欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • NCP1395BDR2G
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • NCP1395BDR2G?图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • NCP1395BDR2G? 现货库存
  • 数量16380 
  • 厂家ON 
  • 封装SOP16 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • NCP1395BDR2G图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • NCP1395BDR2G 现货库存
  • 数量4721 
  • 厂家ON 
  • 封装公司现货 
  • 批号2231+ 
  • 绝对现货!实单专线-点击QQ!只有进口原装
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • NCP1395BDR2G图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • NCP1395BDR2G
  • 数量5300 
  • 厂家ON(安森美) 
  • 封装SOIC-16 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • NCP1395BDR2G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP1395BDR2G
  • 数量417 
  • 厂家ON/安森美 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • NCP1395BDR2G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • NCP1395BDR2G
  • 数量60000 
  • 厂家ONQ 
  • 封装SOP-8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • NCP1395BDR2G图
  • 集好芯城

     该会员已使用本站13年以上
  • NCP1395BDR2G
  • 数量16666 
  • 厂家ON/安森美 
  • 封装SOP16 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • NCP1395BDR2G图
  • 深圳市勤思达科技有限公司

     该会员已使用本站14年以上
  • NCP1395BDR2G
  • 数量17841 
  • 厂家ON/安森美 
  • 封装SOP16 
  • 批号24+ 
  • 全新现货可以开税票
  • QQ:2881239445QQ:2881239445 复制
  • 0755-83264115 QQ:2881239445
  • NCP1395BDR2G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP1395BDR2G
  • 数量9548 
  • 厂家ON/安森美 
  • 封装SOP-16 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • NCP1395BDR2G图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • NCP1395BDR2G
  • 数量30000 
  • 厂家ON/安森美 
  • 封装SOP-16 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • NCP1395BDR2G图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • NCP1395BDR2G
  • 数量79 
  • 厂家ON 
  • 封装SO16 
  • 批号 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • NCP1395BDR2G图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • NCP1395BDR2G
  • 数量65400 
  • 厂家ON 
  • 封装NA 
  • 批号NEW 
  • 【◆全新原装现货◆绝对价格优势◆质量保证◆】
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • NCP1395BDR2G图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • NCP1395BDR2G
  • 数量26700 
  • 厂家ON(安森美) 
  • 封装▊原厂封装▊ 
  • 批号▊ROHS环保▊ 
  • 十年以上分销商原装进口件服务型企业0755-83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • NCP1395BDR2G图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • NCP1395BDR2G
  • 数量58436 
  • 厂家 
  • 封装 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • NCP1395BDR2G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • NCP1395BDR2G
  • 数量11530 
  • 厂家ON Semiconductor 
  • 封装16-SOIC(3.9mm寬) 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • NCP1395BDR2G图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • NCP1395BDR2G
  • 数量3365 
  • 厂家on 
  • 封装16-SOIC 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • NCP1395BDR2G图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • NCP1395BDR2G
  • 数量3365 
  • 厂家on 
  • 封装16-SOIC 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • NCP1395BDR2G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCP1395BDR2G
  • 数量5000 
  • 厂家ONS 
  • 封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • NCP1395BDR2G图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • NCP1395BDR2G
  • 数量5600 
  • 厂家ON Semiconductor 
  • 封装16-SOIC(0.154",3.90mm 宽) 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • NCP1395BDR2G图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • NCP1395BDR2G
  • 数量30000 
  • 厂家ON 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • NCP1395BDR2G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCP1395BDR2G
  • 数量13880 
  • 厂家ON Semiconductor 
  • 封装16SOIC 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • NCP1395BDR2G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCP1395BDR2G
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装贴/插片 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • NCP1395BDR2G图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • NCP1395BDR2G
  • 数量9328 
  • 厂家ON-安森美 
  • 封装SOP-16 
  • 批号▉▉:2年内 
  • ▉▉¥13一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • NCP1395BDR2G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCP1395BDR2G
  • 数量13500 
  • 厂家ON 
  • 封装 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • NCP1395BDR2G图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • NCP1395BDR2G
  • 数量5280 
  • 厂家ON(安森美) 
  • 封装SOIC-16 
  • 批号23+ 
  • ▉原装正品▉力挺实单可含税可拆样
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • NCP1395BDR2G图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • NCP1395BDR2G
  • 数量30000 
  • 厂家ON(安森美) 
  • 封装SOIC-16 
  • 批号2年内 
  • 原厂渠道 长期供应
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • NCP1395BDR2G图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • NCP1395BDR2G
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • NCP1395BDR2G图
  • 宇芯通实业(深圳)有限公司

     该会员已使用本站8年以上
  • NCP1395BDR2G
  • 数量15000 
  • 厂家ON安森美 
  • 封装高性能谐振模式控制器 
  • 批号20+ 
  • 只做品牌原装假一赔十
  • QQ:2903107741QQ:2903107741 复制
  • 0755-84535756 QQ:2903107741
  • NCP1395BDR2G图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • NCP1395BDR2G
  • 数量2430 
  • 厂家ON/安森美 
  • 封装SOP16 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • NCP1395BDR2G图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • NCP1395BDR2G
  • 数量9000 
  • 厂家ON 
  • 封装SOP16 
  • 批号2021+ 
  • ON原厂代理商渠道
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • NCP1395BDR2G图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • NCP1395BDR2G
  • 数量20000 
  • 厂家ON 
  • 封装N/A 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • NCP1395BDR2G图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • NCP1395BDR2G
  • 数量7980 
  • 厂家ON Semiconductor 
  • 封装16-SOIC 
  • 批号20+ 
  • 进口原装,公司现货
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • NCP1395BDR2G图
  • 深圳市奥伟斯科技有限公司

     该会员已使用本站7年以上
  • NCP1395BDR2G
  • 数量90000 
  • 厂家ON 
  • 封装N/A 
  • 批号11+ 
  • 安森美专业供应商
  • QQ:3003412773QQ:3003412773 复制
    QQ:3003714016QQ:3003714016 复制
  • 0755-83254770 QQ:3003412773QQ:3003714016
  • NCP1395BDR2G图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • NCP1395BDR2G
  • 数量660000 
  • 厂家ON Semiconductor(安森美) 
  • 封装16-SOIC 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398

产品型号NCP1395BDR2G的概述

NCP1395BDR2G芯片概述 NCP1395BDR2G是一种高效率、高集成度的PWM控制器,主要用于开关电源应用。该芯片由ON Semiconductor公司生产,其设计旨在满足现代电源转化系统对于性能和效率的严格要求。NCP1395BDR2G支持连续导通模式和临界导通模式,适合于DC-DC转换器及其他高频开关电源应用,具有诸多优良特性,如低待机功耗、高转换效率和良好的输出电压调节性能。 NCP1395BDR2G的详细参数 1. 电源电压(VDD): 8V至30V 2. 启动电压: 8V 3. 关断电压(VDD下限): 6V 4. 工作频率: 100kHz至500kHz 5. 最大持续工作电流(Imax): 1.5A 6. 输出驱动能力: 0.8A(源和漏) 7. 温度范围: -40℃至+125℃ 8. 反馈电压(VFB): 1.25V 9. 反向电流特性: 典型为50mA 10....

产品型号NCP1395BDR2G的Datasheet PDF文件预览

NCP1395A/B  
High Performance Resonant  
Mode Controller  
The NCP1395A/B offers everything needed to build a reliable and  
rugged resonant mode power supply. Its unique architecture includes  
a 1.0 MHz Voltage Controller Oscillator whose control mode brings  
flexibility when an ORing function is a necessity, e.g. in multiple  
feedback paths implementations. Protections featuring various  
reaction times, e.g. immediate shutdown or timer−based event,  
brown−out, broken optocoupler detection etc., contribute to a safer  
converter design, without engendering additional circuitry  
complexity. An adjustable deadtime also helps lowering the  
shoot−through current contribution as the switching frequency  
increases.  
http://onsemi.com  
MARKING  
DIAGRAMS  
16  
1
16  
NCP1395xP  
AWLYYWWG  
1
PDIP−16  
P SUFFIX  
CASE 648  
Finally, an onboard operational transconductance amplifier allows  
for various configurations, including constant output current working  
mode or traditional voltage regulation.  
Features  
16  
High Frequency Operation from 50 kHz up to 1.0 MHz  
Selectable Minimum Switching Frequency with "3% Accuracy  
Adjustable Deadtime from 150 ns to 1.0 ms  
Startup Sequence via an Adjustable Soft−Start  
Brown−Out Protection for a Simpler PFC Association  
Latched Input for Severe Fault Conditions, e.g. Overtemperature  
or OVP  
1395xDR2G  
AWLYWW  
1
SO−16  
D SUFFIX  
CASE 751B  
x
A
WL  
YY, Y  
WW  
G
= A or B  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb−Free Package  
Timer−Based Input with Auto−Recovery Operation for Delayed  
Event Reaction  
Enable Input for Immediate Event Reaction or Simple ON/OFF  
Control  
PIN CONNECTIONS  
Operational Transconductance Amplifier (OTA) for Multiple  
Feedback Loops  
Fmin  
Fmax  
DT  
1
NINV  
Out  
16  
15  
V Operation up to 20 V  
CC  
2
3
4
5
6
Low Startup Current of 300 mA Max  
Common Collector Optocoupler Connection  
Internal Temperature Shutdown  
Slow Fault  
Fast Fault  
Vcc  
14  
13  
Css  
FB  
12  
11  
B Version Features 10 V V Startup Threshold for Auxiliary  
CC  
Ctimer  
BO  
B
Supply Usage  
A
10  
9
7
8
Easy No−Load Operation and Low Standby Power Due to  
Programmable Skip−Cycle  
AGnd  
PGnd  
These are Pb−Free Devices*  
(Top View)  
Typical Applications  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 25 of this data sheet.  
LCD/Plasma TV Converters  
High Power Ac−DC Adapters for Notebooks  
Industrial and Medical Power Sources  
Offline Battery Chargers  
*For additional information on our Pb−Free strategy  
and soldering details, please download the ON  
SemiconductorSoldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
March, 2006 − Rev. 1  
NCP1395/D  
NCP1395A/B  
Figure 1. Typical Application Example  
http://onsemi.com  
2
NCP1395A/B  
PIN FUNCTION DESCRIPTION  
Pin No.  
Symbol  
Function  
Description  
1
Fmin  
Timing Resistor  
Connecting a resistor to this pin, sets the minimum oscillator frequency  
reached for VFB is below 1.3 V.  
2
3
4
5
Fmax  
DT  
Frequency Clamp  
Deadtime  
A resistor sets the maximum frequency excursion.  
A simple resistor adjusts the deadtime length.  
Select the soft−start duration.  
Css  
FB  
Soft−Start  
Feedback  
Applying a voltage above 1.3 V on this pin increases the oscillation frequency  
up to Fmax.  
6
7
Ctimer  
BO  
Timer Duration  
Brown−Out  
Sets the timer duration in presence of a fault.  
Detects low input voltage conditions. When brought above Vlatch, it fully  
latches off the controller.  
8
Agnd  
Pgnd  
A
Analog Ground  
Power Ground  
9
10  
11  
12  
13  
Low Side Output  
Drives the low side power MOSFET.  
B
High Side Output  
Supplies the Controller  
Quick Fault Detection  
Drives the upper side power MOSFET.  
Vcc  
Fast Fault  
Fast shutdown pin, stops all pulses when brought high. Please look in the  
description for more details about the fast−fault sequence.  
14  
Slow Fault  
Slow Fault Detection  
When asserted, the timer starts to countdown and shuts down the controller at  
the end of its time duration.  
15  
16  
OUT  
OPAMP Output  
Internal transconductance amplifier.  
Non−inverting pin of the OPAMP.  
NINV  
OPAMP Noninverting  
http://onsemi.com  
3
NCP1395A/B  
Vdd  
Temperature  
Shutdown  
Vref_FB  
S
Imin  
NINV  
Vfb = < Vfb_off  
D
Q
Q
+
Vref  
+
Vref  
Clk  
+
Fmin  
gm  
R
+
IDT  
C
FF  
50% DC  
DT Adj.  
I = Imax for Vfb = 5 V  
I = 0 for Vfb < Vfb_off  
OUT  
BO  
Reset  
Slow  
Fault  
Vdd  
+
PON  
Reset  
Imax  
Vfb = 5  
+
SS  
Vref Fault  
Fault  
Vdd  
Timeout  
Fault  
Vref  
Fast  
Fault  
Itimer  
+
SS Reset on  
A Version Only  
Fmax  
Timer  
If FAULT Itimer else 0  
+
Vref Fault  
+
Timeout  
Fault  
+
Vref  
PON  
Reset  
Fault  
20 V  
Vdd  
V
CC  
UVLO  
Fault  
ISS  
SS  
FB  
B
A
+
> 0 only if  
V(FB) > Vfb_off  
G = 1  
Vdd  
RFB  
+
PGND  
+
+
Vfb_fault  
Vfb_off  
Vref  
Deadtime  
Adjustment  
IDT  
DT  
Vdd  
IBO  
BO  
+
+
PON Reset  
20 ms Noise  
Filter  
+
+
VBO  
Vlatch  
AGND  
Figure 2. Internal Circuit Architecture  
http://onsemi.com  
4
NCP1395A/B  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
20  
Unit  
V
Power Supply Voltage, Pin 12  
V
CC  
Transient Current Injected into V when Internal Zener is Activated –  
10  
mA  
CC  
Pulse Width < 10 ms  
Power Supply Voltage, All Pins (Except Pins 10 and 11)  
Thermal Resistance, Junction−to−Air, PDIP Version  
Thermal Resistance, Junction−to−Air, SOIC Version  
Storage Temperature Range  
−0.3 to 10  
TBD  
V
°C/W  
°C/W  
°C  
R
R
q
JA  
JA  
TBD  
q
−60 to +150  
2
ESD Capability, HBM Model (All Pins Except V and HV)  
kV  
CC  
ESD Capability, Machine Model  
200  
V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
RecommendedOperating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model 2000 V per Mil−Std−883, Method 3015  
Machine Model Method 200 V.  
2. This device contains latch−up protection and exceeds 100 mA per JEDEC Standard JESD78.  
http://onsemi.com  
5
NCP1395A/B  
ELECTRICAL CHARACTERISTICS (For typical values T = 25°C, for min/max values T = 0°C to +125°C, Max T = 150°C,  
j
j
J
V
CC  
= 11 V, unless otherwise noted.)  
Characteristic  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
SUPPLY SECTION  
Turn−On Threshold Level, V Going Up – A Version  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
VCC  
VCC  
12.3  
9.3  
8.3  
13.3  
10.3  
9.3  
3.0  
1.0  
14.3  
11.3  
10.3  
V
V
CC  
ON  
Turn−On Threshold Level, V Going Up – B Version  
CC  
ON  
Minimum Operating Voltage after Turn−On  
VCC  
V
(min)  
Minimum Hysteresis between VCC and VCC  
− A Version  
− B Version  
VhysteA  
VhysteB  
Istartup  
V
ON  
(min)  
Minimum Hysteresis between VCC and VCC  
V
ON  
(min)  
Startup Current, V < VCC  
300  
mA  
V
CC  
ON  
V
CC  
Level at which the Internal Logic gets Reset  
VCC  
5.9  
1.6  
2.3  
1.3  
reset  
Internal IC Consumption, No Output Load on Pins 11/12, Fsw = 300 kHz  
Internal IC consumption, 100 pF output load on pin 11 / 12, Fsw = 300 kHz  
ICC1  
mA  
mA  
mA  
ICC2  
ICC3  
Consumption in fault mode (All drivers disabled, Vcc > VCC  
)
(min)  
VOLTAGE CONTROL OSCILLATOR (VCO)  
Minimum Switching Frequency, Rt = 120 kW on Pin 1, Vpin 5 = 0 V,  
DT = 300 ns  
1
2
Fsw min  
Fsw max  
48.5  
0.9  
50  
51.5  
1.11  
kHz  
Maximum Switching Frequency, Rfmax = 22 kW on Pin 2, Vpin 5 >  
1.0  
MHz  
6.0 V, DT = 300 ns − T = 25°C (Note 3)  
j
Feedback Pin Swing above which Df = 0  
5
FBSW  
PSRR  
DC  
6.0  
0.2  
50  
V
%/V  
%
VCO V Rejection, DV = 1.0 V, in Percentage of Fsw  
CC  
CC  
Operating Duty Cycle  
11−10  
1, 3  
48  
1.86  
52  
2.14  
Reference Voltage for all Current Generations (Fosc, DT)  
Delay before any Driver Restart in Fault Mode  
VREF  
Tdel  
2.0  
20  
V
ms  
FEEDBACK SECTION  
Internal Pulldown Resistor  
5
Rfb  
VREF_FB  
Vfb_off  
Vfb_fault  
IBias  
20  
2.5  
1.3  
0.6  
2.675  
kW  
V
OTA Internal Offset Voltage  
16  
5
2.325  
Voltage on Pin 5 below which the FB Level has no VCO Action  
Voltage on Pin 5 below which the Controller Considers a Fault  
Input Bias Current  
V
5
V
16  
15  
15  
100  
nA  
mS  
MHz  
DC Transconductance Gain  
OTAG  
250  
1.0  
Gain Product Bandwidth, Rload = 5.0 kW  
GBW  
DRIVE OUTPUT  
Output Voltage Rise Time @ CL = 100 pF, 10−90% of Output Signal  
11−10  
11−10  
11−10  
11−10  
3
T
20  
20  
ns  
ns  
W
r
Output Voltage Fall−Time @ CL = 100 pF, 10−90% of Output Signal  
T
f
Source Resistance  
Sink Resistance  
R
OH  
20  
30  
270  
60  
120  
130  
390  
R
OL  
60  
W
Deadtime with R = 127 kW from Pin 3 to GND  
T_dead  
300  
1.0  
150  
ns  
ms  
ns  
DT  
Maximum Deadtime with R = 540 kW from Pin 3 to GND  
3
T_dead−max  
T_dead−min  
DT  
Minimum Deadtime, R = 30 kW from Pin 3 to GND  
3
DT  
3. Room temperature only, please look at characterization data for evolution versus junction temperature.  
http://onsemi.com  
6
 
NCP1395A/B  
ELECTRICAL CHARACTERISTICS (continued) (For typical values T = 25°C, for min/max values T = 0°C to +125°C,  
j
j
Max T = 150°C, V = 11 V, unless otherwise noted.)  
J
CC  
Characteristic  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
TIMERS  
Timer Charge Current  
6
6
6
6
6
4
4
Itimer  
T−timer  
T−timerR  
VtimerON  
VtimerOFF  
VSS  
150  
25  
mA  
ms  
s
Timer Duration with a 1.0 mF Capacitor and a 1.0 MW Resistor  
Timer Recurrence in Permanent Fault, Same Values as Above  
Voltage at which Pin 6 Stops Output Pulses  
1.4  
4.1  
1.0  
2.0  
95  
3.7  
0.9  
4.5  
1.1  
V
Voltage at which Pin 6 Restarts Output Pulses  
V
Soft−Start Ending Voltage, V = 1.0 V  
V
FB  
Soft−Start Charge Current  
ISS  
75  
115  
mA  
Note 5  
Soft−Start Duration with a 220 nF Capacitor (Note 4)  
4
T−SS  
5.0  
ms  
PROTECTION  
Reference Voltage for Fast Input  
13  
14  
13  
14  
13  
7
VrefFaultF  
VrefFaultS  
HysteFaultF  
HysteFaultS  
TpFault  
IBObias  
VBO  
1.0  
0.98  
1.05  
1.03  
50  
1.1  
1.08  
V
V
Reference Voltage for Slow Input  
Hysteresis for Fast Input  
mV  
mV  
ns  
mA  
V
Hysteresis for Slow Input  
40  
Propagation Delay for Fast Fault Input Drive Shutdown  
Brown−Out Input Bias Current  
Brown−Out Level  
70  
120  
0.02  
1.03  
28  
7
0.98  
23  
70  
3.7  
140  
1.08  
33  
96  
4.5  
Hysteresis Current, Vpin 7 > VBO – A Version  
Hysteresis Current, Vpin 7 > VBO – B Version  
Latching Voltage  
7
IBO_A  
mA  
mA  
V
7
IBO_B  
83  
7
Vlatch  
4.1  
Temperature Shutdown  
TSD  
°C  
°C  
Hysteresis  
TSDhyste  
40  
4. The A version does not activate soft−start when the fast−fault is released, this is for skip cycle implementation. The B version does activate  
the soft−start upon release of the fast−fault input.  
5. Minimum current occurs at T = 0°C.  
J
http://onsemi.com  
7
 
NCP1395A/B  
TYPICAL CHARACTERISTICS − A VERSION  
13.5  
13.4  
13.3  
13.2  
13.1  
13.0  
10  
9.8  
9.6  
9.4  
9.2  
9.0  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. VCCon A  
Figure 4. VCCmin  
50  
49.5  
49  
1.1  
1.0  
0.9  
0.8  
0.7  
48.5  
48  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. Fsw min  
Figure 6. Fsw max  
23  
22  
21  
20  
19  
18  
2.70  
2.65  
2.60  
2.55  
2.50  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. Pulldown Resistor (RFB)  
Figure 7. Reference (Vref_FB)  
http://onsemi.com  
8
NCP1395A/B  
TYPICAL CHARACTERISTICS − A VERSION  
110  
100  
100  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. Source Resistance (ROH)  
Figure 10. Sink Resistance (ROL)  
250  
230  
210  
190  
170  
150  
130  
350  
340  
330  
320  
310  
300  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. T_dead_min A  
Figure 12. T_dead_A  
1300  
1200  
1100  
1000  
900  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
800  
700  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. T_dead_max A  
Figure 13. Fast Fault (VrefFault FF)  
http://onsemi.com  
9
NCP1395A/B  
TYPICAL CHARACTERISTICS − A VERSION  
30  
1.04  
1.035  
1.03  
29  
28  
27  
1.025  
26  
25  
1.02  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Brown−Out Reference (VBO)  
Figure 16. Brown−Out Hysteresis Current (IBO)  
4.2  
4.15  
4.1  
4.05  
4.0  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
Figure 17. Latch Level (Vlatch)  
http://onsemi.com  
10  
NCP1395A/B  
TYPICAL CHARACTERISTICS − B VERSION  
11  
10.8  
10.6  
10.4  
10.2  
10  
10  
9.8  
9.6  
9.4  
9.2  
9.0  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. VCCon B  
Figure 19. VCCmin  
50  
49.5  
49  
1.1  
1.0  
0.9  
0.8  
0.7  
48.5  
48  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 20. Fsw min  
Figure 21. Fsw max  
23  
22  
21  
20  
19  
18  
2.70  
2.65  
2.60  
2.55  
2.50  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 23. Pulldown Resistor (RFB)  
Figure 22. Reference (Vref_FB)  
http://onsemi.com  
11  
NCP1395A/B  
TYPICAL CHARACTERISTICS − B VERSION  
110  
100  
100  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 24. Source Resistance (ROH)  
Figure 25. Sink Resistance (ROL)  
250  
230  
210  
190  
170  
150  
130  
350  
340  
330  
320  
310  
300  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 26. T_dead_min B  
Figure 27. T_dead_B  
1300  
1200  
1100  
1000  
900  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
800  
700  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 29. T_dead_max B  
Figure 28. Fast Fault (VrefFault FF)  
http://onsemi.com  
12  
NCP1395A/B  
TYPICAL CHARACTERISTICS − B VERSION  
1.04  
1.035  
1.03  
90  
85  
80  
75  
70  
1.025  
1.02  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 30. Brown−Out Reference (VBO)  
Figure 31. Brown−Out Hysteresis Current (IBO)  
4.2  
4.15  
4.1  
4.05  
4.0  
−40 −20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
Figure 32. Latch Level (Vlatch)  
http://onsemi.com  
13  
NCP1395A/B  
APPLICATION INFORMATION  
The NCP1395A/B includes all necessary features to help  
28 mA hysteresis current for the lowest consumption  
and the B version slightly increases this current to  
83 mA in order to improve the noise immunity.  
build a rugged and safe switch−mode power supply  
featuring an extremely low standby power. The below  
bullets detail the benefits brought by implementing the  
NCP1395A/B controller:  
Wide Frequency Range: A high−speed Voltage  
Control Oscillator allows an output frequency  
excursion from 50 kHz up to 1.0 MHz on A and B  
outputs.  
Adjustable Fault Timer Duration: When a fault is  
detected on the slow fault input or when the FB path is  
broken, a timer starts to charge an external capacitor.  
If the fault is removed, the timer opens the charging  
path and nothing happens. When the timer reaches its  
selected duration (via a capacitor on pin 6), all pulses  
are stopped. The controller now waits for the  
Adjustable Deadtime: Due to a single resistor wired  
to ground, the user has the ability to include some  
deadtime, helping to fight cross−conduction between  
the upper and the lower transistor.  
discharge via an external resistor of pin 6 capacitor to  
issue a new clean startup sequence with soft−start.  
Cumulative Fault Events: In the NCP1395A/B, the  
timer capacitor is not reset when the fault disappears.  
It actually integrates the information and cumulates  
the occurrences. A resistor placed in parallel with the  
capacitor will offer a simple way to adjust the  
Adjustable Soft−Start: Every time the controller  
starts to operate (power on), the switching frequency is  
pushed to the programmed maximum value and slowly  
moves down toward the minimum frequency, until the  
feedback loop closes. The soft−start sequence is  
activated in the following cases: a) normal startup  
b) back to operation from an off state: during hiccup  
faulty mode, brown−out or temperature shutdown  
(TSD). In the NCP1395A, the soft−start is not  
activated back to operation from the fast fault input,  
unless the feedback pin voltage reaches 0.6 V. To the  
opposite, in the B version, the soft−start is always  
activated back from the fast fault input whatever the  
feedback level is.  
discharge rate and thus the auto−recovery retry rate.  
Fast and Slow Fault Detection: In some application,  
subject to heavy load transients, it is interesting to  
give a certain time to the fault circuit, before  
activating the protection. On the other hand, some  
critical faults cannot accept any delay before a  
corrective action is taken. For this reason, the  
NCP1395A/B includes a fast fault and a slow fault  
input. Upon assertion, the fast fault immediately stops  
all pulses and stays in the position as long as the  
driving signal is high. When released low (the fault  
has gone), the controller has several choices: in the  
A version, pulses are back to a level imposed by the  
feedback pin without soft−start, but in the B version,  
pulses are back through a regular soft−start sequence.  
Adjustable Minimum and Maximum Frequency  
Excursion: In resonant applications, it is important to  
stay away from the resonating peak to keep operating  
the converter in the right region. Due to a single  
external resistor, the designer can program its lowest  
frequency point, obtained in lack of feedback voltage  
(during the startup sequence or in short−circuit  
conditions). Internally trimmed capacitors offer a  
"3% precision on the selection of the minimum  
switching frequency. The adjustable upper stop being  
less precise to "15%.  
Skip Cycle Possibility: The absence of soft−start on  
the NCP1395A fast fault input offers an easy way to  
implement skip cycle when power saving features are  
necessary. A simple resistive connection from the  
feedback pin to the fast fault input, and skip can be  
implemented.  
Low Startup Current: When directly powered from  
the high−voltage DC rail, the device only requires  
300 mA to startup. In case of an auxiliary supply, the  
B version offers a lower startup threshold to cope with  
a 12 V dc rail.  
Onboard Transconductance Op Amp: A  
transconductance amplifier is used to implement  
various options, like monitoring the output current and  
maintaining it constant.  
Broken Feedback Loop Detection: Upon startup or  
any time during operation, if the FB signal is missing,  
the timer starts to charge a capacitor. If the loop is  
really broken, the FB level does not grow up before  
the timer ends counting. The controller then stops all  
pulses and waits that the timer pin voltage collapses to  
1.0 V typically before a new attempt to restart, via the  
soft−start. If the optocoupler is permanently broken, a  
hiccup takes place.  
Brown−Out Detection: To avoid operation from a  
low input voltage, it is interesting to prevent the  
controller from switching if the high−voltage rail is  
not within the right boundaries. Also, when teamed  
with a PFC front−end circuitry, the brown−out  
detection can ensure a clean startup sequence with  
soft−start, ensuring that the PFC is stabilized before  
energizing the resonant tank. The A version features a  
http://onsemi.com  
14  
NCP1395A/B  
more recommended for industrial/medical  
applications where a 12 V auxiliary supply  
directly powers the chip.  
Finally, Two Circuit Versions, A and B: The A and  
B versions differ because of the following changes:  
1. The startup thresholds are different, the A starts  
2. The A version does not activate the soft−start  
upon release of the fast fault input. This is to let  
the designer implement skip cycle. To the  
opposite, the B version goes back to operation  
upon the fast fault pin release via a soft−start  
sequence.  
to pulse for V = 12.8 V whereas the B pulses  
CC  
for V = 10 V. The turn off levels are the  
CC  
same, however. The A is recommended for  
consumer products where the designer can use  
an external startup resistor, whereas the B is  
Voltage−Controlled Oscillator  
The VCO section features a high−speed circuitry  
allowing an internal operation from 100 kHz up to  
2.0 MHz. However, as a division by two internally creates  
the two Q and Qbar outputs, the final effective signal on  
output A and B switches between 50 kHz and 1.0 MHz.  
The VCO is configured in such a way that if the feedback  
pin goes up, the switching frequency also goes up.  
Figure 33 shows the architecture of this oscillator.  
FBinternal  
Vdd  
max  
Fsw  
+
max  
Imin  
0 to I_Fmax  
S
Vref  
D
Q
Q
Fmin  
+
Clk  
Rt−m sets  
Fmin for V(FB) < Vfb_off  
Cint  
R
+
Vdd  
IDT  
A
B
Vref  
Imin  
DT  
Rdt sets  
the deadtime  
Vdd  
Fmax  
Vcc  
Rt−max sets  
the maximum Fsw  
FB  
+
Vfb < Vb_fault  
start fault timer  
Rfb  
20 k  
+
Vb_fault  
Figure 33. Simplified VCO Architecture  
http://onsemi.com  
15  
 
NCP1395A/B  
The designer needs to program the maximum switching  
Figures 35 and 36 portray the frequency evolution  
depending on the feedback pin voltage level in a different  
frequency clamp combination.  
frequency and the minimum switching frequency. In LLC  
configurations, for circuits working above the resonant  
frequency, a high precision is required on the minimum  
frequency, hence the "3% specification. This minimum  
switching frequency is actually reached when no feedback  
closes the loop. It can happen during the startup sequence,  
a strong output transient loading or in a short−circuit  
condition. By installing a resistor from pin 1 to AGND, the  
minimum frequency is set. Using the same philosophy,  
wiring a resistor from pin 2 to AGND will set the maximum  
frequency excursion. To improve the circuit protection  
features, we have purposely created a dead zone, where the  
feedback loop has no action. This is typically below 1.3 V.  
Figure 34 details the arrangement where the internal  
voltage (that drives the VCO) varies between 0 and 3.6 V.  
However, to create this swing, the feedback pin (to which  
the optocoupler emitter connects), will need to swing  
typically between 1.3 V and 6.0 V.  
FA&B  
No variations  
1 MHz  
Fmax  
D
Fsw = 950 kHz  
Fmin  
50 kHz  
VFB  
Fault  
area  
6 V  
1.3 V  
D
VFB = 4.7V  
0.6 V  
Figure 35. Maximal default excursion, Rt = 120 kW  
on pin 1 and Rfmax = 35 kW on pin 2.  
V
CC  
FA&B  
VFB = 1.3−6 V  
FB  
To VCO  
0 to 3.6 V  
+
No variations  
450 kHz  
Fmax  
Rfb  
D
Fsw = 300 kHz  
+
1.3 V  
Fmin  
150 kHz  
VFB  
Fault  
area  
6 V  
1.3 V  
D
VFB = 4.7 V  
0.6 V  
Figure 34. The OPAMP arrangement limits the VCO  
internal modulation signal between 0 and 5.0 V.  
Figure 36. Here a different minimum frequency  
was programmed as well as a different maximum  
frequency excursion.  
This technique allows us to detect a fault on the converter  
in case the FB pin cannot rise above 1.3 V (to actually close  
the loop) in less than a duration imposed by the  
programmable timer. Please refer to the fault section for  
detailed operation of this mode.  
Please note that the previous small signal VCO slope has  
now been reduced to 300 k/5.0 = 62.5 kHz/V. This offers  
a mean to magnify the feedback excursion on systems  
where the load range does not generate a wide switching  
frequency excursion. Due to this option, we will see how  
it becomes possible to observe the feedback level and  
implement skip cycle at light loads. It is important to note  
that the frequency evolution does not have a real linear  
relationship with the feedback voltage. This is due to the  
deadtime presence which stays constant as the switching  
period changes.  
As shown in Figure 34, the internal dynamics of the  
VCO control voltage will be constrained between 0 V and  
3.6 V, whereas the feedback loop will drive pin 5 (FB)  
between 1.3 V and 6.0 V. If we take the external excursion  
numbers, 1.3 V = 50 kHz, 6.0 V = 1.0 MHz, then the VCO  
1 Meg−50 k  
slope will then be  
+ 202 kHzńV.  
4.7  
http://onsemi.com  
16  
 
NCP1395A/B  
1100  
The selection of the three setting resistors (Fmax, Fmin  
and deadtime) requires the usage of the selection charts  
displayed below:  
V
CC  
= 11 V  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
1100  
V
CC  
= 11 V  
FB = 6.5 V  
DT = 300 ns  
900  
700  
500  
100  
0
Fmin = 200 kHz  
0
100  
200  
300  
400  
500  
600  
300  
100  
Rdt (kW)  
Fmin = 50 kHz  
Figure 39. Dead−Time Resistor Selection  
20  
70  
120  
170  
220  
270  
320  
370  
RFmax (kW)  
ORing Capability  
If for a particular reason, there is a need for having a  
frequency variation linked to an event appearance (instead  
of abruptly stopping pulses), then the FB pin lends itself  
very well to the addition of other sweeping loops. Several  
diodes can easily be used to perform the job in case of  
reaction to a fault event or to regulate on the output current  
(CC operation). Figure 40 shows how to do it.  
Figure 37. Maximum switching frequency resistor  
selection depending on the adopted minimum  
switching frequency.  
200  
180  
160  
140  
120  
100  
80  
V
= 11 V  
CC  
FB = 1 V  
DT = 300 ns  
V
CC  
In1  
In2  
FB  
VCO  
20 k  
60  
40  
20  
40  
60  
80  
100  
120  
Figure 40. Due to the FB configuration, loop ORing  
is easy to implement.  
RFmin (kW)  
Figure 38. Minimum Switching Frequency Resistor  
Selection  
http://onsemi.com  
17  
 
NCP1395A/B  
Deadtime Control  
Deadtime control is an absolute necessity when the  
half−bridge configuration comes to play. The deadtime  
technique consists of inserting a period during which both  
high and low side switches are off. Of course, the deadtime  
amount differs depending on the switching frequency,  
hence the ability to adjust it on this controller. The option  
ranges between 150 ns and 1.0 ms. The deadtime is actually  
made by controlling the oscillator discharge current.  
Figure 41 portrays a simplified VCO circuit based on  
Figure 33.  
Vdd  
Icharge:  
Fsw min + Fsw max  
S
D
Q
Q
+
Clk  
Idis  
R
Ct  
+
3 V−1 V  
Vref  
DT  
RDT  
A
B
Figure 41. Deadtime Generation  
During the discharge time, the clock comparator is high  
and unvalidates the AND gates: both outputs are low. When  
the comparator goes back to the high level, during the  
timing capacitor Ct recharge time, A and B outputs are  
validated. By connecting a resistor RDT to ground, it  
creates a current whose image serves to discharge the Ct  
capacitor: we control the deadtime. The typical range  
evolves between 150 ns (RDT = 30 kW) and 1.0 ms (RDT  
= 600 kW). Figure 44 shows the typical waveforms  
obtained on the output.  
circuit. In this controller, a soft−start capacitor connects to  
pin 4 and offers a smooth frequency variation upon startup:  
when the circuit starts to pulse, the VCO is pushed to the  
maximum switching frequency imposed by pin 2. Then, it  
linearly decreases its frequency toward the minimum  
frequency selected by a resistor on pin 1. Of course,  
practically, the feedback loop is suppose to take over the  
VCO lead as soon as the output voltage has reached the  
target. If not, then the minimum switching frequency is  
reached and a fault is detected on the feedback pin  
(typically below 600 mV). Figure 43 depicts a typical  
frequency evolution with soft−start.  
Soft−Start Sequence  
In resonant controllers, a soft−start is needed to avoid  
suddenly applying the full current into the resonating  
http://onsemi.com  
18  
 
NCP1395A/B  
1 ires12 vout  
20.0  
10.0  
0
1
−10.0  
Ires  
SS Action  
−20.0  
177  
Target is  
reached  
2
175  
173  
171  
169  
Vout  
200u  
600u  
1.00m  
1.40m  
1.80m  
time in seconds  
Figure 42. Soft−Start Behavior  
Figure 43. A Typical Startup Sequence on an LLC  
Converter  
Please note that the soft−start will be activated in the  
following conditions:  
A startup sequence  
no soft−start occurs to offer the best skip cycle behavior.  
However, it is very possible to combine skip cycle and true  
fast fault input, e.g. via ORing diodes driving pin 13. In that  
case, if a signal maintains the fast fault input high long  
enough to bring the feedback level down (that is to say  
below 0.6 V) since the output voltage starts to fall down,  
then the soft−start is activated after the release of the pin.  
In the B version tailored to operate from an auxiliary  
12 V power supply, the soft−start is always activated upon  
the fast fault input release, whatever the feedback  
condition is.  
During auto−recovery burst mode  
A brown−out recovery  
A temperature shutdown recovery  
The fast fault input undergoes a special treatment. Since  
we want to implement skip cycle through the fast fault  
input on the NCP1395A, we cannot activate the soft−start  
every time the feedback pin stops the operations in low  
power mode. Therefore, when the fast fault pin is released,  
http://onsemi.com  
19  
 
NCP1395A/B  
1
vct  
2
clock  
5 difference  
4.00  
3.00  
2.00  
1.00  
0
1
16.0  
12.0  
8.00  
4.00  
0
2
5
8.00  
4.00  
0
−4.00  
−8.00  
56.2u  
65.9u  
75.7u  
85.4u  
95.1u  
time in seconds  
Figure 44. Typical Oscillator Waveforms  
Brown−Out Protection  
The Brown−Out circuitry (BO) offers a way to protect the  
resonant converter from low DC input voltages. Below a  
given level, the controller blocks the output pulses, above  
it, it authorizes them. The internal circuitry, depicted by  
Figure 42, offers a possibility to observe the high−voltage  
(HV) rail. A resistive divider made of Rupper and Rlower,  
brings a portion of the HV rail on pin 7. Below the turn−on  
level, a current source IBO is off. Therefore, the turn−on  
level solely depends on the division ratio brought by the  
resistive divider.  
1 vin 2 vcmp  
450 16.0  
351 volts  
350 12.0  
8.00  
Vbulk  
Vdd  
250 volts  
Vin  
ON/OFF  
IBO  
BO  
250  
Rupper  
+
BO  
150 4.00  
Rlower  
+
VBO  
2
50.0  
0
BO  
1
20.0u  
60.0u  
100u  
140u  
180u  
time in seconds  
Figure 45. The Internal Brown−Out  
Configuration with an Offset Current Source  
Figure 46. Simulation Results for 350/250 ON/OFF Levels  
http://onsemi.com  
20  
 
NCP1395A/B  
To the contrary, when the internal BO signal is high  
implemented to a) reduce the standby power on the  
NCP1395A b) improve the noise immunity on the  
NCP1395B. Knowing these values, it becomes possible to  
select the turn−on and turn−off levels via a few lines of  
algebra:  
(A and B pulse), the IBO source is activated and creates  
a hysteresis. The hysteresis level actually depends  
on the circuit: NCP1395A features a 28 mA whereas  
the NCP1395B uses a 83 mA current. Changes are  
IBO is off  
Rlower  
Rlower ) Rupper  
(eq. 1)  
V()) + Vbulk1   
IBO is on  
Rlower   Rupper  
Rlower ) Rupper  
Rlower  
V()) + Vbulk2   
(eq. 2)  
ǒ
Ǔ
) IBO   
Rlower ) Rupper  
We can now extract Rlower from Equation 1 and plug it  
into Equation 2, then solve for Rupper:  
IBO = 83 mA  
Rupper = 1.2 MW  
Rlower = 3.4 kW  
Vbulk1−VBO  
Rupper + Rlower   
VBO  
The bridge power dissipation is 132 mW when the  
front−end PFC stage delivers 400 V. Figure 46 simulation  
result confirms our calculations.  
Vbulk1−Vbulk2  
Rlower + VBO   
IBO   (Vbulk1−VBO)  
If we decide to turn on our converter for Vbulk1 equals  
350 V, and turn it off for Vbulk2 equals 250 V, then we  
obtain:  
Latch−Off Protection  
There are some situations where the converter shall be  
fully turned off and stay latched. This can happen in  
presence of an overvoltage (the feedback loop is drifting)  
or when an overtemperature is detected. Due to the addition  
of a comparator on the BO pin, a simple external circuit can  
lift up this pin above VLATCH (5.0 V typical) and  
IBO = 28 mA  
Rupper = 3.6 MW  
Rlower = 10 kW  
2
The bridge power dissipation is 400 /3.601 MW =  
permanently disable pulses. The V needs to be cycled  
45 mW when the front−end PFC stage delivers 400 V.  
CC  
down below 5.0 V typically to reset the controller.  
V
CC  
Vbulk  
20 ms  
RC  
+
To permanent  
latch  
Q1  
Vout  
+
Vlatch  
Rupper  
IBO  
Vdd  
BO  
Rlower  
+
BO  
NTC  
+
VBO  
Figure 47. Adding a comparator on the BO pin offers a way to latch−off the controller.  
In Figure 47, Q1 is blocked and does not bother the BO  
measurement as long as the NTC and the optocoupler are  
not activated. As soon as the secondary optocoupler senses  
an OVP condition, or the NTC reacts to a high ambient  
temperature, Q1 base is brought to ground and the BO pin  
goes up, permanently latching off the controller.  
http://onsemi.com  
21  
 
NCP1395A/B  
Protection Circuitry  
during fault time (please see above for details). The  
B version restarts with a soft−start sequence.  
This resonant controller differs from competitors due to  
its protection features. The device can react to various  
inputs like:  
Slow events input: This input serves as a delayed  
shutdown, where an event like a transient overload  
does not immediately stopped pulses but start a timer.  
If the event duration lasts longer than what the timer  
imposes, then all pulses are disabled. The voltage on  
the timer capacitor (pin 3) starts to decrease until it  
reaches 1.0 V. The decrease rate is actually depending  
on the resistor the user will put in parallel with the  
capacitor, giving another flexibility during design.  
Fast events input: Like an overcurrent condition, a  
need to shutdown (sleep mode) or a way to force a  
controlled burst mode (skip cycle at low output  
power): as soon as the input level exceeds 1.0 V  
typical, pulses are immediately stopped. On the  
A version, when the input is released, the controller  
performs a clean startup sequence without soft−start  
unless the feedback voltage goes down below 0.6 V  
Figure 48 depicts the architecture of the fault circuitry.  
Vdd  
Itimer  
Ctimer Ctimer  
Rtimer  
Reset  
1 = fault  
0 = ok  
UVLO  
Output  
Current  
Image  
NINV  
Vref  
+
+
ON/OFF  
+
+
+
+
Vref Fault  
CC Regulation  
Compensation  
VtimerON  
VtimerOFF  
1 = ok  
0 = fault  
Out  
+
+
Vref Fault  
Slow Fault  
Fast Fault  
1 = ok  
0 = fault  
Reset  
DRIVING  
LOGIC  
SS  
A
B
A
B
To FB  
Fast  
Input  
Figure 48. This Circuit Combines a Slow and Fast Input for Improved Protection Features  
http://onsemi.com  
22  
 
NCP1395A/B  
In this figure, the internal OPAMP is used to perform a  
reaches the VtimerON level (4.0 V typical), then all pulses  
are stopped. Itimer turns off and the capacitor slowly  
discharges to ground via a resistor installed in parallel with  
it. As a result, the designer can easily determine the time  
during which the power supply stays locked by playing on  
Rtimer. Now, when the timer capacitor voltage reaches  
1.0 V typical (VtimerOFF), the comparator instructs the  
internal logic to issues pulses as on a clean soft−start  
sequence (soft−start is activated). Please note that the  
discharge resistor cannot be lower than 4.0 V/Itimer,  
otherwise the voltage on Ctimer will never reach the  
turn−off voltage of 4.0 V.  
kind of constant current operation (CC) by taking the lead  
when the other voltage loop is gone (CV). Due to the ORing  
capability on the FB pin, the OPAMP regulates in constant  
current mode. When the output reaches a low level close to  
a complete short−circuit, the OPAMP output is maximum.  
With a resistive divider on the slow fault, this condition can  
be detected to trigger the delayed fault. If no OPAMP shall  
be used, its input must be grounded.  
Slow Input  
On this circuit, the slow input goes to a comparator.  
When this input exceeds 1.0 V typical, the current source  
Itimer turns on, charging the external capacitor Ctimer. If  
the fault duration is long enough, when Ctimer voltage  
In both cases, when the fault is validated, both outputs A  
and B are internally pulled down to ground.  
V
CC  
FB  
Fast Fault  
Figure 50. Skip cycle can be  
implemented via two  
Figure 49. A resistor can easily program the capacitor discharge time.  
resistors on the FB pin to the  
fast fault input.  
Fast Input  
Startup Behavior  
The fast input is not affected by a delayed action. As soon  
as its voltage exceeds 1.0 V typical, all pulses are off and  
maintained off as long as the fault is present. When the pin  
is released, pulses come back without soft−start for the  
A version, with soft−start for the B version.  
Due to the low activation level of 1.0 V, this pin can  
observe the feedback pin via a resistive divided and thus  
implement skip cycle operation. The resonant converter  
can be designed to lose regulation in light load conditions,  
forcing the FB level to increase. When it reaches the  
programmed level, it triggers the fast fault input and stops  
When the V voltage grows up, the internal current  
consumption is kept to Istup, allowing to crank up the  
converter via a resistor connected to the bulk capacitor.  
CC  
When V reaches the V ON level, output A goes high  
CC  
CC  
first and then output B. This sequence will always be the  
same, whatever triggers the pulse delivery: fault, OFF to  
ON etcPulsing the output A high first gives an  
immediate charge of the bootstrap capacitor when an  
integrated high voltage half−bridge driver is implemented  
such as ON Semiconductor’s NCP5181. Then, the rest of  
pulses follow, delivered at the highest switching value, set  
by the resistor on pin 2. The soft−start capacitor ensures a  
smooth frequency decrease to either the programmed  
minimum value (in case of fault) or to a value  
corresponding to the operating point if the feedback loop  
closes first. Figure 51 shows typical signals evolution at  
power on.  
pulses. Then V  
slowly drops, the loop reacts by  
out  
decreasing the feedback level which, in turn, unlocks the  
pulses: Vout goes up again and so on: we are in skip cycle  
mode.  
http://onsemi.com  
23  
NCP1395A/B  
VCCON  
VCC(min)  
Vcc from an auxiliary supply  
SS  
FB  
TSS  
TSS  
Fault!  
0.6V  
A&B  
Timer  
A
B
A
B
4V  
Slopes are similar  
1V  
Figure 51. At power on, output A is first activated and the frequency slowly  
decreases via the soft−start capacitor.  
Figure 51 depicts an auto−recovery situation, where the  
timer has triggered the end of output pulses. In that case, the  
that is to say, when V falls below 10.3 V typical. At this  
CC  
time, the V pin still receives its bias current from the  
CC  
V
CC  
level was given by an auxiliary power supply, hence  
startup resistor and heads toward VCC  
via the Vcc  
ON  
its stability during the hiccup. A similar situation can arise  
if the user selects a more traditional startup method,  
capacitor. When the voltage reaches VCC , a standard  
sequence takes place, involving a soft−start. Figure 52  
portrays this behavior.  
ON  
with an auxiliary winding. In that case, the VCC  
(min)  
comparator stops the output pulses whenever it is activated,  
http://onsemi.com  
24  
 
NCP1395A/B  
VCCON  
VCC(min)  
Vcc from a startup resistor  
Fault!  
Fault is  
released  
SS  
FB  
TSS  
TSS  
0.6V  
A&B  
A
B
A
B
Timer  
4V  
1V  
Figure 52. When the VCC is too low, all pulses are stopped until VCC goes back  
to the startup voltage.  
As described in the data sheet, two startup levels VCC  
voltage. To the opposite, for applications where the  
ON  
are available, via two circuit versions. The NCP1395A  
resonant controller is powered from a standby power  
supply, the startup level of the NCP1395B of 10 V typically  
allows a direct a connection from a 12 V source. Simple  
ON/OFF operation is therefore feasible.  
features a large hysteresis to allow a classical startup  
method with a resistor connected to the bulk capacitor.  
Then, at the end of the startup sequence, an auxiliary  
winding is supposed to take over the controller supply  
ORDERING INFORMATION  
Device  
Package  
Shipping†  
NCP1395APG  
PDIP−16  
(Pb−Free)  
25 Units / Rail  
NCP1395ADR2G  
NCP1395BPG  
SOIC−16  
(Pb−Free)  
2500 Tape & Reel  
25 Units / Rail  
PDIP−16  
(Pb−Free)  
NCP1395BDR2G  
SOIC−16  
(Pb−Free)  
2500 Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
http://onsemi.com  
25  
NCP1395A/B  
PACKAGE DIMENSIONS  
PDIP−16  
P SUFFIX  
CASE 648−08  
ISSUE T  
NOTES:  
−A−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS  
WHEN FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE  
MOLD FLASH.  
16  
1
9
8
B
S
5. ROUNDED CORNERS OPTIONAL.  
INCHES  
DIM MIN MAX  
0.740 0.770 18.80 19.55  
MILLIMETERS  
F
C
L
MIN MAX  
A
B
C
D
F
0.250 0.270  
0.145 0.175  
0.015 0.021  
6.35  
3.69  
0.39  
1.02  
6.85  
4.44  
0.53  
1.77  
SEATING  
PLANE  
−T−  
0.040  
0.70  
G
H
J
K
L
0.100 BSC  
2.54 BSC  
1.27 BSC  
K
M
0.050 BSC  
0.008 0.015  
0.110 0.130  
0.295 0.305  
H
J
0.21  
0.38  
3.30  
7.74  
10  
G
2.80  
7.50  
0
D 16 PL  
M
M
0.25 (0.010)  
T A  
M
S
0
10  
_
_
_
_
0.020 0.040  
0.51  
1.01  
SO−16  
D SUFFIX  
CASE 751B−05  
ISSUE J  
−A−  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
9
8
−B−  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
S
B
0.25 (0.010)  
1
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
0.386  
0.150  
0.054  
0.014  
0.016  
F
R X 45  
K
_
C
G
J
1.27 BSC  
0.050 BSC  
−T−  
SEATING  
PLANE  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
J
M
K
M
P
R
D
16 PL  
_
_
_
_
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T
B
A
http://onsemi.com  
26  
NCP1395A/B  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over  
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under  
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.  
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP1395/D  
配单直通车
NCP1395BDR2G产品参数
型号:NCP1395BDR2G
是否无铅: 不含铅
生命周期:Active
IHS 制造商:ROCHESTER ELECTRONICS LLC
零件包装代码:SOIC
包装说明:LEAD FREE, SOIC-8
针数:16
Reach Compliance Code:unknown
风险等级:5.65
Is Samacsys:N
模拟集成电路 - 其他类型:SWITCHING CONTROLLER
控制模式:CURRENT-MODE
控制技术:RESONANT CONTROL
最大输入电压:20 V
最小输入电压:8.3 V
标称输入电压:11 V
JESD-30 代码:R-PDSO-G16
JESD-609代码:e3
长度:9.9 mm
湿度敏感等级:NOT SPECIFIED
功能数量:1
端子数量:16
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
认证状态:COMMERCIAL
座面最大高度:1.75 mm
表面贴装:YES
切换器配置:PUSH-PULL
最大切换频率:1000 kHz
端子面层:MATTE TIN
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:40
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!