欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • RF3166DTR13图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • RF3166DTR13
  • 数量32718 
  • 厂家RFMD 
  • 封装QFN 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • RF3166图
  • 集好芯城

     该会员已使用本站13年以上
  • RF3166
  • 数量13782 
  • 厂家RFMD 
  • 封装QFN 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • RF3166SR图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • RF3166SR
  • 数量9000 
  • 厂家RFMD 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • RF3166图
  • 深圳市三得电子有限公司

     该会员已使用本站15年以上
  • RF3166
  • 数量91752 
  • 厂家RFMD 
  • 封装QFN 
  • 批号2024 
  • 深圳原装现货库存,欢迎咨询合作
  • QQ:414322027QQ:414322027 复制
    QQ:565106636QQ:565106636 复制
  • 15026993318 QQ:414322027QQ:565106636
  • RF3166TR13图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • RF3166TR13
  • 数量9800 
  • 厂家RFMD 
  • 封装QFN 
  • 批号23+ 
  • 进口原装原盘原标签假一赔十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • RF3166SR图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • RF3166SR
  • 数量68000 
  • 厂家RFMD 
  • 封装QFN 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • RF3166图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站6年以上
  • RF3166
  • 数量6500 
  • 厂家RFMD 
  • 封装QFN 
  • 批号24+ 
  • 全新原装★真实库存★含13点增值税票!
  • QQ:2885134615QQ:2885134615 复制
    QQ:2353549508QQ:2353549508 复制
  • 0755-83201583 QQ:2885134615QQ:2353549508
  • RF3166TR13图
  • 北京顺科电子科技有限公司

     该会员已使用本站8年以上
  • RF3166TR13
  • 数量5500 
  • 厂家RFMD 
  • 封装BAG 
  • 批号21+ 
  • 进口品牌//国产品牌代理商18911556207
  • QQ:729566152QQ:729566152 复制
    QQ:1138731127QQ:1138731127 复制
  • 18911556207 QQ:729566152QQ:1138731127
  • RF3166图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • RF3166
  • 数量5500 
  • 厂家RFMD 
  • 封装QFN 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • RF3166DTR13图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • RF3166DTR13
  • 数量30000 
  • 厂家RENESAS 
  • 封装QFN 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • RF3166图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • RF3166
  • 数量1696 
  • 厂家RFMD 
  • 封装QFN 
  • 批号24+ 
  • 假一罚万,全新原装库存现货,可长期订货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • RF3166图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • RF3166
  • 数量5369 
  • 厂家RFMD 
  • 封装QFN 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • RF3166ASMPCBA-410图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • RF3166ASMPCBA-410
  • 数量200 
  • 厂家RFMD 
  • 封装优势库存 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • RF3166图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • RF3166
  • 数量10000 
  • 厂家RFMD 
  • 封装QFN 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • RF3166TR图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • RF3166TR
  • 数量6000 
  • 厂家RFMD 
  • 封装QFN 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • RF3166图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • RF3166
  • 数量5000 
  • 厂家 
  • 封装BGA 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • RF3166图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • RF3166
  • 数量865000 
  • 厂家ERICSSON/爱立信 
  • 封装5PB 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • RF3166TR13图
  • 北京睿科新创电子中心

     该会员已使用本站9年以上
  • RF3166TR13
  • 数量10000 
  • 厂家RFDM 
  • 封装QFN 
  • 批号2021+ 
  • 全新原装进口
  • QQ:765972029QQ:765972029 复制
    QQ:744742559QQ:744742559 复制
  • 010-62556580 QQ:765972029QQ:744742559
  • RF3166图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • RF3166
  • 数量16 
  • 厂家RFMD 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • RF3166TR13图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • RF3166TR13
  • 数量2015 
  • 厂家RFMD 
  • 封装SMD 
  • 批号19998 
  • ★专业代理原装现货,特价热卖!★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • RF3166图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • RF3166
  • 数量5000 
  • 厂家RFMD 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • RF3166图
  • 深圳德田科技有限公司

     该会员已使用本站7年以上
  • RF3166
  • 数量
  • 厂家新年份 
  • 封装12000 
  • 批号 
  • 原装正品现货,可出样品!!!
  • QQ:229754250QQ:229754250 复制
  • 0755-83254070 QQ:229754250
  • RF3166图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • RF3166
  • 数量9500 
  • 厂家ORIGINAL 
  • 封装 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • RF3166图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • RF3166
  • 数量90000 
  • 厂家RFMD 
  • 封装QFN 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • RF3166DTR13图
  • 深圳市顺兴源微电子商行

     该会员已使用本站7年以上
  • RF3166DTR13
  • 数量9000000 
  • 厂家RFMD 
  • 封装QFN 
  • 批号16+ 
  • 原装现货,低价出售
  • QQ:3475025894QQ:3475025894 复制
    QQ:3504055308QQ:3504055308 复制
  • 0755-82723655 QQ:3475025894QQ:3504055308
  • RF3166图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • RF3166
  • 数量7358 
  • 厂家RFMD 
  • 封装QFN 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • RF3166TR13图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • RF3166TR13
  • 数量12500 
  • 厂家RICLTEK 
  • 封装QFN 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • RF3166图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • RF3166
  • 数量85000 
  • 厂家ERICSSON/爱立信 
  • 封装5PB 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • RF3166图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • RF3166
  • 数量3000 
  • 厂家RFMD 
  • 封装QFN 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • RF3166图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • RF3166
  • 数量10000 
  • 厂家RFMD 
  • 封装QFN 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414

产品型号RF3166的概述

芯片RF3166概述 RF3166是一款高性能的射频放大器芯片,主要用于无线通信和数据传输应用。其设计旨在为各种频率范围的设备提供高增益和线性度,满足射频电路对信号质量的严格要求。RF3166特别适用于GSM、CDMA及其他无线通讯系统,因为其在提高信号强度的同时,可以有效抑制失真,确保信号的稳定传输。 RF3166的详细参数 RF3166的主要特性包括: 1. 频率范围:通常支持从 1.8 GHz 到 2.5 GHz 的工作频段,使其适应不同的通信标准。 2. 增益:输出增益高达 20 dB,能够有效增强微弱的射频信号,适用于需要高增益的应用场合。 3. 线性度:具有良好的线性度,有助于减少互调失真(IMD),对于高复杂度的信号调制尤为重要。 4. 功耗:典型功耗为 20 mA,具有较低的功耗特点,适合便携式电子设备的使用。 5. 输出功率:在特定条件...

产品型号RF3166的Datasheet PDF文件预览

RF3166  
QUAD-BAND GSM850/GSM900/DCS/PCS  
POWER AMP MODULE  
0
RoHS Compliant & Pb-Free Product  
Typical Applications  
• 3V Quad-Band GSM Handsets  
• GSM850/EGSM900/DCS/PCS Products  
• GPRS Class 12  
• Power StarTM Module  
• Commercial and Consumer Systems  
• Portable Battery-Powered Equipment  
Product Description  
1.40  
1.25  
1
The RF3166 is a high-power, high-efficiency power ampli-  
fier module with integrated power control that provides  
over 50dB of control range. The device is a self-contained  
6mmx6mm module with 50Ω input and output terminals.  
The device is designed for use as the final RF amplifier in  
GSM850, EGSM900, DCS and PCS handheld digital cel-  
lular equipment and other applications in the 824MHz to  
849MHz, 880MHz to 915MHz, 1710MHz to 1785MHz  
and 1850MHz to 1910MHz bands. The RF3166 incorpo-  
rates RFMD’s latest VBATT tracking circuit, which monitors  
6.00  
± 0.10  
0.450  
6.00 ± 0.10  
± 0.075  
Shaded areas represent pin 1.  
Dimensions in mm.  
1
5.823  
5.900 TYP  
5.500  
5.400 TYP  
5.225 TYP  
5.200 TYP  
4.625 TYP  
4.450 TYP  
3.850 TYP  
3.675 TYP  
3.075 TYP  
2.900 TYP  
5.435  
5.370  
5.035  
4.600  
4.300  
4.200  
3.800  
3.400  
3.065  
3.000  
2.600  
2.100  
1.700  
battery voltage and prevents the power control loop from  
reaching saturation. The VBATT tracking circuit eliminates  
2.300 TYP  
2.125 TYP  
1.525 TYP  
1.350 TYP  
0.800 TYP  
0.600 TYP  
0.500 TYP  
0.000  
1.365  
1.300  
the need to monitor battery voltage, thereby minimizing  
switching transients. The RF3166 requires no external  
routing or external components, simplifying layout and  
reducing board space.  
0.900 TYP  
0.750 TYP  
0.565 TYP  
0.100 TYP  
Optimum Technology Matching® Applied  
Package Style: Module, 6mmx6mm  
Si BJT  
GaAs HBT  
SiGe HBT  
GaN HEMT  
GaAs MESFET  
9
Si Bi-CMOS  
InGaP/HBT  
Si CMOS  
Features  
• Ultra-Small 6mmx6mm Package Size  
• Integrated V  
9
SiGe Bi-CMOS  
REG  
• Complete Power Control Solution  
• Automatic V Tracking Circuit  
DCS/PCS  
RFIN  
DCS/PCS  
RFOUT  
BATT  
1
2
3
4
5
6
7
9
• No External Components or Routing  
• Improved Power Flatness  
BAND SELECT  
TX ENABLE  
VBATT  
GND  
Ordering Information  
VRAMP  
RF3166  
Quad-Band GSM850/GSM900/DCS/PCS  
Power Amp Module  
GSM  
RF IN  
GSM  
RFOUT  
8
RF3166 SB  
RF3166PCBA-410  
Power Amp Module 5-Piece Sample Pack  
Fully Assembled Evaluation Board  
RF3166ASMPCBA-410 Fully Assembled Evaluation Board with  
Antenna Switch Module  
RF Micro Devices, Inc.  
7628 Thorndike Road  
Greensboro, NC 27409, USA  
Tel (336) 664 1233  
Fax (336) 664 0454  
http://www.rfmd.com  
Functional Block Diagram  
Rev A3 061031  
2-491  
RF3166  
Absolute Maximum Ratings  
Parameter  
Supply Voltage  
Rating  
-0.3 to +6.0  
-0.3 to +2.2  
Unit  
V
DC  
Caution! ESD sensitive device.  
Power Control Voltage (V  
)
V
RAMP  
Input RF Power  
Max Duty Cycle  
Output Load VSWR  
Operating Case Temperature  
Storage Temperature  
+10  
50  
10:1  
dBm  
%
RF Micro Devices believes the furnished information is correct and accurate  
at the time of this printing. RoHS marking based on EUDirective2002/95/EC  
(at time of this printing). However, RF Micro Devices reserves the right to  
make changes to its products without notice. RF Micro Devices does not  
assume responsibility for the use of the described product(s).  
-20 to +85  
-55 to +150  
°C  
°C  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Overall Power Control  
VRAMP  
Power Control “ON”  
Power Control “OFF”  
2.1  
V
V
Max. P  
, Voltage supplied to the input  
OUT  
0.26  
2
Min. P  
, Voltage supplied to the input  
OUT  
V
V
Input Capacitance  
Input Current  
20  
30  
pF  
μA  
DC to 2MHz  
=2.1V  
RAMP  
RAMP  
V
RAMP  
TX Enable “ON”  
TX Enable “OFF”  
GSM Band Enable  
DCS/PCS Band Enable  
Overall Power Supply  
Power Supply Voltage  
1.5  
1.5  
V
V
V
V
0.5  
0.5  
3.5  
1
V
V
V
Specifications  
Nominal operating limits  
3.0  
4.5  
4.5  
5.5  
V
<1.7V  
RAMP  
Power Supply Current  
μA  
P
<-30dBm, TX Enable=Low,  
IN  
Temp=-20°C to +85°C  
V =0.26V, TX Enable=High  
RAMP  
150  
mA  
Overall Control Signals  
Band Select “Low”  
Band Select “High”  
Band Select “High” Current  
TX Enable “Low”  
TX Enable “High”  
0
1.5  
0
2.0  
20  
0
2.0  
1
0.5  
3.0  
50  
0.5  
3.0  
2
V
V
μA  
V
V
μA  
0
1.5  
TX Enable “High” Current  
2-492  
Rev A3 061031  
RF3166  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Temp = +25 °C, V  
=3.5V,  
BATT  
V
=2.1V, P =3dBm,  
IN  
RAMP  
Overall (GSM850 Mode)  
Freq=824MHz to 849MHz,  
25% Duty Cycle, Pulse Width=1154μs  
Operating Frequency Range  
Maximum Output Power 1  
824 to 849  
MHz  
dBm  
34.2  
32.0  
45  
Temp=+25°C, V  
Temp=+85°C, V  
=3.5V, V  
=3.0V, V  
=2.1V  
=2.1V  
BATT  
BATT  
RAMP  
RAMP  
Maximum Output Power 2  
Total Efficiency  
dBm  
%
52  
+3  
At P  
, V  
=3.5V  
BATT  
OUT MAX  
Input Power Range  
0
+5  
dBm  
Maximum output power guaranteed at mini-  
mum drive level  
Output Noise Power  
-85  
-83  
dBm  
RBW=100kHz, 869MHz to 894MHz,  
P
< +34.2dBm  
OUT  
Forward Isolation 1  
Forward Isolation 2  
-45  
-30  
-30  
-10  
dBm  
dBm  
TXEnable=Low, P =+5dBm  
IN  
TXEnable=High, P =+5dBm,  
IN  
V
V
V
V
V
=0.26V  
RAMP  
RAMP  
RAMP  
RAMP  
RAMP  
Cross Band Isolation at 2f  
Second Harmonic  
Third Harmonic  
-30  
-15  
-30  
-20  
-10  
-15  
-36  
dBm  
dBm  
dBm  
dBm  
=0.26V to V  
=0.26V to V  
=0.26V to V  
_R  
_R  
_R  
0
RAMP  
RAMP  
RAMP  
P
P
P
All Other  
=0.26V to 2.1V  
Non-Harmonic Spurious  
Input Impedance  
50  
Ω
Input VSWR  
2.5:1  
Output Load VSWR Stability  
8:1  
Spurious<-36dBm, RBW=3MHz  
Set V  
where P  
<34.2dBm into 50Ω  
RAMP  
OUT  
load  
Output Load VSWR Ruggedness  
10:1  
Set V  
where P  
<34.2dBm into 50Ω  
RAMP  
OUT  
load. No damage or permanent degradation  
to part.  
Output Load Impedance  
Power Control VRAMP  
Power Control Range  
Transient Spectrum  
50  
Ω
Load impedance presented at RF OUT pad  
50  
55  
dB  
V
V
=0.26V to 2.1V  
RAMP  
-35  
dBm  
dBm  
=V  
_R  
RAMP P  
RAMP  
Transient Spectrum Under  
Extreme Conditions  
-23  
Temp=-20°C to +85°C, V  
>3.0V.  
BATT  
Ramping shape same as for Condition:  
Temp = 25°C, V =3.5V,  
BATT  
V
V
P
=V  
_R  
RAMP P  
RAMP  
Power Degradation from  
Nominal Conditions  
5dBm to 14dBm  
=3.0V to 4.5V, Temp=-20°C to +85°C,  
=0dBm to 5dBm,  
BATT  
IN  
-4  
-2  
+4  
+2  
dB  
dB  
Relative to output power for condition:  
=3.5V, P =+3dBm, Temp=25°C,  
14dBm to 32dBm  
V
BATT  
IN  
Freq=836.5MHz.  
Output power variation measured at set  
V
.
RAMP  
Notes:  
V
_R =V  
set for 34.2dBm at nominal conditions.  
RAMP  
RAMP  
P
Rev A3 061031  
2-493  
RF3166  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Temp = +25 °C, V  
=3.5V,  
BATT  
V
=2.1V, P =3dBm,  
IN  
RAMP  
Overall (GSM900 Mode)  
Freq=880MHz to 915MHz,  
25% Duty Cycle, Pulse Width=1154μs  
Operating Frequency Range  
Maximum Output Power 1  
880 to 915  
MHz  
dBm  
34.2  
32.0  
51  
Temp=+25°C, V  
Temp=+85°C, V  
=3.5V, V  
=3.0V, V  
=2.1V  
=2.1V  
BATT  
BATT  
RAMP  
RAMP  
Maximum Output Power 2  
Total Efficiency  
dBm  
%
56  
+3  
At P  
, V  
=3.5V  
BATT  
OUT MAX  
Input Power Range  
0
+5  
dBm  
Maximum output power guaranteed at mini-  
mum drive level  
Output Noise Power  
-83  
-85  
-80  
dBm  
dBm  
RBW=100kHz, 925MHz to 935MHz,  
P
< +34.2dBm  
OUT  
-83  
RBW=100kHz, 935MHz to 960MHz,  
< +34.2dBm  
P
OUT  
Forward Isolation 1  
Forward Isolation 2  
-40  
-30  
-30  
-10  
dBm  
dBm  
TXEnable=Low, P =+5dBm  
IN  
TXEnable=High, P =+5dBm,  
IN  
V
V
V
V
V
=0.26V  
RAMP  
RAMP  
RAMP  
RAMP  
RAMP  
Cross Band Isolation 2f  
Second Harmonic  
Third Harmonic  
All Other  
-30  
-15  
-30  
-20  
-10  
-15  
-36  
dBm  
dBm  
dBm  
dBm  
=0.26V to V  
=0.26V to V  
=0.26V to V  
_R  
_R  
_R  
0
RAMP  
RAMP  
RAMP  
P
P
P
=0.26V to 2.1V  
Non-Harmonic Spurious  
Input Impedance  
50  
Ω
Input VSWR  
2.5:1  
Output Load VSWR Stability  
8:1  
Spurious<-36dBm, RBW=3MHz  
Set V  
where P  
<34.2dBm into 50Ω  
RAMP  
OUT  
load  
Output Load VSWR Ruggedness  
10:1  
Set V  
where P  
<34.2dBm into 50Ω  
RAMP  
OUT  
load. No damage or permanent degradation  
to part.  
Output Load Impedance  
50  
Ω
Load impedance presented at RF OUT pad  
Power Control VRAMP  
Power Control Range  
Transient Spectrum  
50  
55  
dB  
V
V
=0.26V to 2.1V  
RAMP  
-35  
dBm  
dBm  
=V  
_R  
RAMP P  
RAMP  
Transient Spectrum Under  
Extreme Conditions  
-23  
Temp=-20°C to +85°C, V  
Ramping shape same as for Condition:  
Temp = 25°C, V =3.5V,  
>3.0V.  
BATT  
BATT  
V
V
P
=V  
_R  
RAMP P  
RAMP  
Power Degradation from  
Nominal Conditions  
5dBm to 14dBm  
=3.0V to 4.5V, Temp=-20°C to +85°C,  
=0dBm to 5dBm,  
BATT  
IN  
-4  
-2  
+4  
+2  
dB  
dB  
Relative to output power for condition:  
=3.5V, P =+3dBm, Temp=25°C,  
14dBm to 32dBm  
V
BATT  
IN  
Freq=897.5MHz.  
Output power variation measured at set  
V
.
RAMP  
Notes:  
V
_R =V  
set for 34.2dBm at nominal conditions.  
RAMP  
RAMP  
P
2-494  
Rev A3 061031  
RF3166  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Temp = 25°C, V  
=3.5V,  
BATT  
V
=2.1V, P =3dBm,  
IN  
RAMP  
Overall (DCS Mode)  
Freq=1710MHz to 1785MHz,  
25% Duty Cycle, pulse width=1154μs  
Operating Frequency Range  
Maximum Output Power 1  
1710 to 1785  
MHz  
dBm  
32.0  
30.0  
46  
Temp=+25°C, V  
Temp=+85°C, V  
=3.5V, V  
=3.0V, V  
=2.1V  
=2.1V  
BATT  
BATT  
RAMP  
RAMP  
Maximum Output Power 2  
Total Efficiency  
dBm  
%
52  
+3  
At P  
V
=3.5V  
OUT MAX, BATT  
Input Power Range  
0
+5  
dBm  
Maximum output power guaranteed at mini-  
mum drive level  
Output Noise Power  
-85  
-80  
dBm  
RBW=100kHz, 1805MHz to 1880MHz,  
P
< 32dBm  
OUT  
Forward Isolation 1  
Forward Isolation 2  
-40  
-25  
-30  
-10  
dBm  
dBm  
TXEnable=Low, P =+5dBm  
IN  
TXEnable=High, V  
=0.26V,  
RAMP  
P
V
V
V
=+5dBm  
IN  
Second Harmonic  
Third Harmonic  
-15  
-30  
-10  
-15  
-36  
dBm  
dBm  
dBm  
=0.26V to V  
=0.26V to V  
_R  
_R  
RAMP  
RAMP  
RAMP  
RAMP  
RAMP  
P
P
All Other  
=0.26V to 2.1V  
Non-Harmonic Spurious  
Input Impedance  
Input VSWR  
50  
Ω
2.5:1  
Output Load VSWR Stability  
8:1  
Spurious<-36dBm, RBW=3MHz  
Set V  
where P  
<32dBm into 50Ω  
RAMP  
OUT  
load  
Output Load VSWR Ruggedness  
10:1  
Set V  
where P  
<32dBm into 50Ω  
RAMP  
OUT  
load. No damage or permanent degradation  
to part.  
Output Load Impedance  
50  
Ω
Load impedance presented at RF OUT pad  
Power Control VRAMP  
Power Control Range  
Transient Spectrum  
45  
50  
dB  
V
V
=0.26V to 2.1V  
RAMP  
-35  
dBm  
dBm  
=V  
_R  
RAMP P  
RAMP  
Transient Spectrum Under  
Extreme Conditions  
-23  
Temp=-20°C to +85°C, V  
Ramping shape same as for Condition:  
Temp = 25°C, V =3.5V,  
>3.0V.  
BATT  
BATT  
V
V
P
=V  
_R  
RAMP P  
RAMP  
Power Degradation from  
Nominal Conditions  
0dBm to 15dBm  
=3.0V to 4.5V, Temp=-20°C to +85°C,  
=0dBm to 5dBm,  
BATT  
IN  
-4  
-2  
+4  
+2  
dB  
dB  
Relative to output power for condition:  
=3.5V, P =+3dBm, Temp=25°C,  
15dBm to 30dBm  
V
BATT  
IN  
Freq=1747.5MHz.  
Output power variation measured at set  
V
.
RAMP  
Notes:  
V
_R =V  
set for 32dBm at nominal conditions.  
RAMP  
RAMP  
P
Rev A3 061031  
2-495  
RF3166  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Temp = 25°C, V  
=3.5V,  
BATT  
V
=2.1V, P =3dBm,  
IN  
RAMP  
Overall (PCS Mode)  
Freq=1850MHz to 1910MHz,  
25% Duty Cycle, pulse width=1154μs  
Operating Frequency Range  
Maximum Output Power 1  
1850 to 1910  
MHz  
dBm  
32.0  
30.0  
46  
Temp=+25°C, V  
Temp=+85°C, V  
=3.5V, V  
=3.0V, V  
=2.1V  
=2.1V  
BATT  
BATT  
RAMP  
RAMP  
Maximum Output Power 2  
Total Efficiency  
dBm  
%
52  
+3  
At P  
V
=3.5V  
OUT MAX, BATT  
Input Power Range  
0
+5  
dBm  
Maximum output power guaranteed at mini-  
mum drive level  
Output Noise Power  
-85  
-80  
dBm  
RBW=100kHz, 1930MHz to 1990MHz,  
P
< 32dBm  
OUT  
Forward Isolation 1  
Forward Isolation 2  
-35  
-25  
-30  
-10  
dBm  
dBm  
TXEnable=Low, P =+5dBm  
IN  
TXEnable=High, V  
=0.26V,  
RAMP  
P
V
V
V
=+5dBm  
IN  
Second Harmonic  
Third Harmonic  
-15  
-30  
-10  
-15  
-36  
dBm  
dBm  
dBm  
=0.26V to V  
=0.26V to V  
_R  
_R  
RAMP  
RAMP  
RAMP  
RAMP  
RAMP  
P
P
All Other  
=0.26V to 2.1V  
Non-Harmonic Spurious  
Input Impedance  
Input VSWR  
50  
Ω
2.5:1  
Output Load VSWR Stability  
8:1  
Spurious<-36dBm, RBW=3MHz  
Set V  
where P  
<32dBm into 50Ω  
RAMP  
OUT  
load  
Output Load VSWR Ruggedness  
10:1  
Set V  
where P  
<32dBm into 50Ω  
RAMP  
OUT  
load. No damage or permanent degradation  
to part.  
Output Load Impedance  
50  
Ω
Load impedance presented at RF OUT pad  
Power Control VRAMP  
Power Control Range  
Transient Spectrum  
45  
50  
dB  
V
V
=0.26V to 2.1V  
RAMP  
-35  
dBm  
dBm  
=V  
_R  
RAMP P  
RAMP  
Transient Spectrum Under  
Extreme Conditions  
-23  
Temp=-20°C to +85°C, V  
Ramping shape same as for Condition:  
Temp = 25°C, V =3.5V,  
>3.0V.  
BATT  
BATT  
V
V
P
=V  
_R  
RAMP P  
RAMP  
Power Degradation from  
Nominal Conditions  
0dBm to 15dBm  
=3.0V to 4.5V, Temp=-20°C to +85°C,  
=0dBm to 5dBm,  
BATT  
IN  
-4  
-2  
+4  
+2  
dB  
dB  
Relative to output power for condition:  
=3.5V, P =+3dBm, Temp=25°C,  
15dBm to 30dBm  
V
BATT  
IN  
Freq=1880MHz.  
Output power variation measured at set  
V
.
RAMP  
Notes:  
V
_R =V  
set for 32dBm at nominal conditions.  
RAMP  
RAMP  
P
2-496  
Rev A3 061031  
RF3166  
Interface Schematic  
BAND SEL  
Pin  
1
2
Function Description  
RF input to the DCS band. This is a 50Ω input.  
DCS/PCS IN  
Allows external control to select the GSM or DCS band with a logic high  
or low. A logic low enables the GSM band whereas a logic high enables  
the DCS band.  
BAND  
SELECT  
GSM CTRL  
TX EN  
DCS CTRL  
This signal enables the PA module for operation with a logic high.  
3
TX ENABLE  
VBATT  
TX EN  
TX ON  
Power supply for the module. This should be connected to the battery.  
4
5
6
VBATT  
GND  
VRAMP  
Ramping signal from DAC. A 300kHz lowpass filter is integrated into  
the CMOS. No external filtering is required.  
300 kHz  
VRAMP  
RF input to the GSM band. This is a 50Ω input.  
7
8
GSM IN  
GSM OUT  
RF output for the GSM band. This is a 50Ω output. The output load line  
matching is contained internal to the package.  
RF output for the DCS band. This is a 50Ω output. The output load line  
matching is contained internal to the package.  
9
DCS/PCS  
OUT  
Pkg  
GND  
Base  
Rev A3 061031  
2-497  
RF3166  
Pin Out  
Top Down View  
DCS/PCS  
RFIN  
DCS/PCS  
RFOUT  
1
2
3
9
BAND SELECT  
TX ENABLE  
VBATT 4  
GND 5  
VRAMP 6  
GSM  
7
GSM  
RFOUT  
8
RF IN  
2-498  
Rev A3 061031  
RF3166  
Application Schematic  
50 Ω μstrip  
DCS/PCS IN  
BAND SELECT  
TX ENABLE  
VBATT  
50 Ω μstrip  
1
2
3
4
5
6
7
9
DCS/PCS OUT  
VRAMP  
GSM IN  
50 Ω μstrip  
50 Ω μstrip  
8
GSM OUT  
Evaluation Board Schematic  
P1  
1
P2  
1
GND P2-1  
VCC  
CON1  
CON1  
50 Ω μstrip  
DCS/PCS IN  
50 Ω μstrip  
1
2
3
4
5
6
7
9
DCS/PCS OUT  
BAND SELECT  
TX ENABLE  
VBATT  
22 μF*  
VRAMP  
GSM IN  
50 Ω μstrip  
8
GSM OUT  
50 Ω μstrip  
Notes:  
* The value of the VBATT decoupling capacitor depends on the noise level of the phone board.  
Capacitor type may be either tantalum or ceramic. Some applications may not require this capacitor.  
1. All the PA output measurements are referenced to the PA output pad (pins 8 and 9).  
2. The 50 Ω μstrip between the PA output pad and the SMA connector has an approximate insertion loss  
of 0.1 dB for GSM850/EGSM900 and 0.2 dB for DCS1800/PCS1900 bands.  
Rev A3 061031  
2-499  
RF3166  
Evaluation Board Layout  
Board Size 2.0” x 2.0”  
Board Thickness 0.032”, Board Material FR-4, Multi-Layer  
2-500  
Rev A3 061031  
RF3166  
Theory of Operation  
Overview  
The RF3166 is a quad-band GSM850, EGSM900, DCS1800, and PCS1900 power amplifier module that incorporates an  
indirect closed loop method of power control. This simplifies the phone design by eliminating the need for the compli-  
cated control loop design. The indirect closed loop appears as an open loop to the user and can be driven directly from  
the DAC output in the baseband circuit.  
Theory of Operation  
The indirect closed loop is essentially a closed loop method of power control that is invisible to the user. Most power con-  
trol systems in GSM sense either forward power or collector/drain current. The RF3166 does not use a power detector. A  
high-speed control loop is incorporated to regulate the collector voltage of the amplifier while the stage are held at a con-  
stant bias. The VRAMP signal is multiplied by a factor of 2.3 and the collector voltage for all three stages is regulated to  
the multiplied VRAMP voltage. The basic circuit is shown in the following diagram.  
VBATT  
-
VRAMP  
+
-
Saturation  
Detector  
+
3 dB BW  
300 kHz  
H(s)  
RF IN  
TX ENABLE  
RF OUT  
By regulating the power, the stages are held in saturation across all power levels. As the required output power is  
decreased from full power down to 0dBm, the collector voltage is also decreased. This regulation of output power is  
demonstrated in Equation 1 where the relationship between collector voltage and output power is shown. Although load  
impedance affects output power, supply fluctuations are the dominate mode of power variations. With the RF3166 regu-  
lating collector voltage, the dominant mode of power fluctuations is eliminated.  
2
(2 VCC VSAT  
)
-------------------------------------------  
PdBm = 10 log  
(Eq. 1)  
8 RLOAD 10–3  
There are several key factors to consider in the implementation of a transmitter solution for a mobile phone. Some of  
them are:  
Current draw and system efficiency  
Power variation due to Supply Voltage  
Power variation due to frequency  
Power variation due to temperature  
Input impedance variation  
Noise power  
Loop stability  
Loop bandwidth variations across power levels  
Burst timing and transient spectrum trade offs  
Harmonics  
Rev A3 061031  
2-501  
RF3166  
Output power does not vary due to supply voltage under normal operating conditions if VRAMP is sufficiently lower than  
V
BATT. By regulating the collector voltage to the PA the voltage sensitivity is essentially eliminated. This covers most  
cases where the PA will be operated. However, as the battery discharges and approaches its lower power range the  
maximum output power from the PA will also drop slightly. In this case it is important to also decrease VRAMP to prevent  
the power control from inducing switching transients. These transients occur as a result of the control loop slowing down  
and not regulating power in accordance with VRAMP  
.
The switching transients due to low battery conditions are regulated by the VBATT tracking circuit. The VBATT tracking cir-  
cuit consists of a feedback loop that detects FET saturation. As the FET approaches saturation, the limiter adjusts the  
VRAMP voltage in order to ensure minimum switching transients. The VBATT tracking circuit is integrated into the CMOS  
controller and requires no additional input from the user.  
Due to reactive output matches, there are output power variations across frequency. There are a number of components  
that can make the effects greater or less. Power variation straight out of the RF3166 is shown in the tables below.  
The components following the power amplifier often have insertion loss variation with respect to frequency. Usually, there  
is some length of microstrip that follows the power amplifier. There is also a frequency response found in directional cou-  
plers due to variation in the coupling factor over frequency, as well as the sensitivity of the detector diode. Since the  
RF3166 does not use a directional coupler with a diode detector, these variations do not occur.  
Input impedance variation is found in most GSM power amplifiers. This is due to a device phenomena where CBE and  
CCB (CGS and CSG for a FET) vary over the bias voltage. The same principle used to make varactors is present in the  
power amplifiers. The junction capacitance is a function of the bias across the junction. This produces input impedance  
variations as the Vapc voltage is swept. Although this could present a problem with frequency pulling the transmit VCO  
off frequency, most synthesizer designers use very wide loop bandwidths to quickly compensate for frequency variations  
due to the load variations presented to the VCO.  
The RF3166 presents a very constant load to the VCO. This is because all stages of the RF3166 are run at constant  
bias. As a result, there is constant reactance at the base emitter and base collector junction of the input stage to the  
power amplifier.  
Noise power in PA's where output power is controlled by changing the bias voltage is often a problem when backing off of  
output power. The reason is that the gain is changed in all stages and according to the noise formula (Equation 2),  
F2 – 1 F3 – 1  
--------------- -------------------  
FTOT = F1 +  
+
(Eq. 2)  
G1  
G1 G2  
the noise figure depends on noise factor and gain in all stages. Because the bias point of the RF3166 is kept constant  
the gain in the first stage is always high and the overall noise power is not increased when decreasing output power.  
Power control loop stability often presents many challenges to transmitter design. Designing a proper power control loop  
involves trade-offs affecting stability, transient spectrum and burst timing.  
In conventional architectures the PA gain (dB/ V) varies across different power levels, and as a result the loop bandwidth  
also varies. With some power amplifiers it is possible for the PA gain (control slope) to change from 100dB/V to as high  
as 1000dB/V. The challenge in this scenario is keeping the loop bandwidth wide enough to meet the burst mask at low  
slope regions which often causes instability at high slope regions.  
The RF3166 loop bandwidth is determined by internal bandwidth and the RF output load and does not change with  
respect to power levels. This makes it easier to maintain loop stability with a high bandwidth loop since the bias voltage  
and collector voltage do not vary.  
2-502  
Rev A3 061031  
RF3166  
An often overlooked problem in PA control loops is that a delay not only decreases loop stability it also affects the burst  
timing when, for instance the input power from the VCO decreases (or increases) with respect to temperature or supply  
voltage. The burst timing then appears to shift to the right especially at low power levels. The RF3166 is insensitive to a  
change in input power and the burst timing is constant and requires no software compensation.  
Switching transients occur when the up and down ramp of the burst is not smooth enough or suddenly changes shape. If  
the control slope of a PA has an inflection point within the output power range or if the slope is simply too steep it is diffi-  
cult to prevent switching transients. Controlling the output power by changing the collector voltage is as earlier described  
based on the physical relationship between voltage swing and output power. Furthermore all stages are kept constantly  
biased so inflection points are nonexistent.  
Harmonics are natural products of high efficiency power amplifier design. An ideal class “E” saturated power amplifier  
will produce a perfect square wave. Looking at the Fourier transform of a square wave reveals high harmonic content.  
Although this is common to all power amplifiers, there are other factors that contribute to conducted harmonic content as  
well. With most power control methods a peak power diode detector is used to rectify and sense forward power. Through  
the rectification process there is additional squaring of the waveform resulting in higher harmonics. The RF3166 address  
this by eliminating the need for the detector diode. Therefore the harmonics coming out of the PA should represent the  
maximum power of the harmonics throughout the transmit chain. This is based upon proper harmonic termination of the  
transmit port. The receive port termination on the T/R switch as well as the harmonic impedance from the switch itself  
will have an impact on harmonics. Should a problem arise, these terminations should be explored.  
Rev A3 061031  
2-503  
RF3166  
PCB Design Requirements  
PCB Surface Finish  
The PCB surface finish used for RFMD’s qualification process is electroless nickel, immersion gold. Typical thickness is  
3μinch to 8μinch gold over 180μinch nickel.  
PCB Land Pattern Recommendation  
PCB land patterns are based on IPC-SM-782 standards when possible. The pad pattern shown has been developed and  
tested for optimized assembly at RFMD; however, it may require some modifications to address company specific  
assembly processes. The PCB land pattern has been developed to accommodate lead and package tolerances.  
PCB Metal Land Pattern  
A = 0.55 x 0.95  
A = 0.40 Sq. Typ.  
B = 0.80 x 0.40 Typ.  
C = 0.40 x 0.80  
B = 0.55 Sq. Typ.  
C = 0.95 x 0.55 Typ.  
D = 1.80 x 4.62  
Dimensions in mm.  
E = 0.60 Sq. Typ.  
5.60  
Pin 1  
Pin 1  
B
5.40  
4.90  
E
E
E
E
E
E
E
E
C
5.40  
4.62  
3.85  
5.20 TYP  
5.20  
C
A
E
E
E
E
E
E
E
B
B
B
B
B
B
B
4.10  
3.30  
2.50  
A
A
B
B
4.10  
3.30  
2.50  
3.07  
2.76  
2.30  
D
C
B
1.80  
1.40  
B
B
B
1.60  
0.80  
0.00  
1.52  
0.75  
0.80  
A
A
0.60  
0.20  
0.00  
A
Metal Land Pattern  
Solder Mask Pattern  
Figure 1. PCB Metal Land and Solder Mask Patterns (Top View)  
PCB Solder Mask Pattern  
Liquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the  
PCB metal land pattern with a 2mil to 3mil expansion to accommodate solder mask registration clearance around all  
pads. The center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask  
clearance can be provided in the master data or requested from the PCB fabrication supplier.  
Thermal Pad and Via Design  
Thermal vias are required in the PCB layout to effectively conduct heat away from the package. The via pattern has been  
designed to address thermal, power dissipation and electrical requirements of the device as well as accommodating  
routing strategies.  
The via pattern used for the RFMD qualification is based on thru-hole vias with 0.203mm to 0.330mm finished hole size  
on a 0.5mm to 1.2mm grid pattern with 0.025mm plating on via walls. If micro vias are used in a design, it is suggested  
that the quantity of vias be increased by a 4:1 ratio to achieve similar results.  
2-504  
Rev A3 061031  

    RF3166相关文章


    Fatal error: Uncaught PDOException: SQLSTATE[HY000]: General error: 145 mroonga: repair: can't recover from crash while updating in /www/wwwroot/website_ic37/s.ic37.com/index.php:504 Stack trace: #0 /www/wwwroot/website_ic37/s.ic37.com/index.php(504): PDO->query() #1 /www/wwwroot/website_ic37/www.ic37.com/s_index.php(3): include('...') #2 {main} thrown in /www/wwwroot/website_ic37/s.ic37.com/index.php on line 504