on the noninverting input to achieve bias current error can-
cellation at the output. The input bias currents for a current
feedback op amp are not generally matched in either magni-
tude or polarity. Connecting a resistor to ground on the
noninverting input of the OPA691 in the circuit of Figure 9 will
actually provide additional gain for that input’s bias and noise
currents, but will not decrease the output DC error since the
input bias currents are not matched.
prove ADC linearity. A high-speed, high open-loop gain
amplifier like the OPA691 can be very susceptible to de-
creased stability and closed-loop response peaking when a
capacitive load is placed directly on the output pin. When the
amplifier’s open-loop output resistance is considered, this
capacitive load introduces an additional pole in the signal
path that can decrease the phase margin. Several external
solutions to this problem have been suggested. When the
primary considerations are frequency response flatness, pulse
response fidelity, and/or distortion, the simplest and most
effective solution is to isolate the capacitive load from the
feedback loop by inserting a series isolation resistor between
the amplifier output and the capacitive load. This does not
eliminate the pole from the loop response, but rather shifts it
and adds a zero at a higher frequency. The additional zero
acts to cancel the phase lag from the capacitive load pole,
thus increasing the phase margin and improving stability.
OUTPUT CURRENT AND VOLTAGE
The OPA691 provides output voltage and current capabilities
that are unsurpassed in a low-cost monolithic op amp. Under
no-load conditions at 25°C, the output voltage typically swings
closer than 1V to either supply rail; the +25°C swing limit is
within 1.2V of either rail. Into a 15Ω load (the minimum tested
load), it is tested to deliver more than ±160mA.
The specifications described above, though familiar in the
industry, consider voltage and current limits separately. In
many applications, it is the voltage • current, or V-I product,
which is more relevant to circuit operation. Refer to the
“Output Voltage and Current Limitations” plot in the Typical
Characteristics. The X- and Y-axes of this graph show the
zero-voltage output current limit and the zero-current output
voltage limit, respectively. The four quadrants give a more
detailed view of the OPA691’s output drive capabilities,
noting that the graph is bounded by a “Safe Operating Area”
of 1W maximum internal power dissipation. Superimposing
resistor load lines onto the plot shows that the OPA691 can
drive ±2.5V into 25Ω or ±3.5V into 50Ω without exceeding the
output capabilities or the 1W dissipation limit. A 100Ω load
line (the standard test circuit load) shows the full ±3.9V
output swing capability, as shown in the Typical Specifica-
tions.
The Typical Characteristics show the recommended RS ver-
sus Capacitive Load and the resulting frequency response at
the load. Parasitic capacitive loads greater than 2pF can
begin to degrade the performance of the OPA691. Long PC
board traces, unmatched cables, and connections to multiple
devices can easily cause this value to be exceeded. Always
consider this effect carefully, and add the recommended
series resistor as close as possible to the OPA691 output pin
(see Board Layout Guidelines).
DISTORTION PERFORMANCE
The OPA691 provides good distortion performance into a
100Ω load on ±5V supplies. Relative to alternative solutions,
it provides exceptional performance into lighter loads and/or
operating on a single +5V supply. Generally, until the funda-
mental signal reaches very high frequency or power levels,
the 2nd-harmonic will dominate the distortion with a negli-
gible 3rd-harmonic component. Focusing then on the 2nd-
harmonic, increasing the load impedance improves distortion
directly. Remember that the total load includes the feedback
network—in the noninverting configuration (see Figure 1) this
is the sum of RF + RG, while in the inverting configuration it
is just RF. Also, providing an additional supply decoupling
capacitor (0.1µF) between the supply pins (for bipolar opera-
tion) improves the 2nd-order distortion slightly (3dB to 6dB).
The minimum specified output voltage and current over-
temperature are set by worst-case simulations at the cold
temperature extreme. Only at cold startup will the output
current and voltage decrease to the numbers shown in the
Electrical Characteristic tables. As the output transistors
deliver power, their junction temperatures will increase, de-
creasing their VBE’s (increasing the available output voltage
swing) and increasing their current gains (increasing the
available output current). In steady-state operation, the avail-
able output voltage and current will always be greater than
that shown in the over-temperature specifications since the
output stage junction temperatures will be higher than the
minimum specified operating ambient.
In most op amps, increasing the output voltage swing in-
creases harmonic distortion directly. The Typical Character-
istics show the 2nd-harmonic increasing at a little less than
the expected 2x rate while the 3rd-harmonic increases at a
little less than the expected 3x rate. Where the test power
doubles, the 2nd-harmonic increases by less than the ex-
pected 6dB while the 3rd-harmonic increases by less than
the expected 12dB. This also shows up in the 2-tone,
3rd-order intermodulation spurious (IM3) response curves.
The 3rd-order spurious levels are extremely low at low output
power levels. The output stage continues to hold them low
even as the fundamental power reaches very high levels. As
the Typical Characteristics show, the spurious intermodulation
powers do not increase as predicted by a traditional intercept
model. As the fundamental power level increases, the
To protect the output stage from accidental shorts to ground
and the power supplies, output short-circuit protection is
included in the OPA691. The circuit acts to limit the maximum
source or sink current to approximately 250mA.
DRIVING CAPACITIVE LOADS
One of the most demanding and yet very common load
conditions for an op amp is capacitive loading. Often, the
capacitive load is the input of an ADC—including additional
external capacitance which may be recommended to im-
OPA691
SBOS226A
17
www.ti.com