
ZCD  
+
demag  
10 V  
ES D  
leakage  
blanking  
Vth  
3 us pulse  
DRV  
Laux  
Figure 27. Valley Detection Circuit  
http://onsemi.com  
14  
 
NCP1380  
As the output load decreases (FB voltage decreases), the  
necessary output power. This allows achieving very low  
standby power consumption.  
The Figure 28 shows a simulation case where the output  
current of a 19 V, 60 W adapter decreases from 2.8 A to  
0.1 A. No instability is seen during the valley transitions  
(Figures 29, 30, 31 and 32)  
valleys are incremented from the first to the fourth. When  
the fourth valley is reached, if FB voltage further decreases  
below 0.8 V, the controller enters VCO mode.  
During VCO operation, the peak current continues to  
decrease until it reaches 17.5% of the maximum peak  
current: the switching frequency expands to deliver the  
Figure 28. Output Load is Decreased from 2.8 A Down to 100 mA at 120 Vdc Input Voltage  
http://onsemi.com  
15  
 
NCP1380  
Figure 29. Zoom 1: 1st to 2nd Valley Transition  
Figure 30. Zoom 2: 2nd to 3rd Valley Transition  
http://onsemi.com  
16  
NCP1380  
Figure 31. Zoom 3: 3rd to 4th Valley Transition  
Figure 32. Zoom 4: 4th Valley to VCO Mode Transition  
Time Out  
In case of extremely damped free oscillations, the ZCD  
comparator can be unable to detect the valleys. To avoid  
such situation, NCP1380 integrates a Time Out function that  
acts as a substitute clock for the decimal counter inside the  
logic bloc. The controller thus continues its normal  
operation. To avoid having a too big step in frequency, the  
time out duration is set to 5.5 ms. Figures 34 and 35 detail the  
time out operation.  
The NCP1380 also features an extended time out during  
the softstart.  
Indeed, at startup, the output voltage reflected on the  
auxiliary winding is low. Because of the voltage drop  
introduced by the Over Power Compensation diode  
(Figure 40), the voltage on the ZCD pin is very low and the  
ZCD comparator might be unable to detect the valleys. In  
this condition, setting the DRV Latch with the 5.5 ms  
timeout can lead to a continuous conduction mode  
operation (CCM) at the beginning of the softstart. This  
CCM operation only last a few cycles until the voltage on  
ZCD pin becomes high enough to be detected by the ZCD  
comparator. To avoid this, the timeout duration is extended  
to 40 ms during the softstart in order to ensure that the  
transformer is fully demagnetized before the MOSFET is  
turnedon.  
http://onsemi.com  
17  
NCP1380  
VDD  
ZCD  
+
demag  
10 V  
ES D  
LOGIC BLOCK  
Vth  
leakage blanking  
3 us pulse  
DRV  
SS e nd  
5.5 us time out  
SS e nd  
40 us time out  
Figure 33. Time Out Circuit  
Figure 34. Time Out Case n51: the 3rd Valley is Missing  
http://onsemi.com  
18  
NCP1380  
Figure 35. Time Out Case n52: the 3rd and 4th Valley are Missing  
VCO MODE OR FREQUENCY FOLDBACK  
VCO operation occurs for FB voltage lower than 0.8 V  
(FB decreasing), or lower than 1.4 V (FB increasing). This  
corresponds to low output power.  
Figure 27). When this capacitor voltage reaches the  
threshold, the capacitor is rapidly discharged down to 0 V  
and a new period start. The internal threshold is inversely  
During VCO operation, the peak current is fixed to 17.5%  
of his maximum value and the frequency is variable and  
expands as the output power decreases.  
proportional to FB voltage. The relationship between V  
FB  
and V  
is given by Equation 1.  
FBth  
VFBth + 6.5 * (10ń3)VFB  
(eq. 1)  
The frequency is set by the end of charge of the capacitor  
When V is lower than 0.3 V, V  
is clamped to  
FB  
CT  
connected to the C pin. This capacitor is charged with a  
T
V
which is typically 5.5 V. Figure 36 shows the  
CT(MAX)  
constant current source and its voltage is compared to an  
VCO mode at works.  
internal threshold (V  
) fixed by FB voltage (see  
FBth  
Figure 36. In VCO Mode, as the Power Output Decreases, the Frequency Expands  
http://onsemi.com  
19  
 
NCP1380  
SHORTCIRCUIT OR OVERLOAD MODE  
Figure 37 shows the implementation of the fault timer.  
S
R
Vd d  
Q
Q
DRV  
au x  
VCC  
V
CC  
management  
latch  
VC C sto p  
fau l t  
grand  
reset  
CsStop  
CS  
LEB1  
+
PW Mr eset  
IpFlag  
R sen se  
FB/4  
Down  
Up  
TIMER  
Reset  
ZCD/OPP  
OPP  
+
A&C:  
Latched  
V
ILIMIT  
SS en d  
Soft start end ?  
Softstart  
S
R
then 1  
else 0  
Q
Q
Laux  
LEB2  
+
CsStop  
grand  
reset  
V
CS(stop)  
Figure 37. Overload Detection Schematic  
When the current in the MOSFET is higher than V  
/
On A and C versions, when the timers finishes counting  
80 ms, the circuit goes in latch mode (Figure 39): the DRV  
ILIM  
R
, “Max Ip” comparator trips and the digital timer starts  
sense  
counting: the timer count is incremented each 10 ms. When  
the current comes back within safe limits, “Max Ip”  
comparator becomes silent and the timer count down: the  
timer count is decremented each 10 ms. In normal overload  
conditions the timer reaches its completion when it has  
counted up 8 times 10 ms.  
pulses stop and V is pulled down to V  
which is  
CC  
CC(latch)  
7.2 V typically. The circuit unlatches when the current  
circulating in V pin drops below I  
.
CC(latch)  
CC  
In parallel to the cyclebycycle sensing of the CS pin,  
another comparator with a reduced LEB (t ) and a  
BCS  
threshold of 1.2 V is able to sense winding shortcircuit and  
immediately shut down the controller. Depending on the  
version, this additional protection is either latched or  
autorecovery, according to the overload protection  
behavior.  
On B and D version, when the timers reaches its  
completion, the circuit enter autorecovery mode: the  
circuit stops all operations and V decreases via the circuit  
CC  
own consumption (I ). When V reaches V , the  
CC1  
CC  
CC(off)  
circuit goes in startup mode and restart switching. (see  
Figure 38) This ensures a low dutycycle burst operation in  
fault mode.  
http://onsemi.com  
20  
 
NCP1380  
Figure 38. AutoRecovery ShortCircuit Protection on B and D Versions  
Figure 39. Latched ShortCircuit Protection on A and C Versions  
http://onsemi.com  
21  
NCP1380  
OVER POWER COMPENSATION  
The over power compensation is achieved by monitoring  
the input voltage. As the auxiliary winding is already  
connected to ZCD pin for the valley detection, by selecting  
the signal on ZCD pin (pin 1). Indeed, a negative voltage  
applied on this pin directly affects the internal voltage  
reference setting the maximum peak current (Figure 40).  
When the power MOSFET is turnedon, the auxiliary  
winding voltage becomes a negative voltage proportional to  
the right values for R  
and R , we can easily perform  
opu  
opl  
over power compensation.  
Rzcd  
Ropu  
CS  
ZCD/OPP  
1
IpFlag  
OPP  
ESD  
protection  
Ropl  
V
ILIMIT  
Aux  
+
Demag  
Vth  
leakage blanking  
Tblank  
DRV  
Figure 40. Over Power Compensation Circuit  
To ensure optimal zerocrossing detection, a diode is  
Design example:  
V = 18 V  
aux  
needed to bypass R during the offtime.  
opu  
If we apply the resistor divider law on the pin 1 during the  
V = 0.6 V  
d
ontime, we obtain the following relationship:  
N
p,aux  
= 0.18  
RZCD ) Ropu  
N
p,auxVin * VOPP  
If we want at least 8 V on ZCD pin, we have:  
(eq. 2)  
+ *  
RZCD  
Ropl  
Vaux * Vd * VZCD  
Ropl  
VOPP  
+
+
VZCD  
Where:  
is the auxiliary to primary turn ration: N  
(eq. 5)  
18 * 0.6 * 8  
N
/ N  
= N  
p,aux  
p,aux  
aux  
[ 1.2  
8
p
V is the DC input voltage  
in  
We can choose: R  
= 1 kW and R = 1 kW.  
opl  
ZCD  
V
OPP  
is the negative OPP voltage  
For the over power compensation, we need to decrease the  
peak current by 37.5% at high line (370 Vdc). The  
corresponding OPP voltage is:  
By selecting a value for R , we can easily deduce R  
using Equation 2. While selecting the value for R , we  
opl  
opu  
opl  
must be careful not choosing a too low value for this resistor  
in order to have enough voltage for zerocrossing detection  
during the offtime. We recommend having at least 8 V on  
ZCD pin, the maximum voltage being 10 V.  
During the offtime, ZCD pin voltage can be expressed as  
follows:  
VOPP + 0.375   VILIM + 300 mV  
(eq. 6)  
Using Equation 2, we have:  
RZCD ) Ropu  
N
p,auxVlin * VOPP  
+ *  
Ropt  
VOPP  
(eq. 7)  
(
)
0.18   370 * 0.3  
Ropl  
+
+ 221  
ǒ dǓ  
Vaux * V  
(eq. 3)  
VZCD  
+
(
)
0.3  
RZCD ) Ropl  
Thus,  
We can thus deduce the relationship between R and  
opl  
Ropu + 221Ropl * RZCD + 221   1k * 1k + 220 kW  
R
ZCD  
:
(eq. 8)  
RZCD  
Ropl  
Vaux * Vd * VZCD  
+
(eq. 4)  
VZCD  
http://onsemi.com  
22  
 
NCP1380  
OVERVOLTAGE / OVERTEMPERATURE DETECTION (A AND B VERSIONS)  
Overvoltage and overtemperature detection is achieved  
by reading the voltage on pin 7 (See Figure 41).  
VCC  
V
OVP  
VDD  
nois e de lay  
Dz  
+
I
OTP(REF)  
OVPcomp  
Fa ult  
7
S
R
Latch  
Q
Q
nois e de lay  
Rclamp  
Vclam p  
+
NTC  
OT Pcomp  
V
OTP  
grand  
reset  
SS end  
Figure 41. OVP/OTP Circuitry  
The I  
current (91 mA typ.) biases the Negative  
In case of overvoltage, the zener diode starts to conduct  
and inject current inside the internal clamp resistor R  
thus causing the pin 7 voltage to increase. When this voltage  
reaches the OVP threshold (2.5 V typ), the controller is  
OTP(REF)  
Temperature Coefficient sensor (NTC), naturally imposing  
a dc voltage on the OTP pin. An internal clamp limit the  
pin 7 voltage to 1.2 V when the NTC resistance is high (For  
clamp  
latchedoff: all the DRV pulses stops and V  
is  
example, at 25°C, R  
> 100 kW). When the temperature  
CC  
NTC  
pulleddown to V  
(7.2 V typ). The circuit  
increases, the NTC’s resistance reduces bringing the pin 7  
voltage down until it reaches a typical value of 0.8 V: the  
comparator trips and latchesoff the controller (see  
Figure 42).  
CC(latch)  
unlatches when the current circulating in V pin drops  
CC  
below I , thus the user must unplug and replug the  
CC(latch)  
power supply.  
Figure 42. Overvoltage and Overtemperature Chronograms  
http://onsemi.com  
23  
 
NCP1380  
OVERVOLTAGE PROTECTION / BROWNOUT (C AND D VERSIONS)  
The C and D versions of NCP1380 combine brownout  
and overvoltage detection on pin 7.  
noise delay  
VCC  
HVBulk  
+
S
R
DRV  
Q
Q
Dz  
S
R
Latch  
Q
Q
VOVP  
VDD  
Rbou  
OVP/BO  
7
IBO  
gr a nd  
reset  
Rbol  
noise delay  
+
Rclamp  
CS comp  
BO reset  
Vclamp  
VBO  
Figure 43. Brownout and Overvoltage Protection  
In order to protect the power supply against low input  
voltage condition, the pin 7 permanently monitors a fraction  
of the bulk voltage through a voltage divider. When this  
when V reaches V  
(Figure 44): this ensures a clean  
CC  
CC(on)  
startup sequence with softstart. The hysteresis for the  
brownout function is implemented with a high side current  
source sinking 10 mA when the brownout comparator is  
image of bulk voltage is below the V  
threshold, the  
BO  
controller stops switching. When the bulk voltage comes  
back within safe limits, the circuit will restart pulsing only  
high (V  
> V  
)
bulk  
bulk(on)  
Figure 44. Brownout Operating Chronograms  
In order to avoid having a too high voltage on pin 7 if the  
bulk voltage is high, an internal clamp limits the voltage.  
In case of overvoltage, the zener diode will start to  
conduct and inject current inside the internal clamp resistor  
R
thus causing pin 7 voltage to increase. When this  
clamp  
voltage reaches V , the controller latchesoff and stays  
latched until the user cycles down the power supply  
(Figure 45).  
OVP  
http://onsemi.com  
24  
 
NCP1380  
Figure 45. Operating Chronograms in Case of Overvoltage  
The following equations show how to calculate the  
brownout resistors.  
First of all, select the bulk voltage value at which the  
ǒV  
ǓǓ  
VBO  
) * V  
(
ǒ
bulk on  
bulk off  
(eq. 9)  
Rbol  
+
ǒV  
IBO  
BOǓ  
) * V  
(
bulk on  
controller must start switching (V  
) and the bulk  
bulk(on)  
voltage for shutdown (V  
). Then use the following  
bulk(off)  
ǒ
BOǓ  
Rbol Vbulk on) * V  
(
(eq. 10)  
equation to calculate R and R  
.
bou  
bol  
Rbou  
+
VBO  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCP1380ADR2G  
SOIC8  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
(PbFree)  
NCP1380BDR2G  
NCP1380CDR2G  
NCP1380DDR2G  
SOIC8  
(PbFree)  
SOIC8  
(PbFree)  
SOIC8  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
25  
NCP1380  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AJ  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
The products described herein (NCP1380), may be covered by one or more of the following U.S. patents; 6,362,067; 5,073,850. There may be other patents  
pending.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP1380/D  
配单直通车
NCP1380BDR2G产品参数
型号:NCP1380BDR2G
Brand Name:ON Semiconductor
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:ON SEMICONDUCTOR
零件包装代码:SOIC
包装说明:SOP, SOP8,.25
针数:8
制造商包装代码:751-07
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:16 weeks
风险等级:0.66
模拟集成电路 - 其他类型:SWITCHING CONTROLLER
控制模式:CURRENT-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:18 V
最小输入电压:9.4 V
标称输入电压:12 V
JESD-30 代码:R-PDSO-G8
JESD-609代码:e3
长度:4.9 mm
湿度敏感等级:1
功能数量:1
端子数量:8
最高工作温度:125 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOP8,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified
座面最大高度:1.75 mm
子类别:Switching Regulator or Controllers
表面贴装:YES
切换器配置:SINGLE
最大切换频率:65 kHz
温度等级:AUTOMOTIVE
端子面层:Tin (Sn)
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:3.9 mm
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!