欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • TLC27L2CDR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TLC27L2CDR 现货库存
  • 数量5000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装,欢迎查询
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TLC27L2CDR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • TLC27L2CDR 现货库存
  • 数量8000 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号24+ 
  • 只做原装正品现货销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • TLC27L2CDR(IDR)图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • TLC27L2CDR(IDR) 现货库存
  • 数量4656 
  • 厂家TI 
  • 封装SOP8 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • TLC27L2CD图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • TLC27L2CD 现货库存
  • 数量6851 
  • 厂家TI 
  • 封装SOP8 
  • 批号24+ 
  • 全新原装现货,可开增值税发票,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • TLC27L2CDR图
  • 集好芯城

     该会员已使用本站13年以上
  • TLC27L2CDR 现货库存
  • 数量28021 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TLC27L2CDR图
  • 深圳市浩兴林电子有限公司

     该会员已使用本站16年以上
  • TLC27L2CDR 现货库存
  • 数量10000 
  • 厂家TI 
  • 封装SOP8 
  • 批号2418+ 
  • ★特价全新原装柜台现货
  • QQ:382716594QQ:382716594 复制
    QQ:351622092QQ:351622092 复制
  • 0755-82532799 QQ:382716594QQ:351622092
  • TLC27L2CD图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • TLC27L2CD 现货库存
  • 数量8081 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • TLC27L2CDR图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • TLC27L2CDR 现货库存
  • 数量21000 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号21+ 
  • 专营原装正品现货,当天发货,可开发票!
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • TLC27L2CDR图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • TLC27L2CDR 现货库存
  • 数量6000 
  • 厂家TI 
  • 封装8-SOIC 
  • 批号24+ 
  • 假一罚百,TI专营!深圳有库存,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • TLC27L2CD图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TLC27L2CD 现货库存
  • 数量28600 
  • 厂家06+ 
  • 封装14 
  • 批号21+ 
  • 原装现货库存,价格优势
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TLC27L2CDR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TLC27L2CDR 现货库存
  • 数量159 
  • 厂家TI(德州仪器) 
  • 封装8-SOIC 
  • 批号21+ 
  • 原装特价可提供13点
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • TLC27L2CDR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TLC27L2CDR 现货库存
  • 数量75000 
  • 厂家TI 
  • 封装SOP8 
  • 批号新年份 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • TLC27L2CDR图
  • 深圳市恒嘉威智能科技有限公司

     该会员已使用本站7年以上
  • TLC27L2CDR 现货库存
  • 数量14324 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号21+ 
  • 原装恒嘉威价格最实在
  • QQ:1036846627QQ:1036846627 复制
    QQ:2274045202QQ:2274045202 复制
  • -0755-23942980 QQ:1036846627QQ:2274045202
  • TLC27L2CD图
  • 深圳市金亿瑞科技有限公司

     该会员已使用本站8年以上
  • TLC27L2CD 现货库存
  • 数量10000 
  • 厂家TI 
  • 封装SOP8 
  • 批号20+ 
  • 只做原装,可提供13点增值税发票
  • QQ:2881971192QQ:2881971192 复制
    QQ:3630460351QQ:3630460351 复制
  • 13530074872 QQ:2881971192QQ:3630460351
  • TLC27L2CD图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TLC27L2CD 现货库存
  • 数量75 
  • 厂家TI 
  • 封装SOIC (D) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TLC27L2CDR图
  • 深圳市品德冠科技有限公司

     该会员已使用本站11年以上
  • TLC27L2CDR 现货库存
  • 数量
  • 厂家██TI██(专营品牌) 
  • 封装SOIC(D) 
  • 批号▊▊2136+▊▊ 
  • ▊▊一级代理▊▊100%原装▊▊现货▊▊热卖▊▊
  • QQ:1101329890QQ:1101329890 复制
    QQ:1803862608QQ:1803862608 复制
  • 0755-82789296/36917772 QQ:1101329890QQ:1803862608
  • TLC27L2CDR图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • TLC27L2CDR 现货热卖
  • 数量20800 
  • 厂家TI 
  • 封装SOP-8 
  • 批号22+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • TLC27L2CDR图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • TLC27L2CDR 优势库存
  • 数量12450 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 市场最低价!原厂原装假一罚十
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • TLC27L2CDR图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • TLC27L2CDR 优势库存
  • 数量72100 
  • 厂家TI 
  • 封装SOP8 
  • 批号22+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • TLC27L2CDR图
  • 深圳市特拉特科技有限公司

     该会员已使用本站2年以上
  • TLC27L2CDR 优势库存
  • 数量35000 
  • 厂家TI 
  • 封装SOP-8 
  • 批号22+ 
  • 原装现货,优势库存,当天可发货
  • QQ:709809857QQ:709809857 复制
  • 0755-82531732 QQ:709809857
  • TLC27L2CDR图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • TLC27L2CDR
  • 数量5300 
  • 厂家TI(德州仪器) 
  • 封装SOIC-8_150mil 
  • 批号21+ 
  • 全新原装正品,现货库存欢迎咨询
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • TLC27L2CD图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TLC27L2CD
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装15+ 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TLC27L2CDG4图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • TLC27L2CDG4
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装SOIC 
  • 批号22+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • TLC27L2CD图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • TLC27L2CD
  • 数量10000 
  • 厂家TI/德州仪器 
  • 封装8-SOIC 
  • 批号23+ 
  • 进口原装现货
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • TLC27L2CDR图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • TLC27L2CDR
  • 数量3253 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号22+ 
  • 支持检测.现货价优!
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • TLC27L2CD图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • TLC27L2CD
  • 数量57497 
  • 厂家TI 
  • 封装SOP8 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • TLC27L2CDR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TLC27L2CDR
  • 数量3000 
  • 厂家TI 
  • 封装SOP 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TLC27L2CDR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • TLC27L2CDR
  • 数量5680 
  • 厂家TI 
  • 封装SOIC-82K5R 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • TLC27L2CDR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • TLC27L2CDR
  • 数量5000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • TLC27L2CD图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • TLC27L2CD
  • 数量2532 
  • 厂家TI 
  • 封装SOP8 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • TLC27L2CD图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • TLC27L2CD
  • 数量7845 
  • 厂家TI(德州仪器) 
  • 封装SOP-8 
  • 批号23+ 
  • 支持大陆交货,美金交易。原装现货库存。
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • TLC27L2CD图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TLC27L2CD
  • 数量3260 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TLC27L2CDR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • TLC27L2CDR
  • 数量19800 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245

产品型号TLC27L2CD的概述

芯片TLC27L2CD的概述 TLC27L2CD是一款由德州仪器(Texas Instruments,TI)公司生产的双运算放大器,设计用于高可靠性和高性能的电子应用。这种型号的运算放大器以其低功耗和高线性度而闻名,广泛应用于信号调理、数据采集、滤波以及其他模拟信号处理领域。TLC27L2CD运算放大器在电气特性上具有良好的性能,使其适用于多种商用和工业用途。 运算放大器的基本功能是增强输入信号,从而生成一个更强的输出信号。运算放大器通常有两个输入端:同相输入和反相输入;输出端则生成对输入信号的放大版本。TLC27L2CD具备高输入阻抗和低输出阻抗,这些特性为后续的电路设计提供了灵活性与便利性。 芯片TLC27L2CD的详细参数 TLC27L2CD的主要性能参数如下: - 电源电压范围:TLC27L2CD可在±2.5V到±15V的范围内工作,具有较大的动态范围。 - 增益带宽积:其增益...

产品型号TLC27L2CD的Datasheet PDF文件预览

TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
D, JG, OR P PACKAGE  
(TOP VIEW)  
Trimmed Offset Voltage:  
TLC27L7 . . . 500 µV Max at 25°C,  
V
= 5 V  
DD  
1OUT  
1IN–  
1IN+  
GND  
V
DD  
1
2
3
4
8
7
6
5
Input Offset Voltage Drift . . . Typically  
0.1 µV/Month, including the First 30 Days  
2OUT  
2IN–  
2IN+  
Wide Range of Supply Voltages Over  
Specified Temperature Range:  
0°C to 70°C . . . 3 V to 16 V  
FK PACKAGE  
(TOP VIEW)  
40°C to 85°C . . . 4 V to 16 V  
55°C to 125°C . . . 4 V to 16 V  
Single-Supply Operation  
Common-Mode Input Voltage Range  
Extends Below the Negative Rail (C-Suffix,  
I-Suffix Types)  
3
2
1
20 19  
18  
NC  
NC  
4
5
6
7
8
2OUT  
NC  
1IN–  
NC  
17  
16  
15  
14  
Ultra-Low Power . . . Typically 95 µW  
at 25°C, V  
= 5 V  
DD  
2IN–  
NC  
1IN+  
NC  
Output Voltage Range includes Negative  
Rail  
9 10 11 12 13  
12  
High Input Impedance . . . 10 Typ  
ESD-Protection Circuitry  
Small-Outline Package Option Also  
Available in Tape and Reel  
NC – No internal connection  
Designed-In Latch-Up immunity  
DISTRIBUTION OF TLC27L7  
INPUT OFFSET VOLTAGE  
description  
30  
25  
20  
15  
10  
5
335 Units Tested From 2 Wafer Lots  
= 5 V  
DD  
= 25°C  
The TLC27L2 and TLC27L7 dual operational  
amplifiers combine a wide range of input offset  
voltage grades with low offset voltage drift, high  
input impedance, extremely low power, and high  
gain.  
V
T
A
P Package  
AVAILABLE OPTIONS  
PACKAGE  
V
max  
IO  
AT 25°C  
SMALL  
OUTLINE  
(D)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
(JG)  
PLASTIC  
DIP  
T
A
(P)  
500 µV TLC27L7CD  
2 mV TLC27L2BCD  
5 mV TLC27L2ACD  
10 mV TLC27L2CD  
TLC27L7CP  
TLC27L2BCP  
TLC27L2ACP  
TLC27L2CP  
0°C  
to  
70°C  
0
800  
400  
0
400  
800  
V
– Input Offset Voltage – µV  
IO  
500 µV TLC27L7ID  
2 mV TLC27L2BID  
5 mV TLC27L2AID  
10 mV TLC27L2ID  
TLC27L7IP  
TLC27L2BIP  
TLC27L2AIP  
TLC27L2IP  
40°C  
to  
85°C  
55°C  
to  
125°C  
500 µV TLC27L7MD  
10 mV TLC27L2MD  
TLC27L7MFK TLC27L7MJG TLC27L7MP  
TLC27L2MFK TLC27L2MJG TLC27L2MP  
The D package is available taped and reeled. Add R suffix to the device type  
(e.g., TLC27L7CDR).  
LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 1994, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
description (continued)  
These devices use Texas Instruments silicon-gate LinCMOS technology, which provides offset voltage  
stability far exceeding the stability available with conventional metal-gate processes.  
The extremely high input impedance, low bias currents, and low power consumption make these cost-effective  
devices ideal for high gain, low frequency, low power applications. Four offset voltage grades are available  
(C-suffix and I-suffix types), ranging from the low-cost TLC27L2 (10 mV) to the high-precision TLC27L7  
(500 µV). These advantages, in combination with good common-mode rejection and supply voltage rejection,  
make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.  
Ingeneral, manyfeaturesassociatedwithbipolartechnologyareavailableinLinCMOS operationalamplifiers,  
without the power penalties of bipolar technology. General applications such as transducer interfacing, analog  
calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27L2 and  
TLC27L7. The devices also exhibit low voltage single-supply operation and ultra-low power consumption,  
making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input  
voltage range includes the negative rail.  
A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density  
system applications.  
The device inputs and outputs are designed to withstand 100-mA surge currents without sustaining latch-up.  
The TLC27L2 and TLC27L7 incorporate internal ESD-protection circuits that prevent functional failures at  
voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in  
handlingthesedevicesasexposuretoESDmayresultinthedegradationofthedeviceparametricperformance.  
The C-Suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of 55°C to 125°C.  
equivalent schematic (each amplifier)  
V
DD  
P3  
P4  
R6  
N5  
C1  
R1  
R2  
IN–  
IN+  
P5  
P6  
P1  
P2  
R5  
OUT  
N3  
D2  
N1  
R3  
N6  
R7  
N7  
N2  
D1  
N4  
R4  
GND  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
DD  
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
DD  
DD  
I
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
Output current, I (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
DD  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded (see application section).  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
D
FK  
JG  
P
725 mW  
5.8 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
8.0 mW/°C  
464 mW  
880 mW  
672 mW  
640 mW  
377 mW  
715 mW  
546 mW  
520 mW  
1375 mW  
275 mW  
210 mW  
1050 mW  
1000 mW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
V
MIN  
3
MAX  
16  
MIN  
4
MAX  
16  
MIN  
4
MAX  
Supply voltage, V  
16  
3.5  
8.5  
125  
DD  
V
V
= 5 V  
0.2  
0.2  
0
3.5  
8.5  
70  
0.2  
0.2  
40  
3.5  
8.5  
85  
0
DD  
Common-mode input voltage, V  
V
IC  
Operating free-air temperature, T  
= 10 V  
0
DD  
55  
°C  
A
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27L2C  
TLC27L2AC  
TLC27L2BC  
TLC27L7C  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L2C  
TLC27L2AC  
TLC27L2BC  
TLC27L7C  
12  
mV  
0.9  
204  
170  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
500  
1500  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
70°C  
α
1.1  
µV/°C  
pA  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
O
IC  
300  
600  
0.6  
50  
I
IB  
pA  
O
IC  
0.2  
to  
0.3  
to  
4.2  
25°C  
V
V
4
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
3.5  
25°C  
0°C  
3.2  
3
4.1  
4.1  
4.2  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 1 MΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
3
50  
50  
50  
= 100 mV,  
= 0.25 V to 2 V,  
I
0
OL  
OL  
70°C  
25°C  
0°C  
0
50  
50  
50  
65  
60  
60  
70  
60  
60  
700  
700  
380  
94  
95  
95  
97  
97  
98  
20  
24  
16  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
L
70°C  
25°C  
0°C  
CMRR  
Common-mode rejection ratio  
= V  
min  
ICR  
IC  
70°C  
25°C  
0°C  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
70°C  
25°C  
0°C  
34  
42  
28  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
µA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27L2C  
TLC27L2AC  
TLC27L2BC  
TLC27L7C  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L2C  
TLC27L2AC  
TLC27L2BC  
TLC27L7C  
12  
mV  
0.9  
235  
190  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
800  
1900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
µV  
S
L
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
70°C  
α
1
µV/°C  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
8
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
pA  
IO  
O
IC  
300  
600  
0.7  
50  
I
IB  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
9
9.2  
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
8.5  
25°C  
0°C  
8
7.8  
7.8  
8.9  
8.9  
8.9  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 1 MΩ  
= 0  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
50  
50  
50  
I
0
mV  
V/mV  
dB  
OL  
OL  
70°C  
25°C  
0°C  
0
50  
50  
50  
65  
60  
60  
70  
60  
60  
860  
1025  
660  
97  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
L
70°C  
25°C  
0°C  
CMRR  
Common-mode rejection ratio  
= V  
min  
ICR  
97  
IC  
70°C  
25°C  
0°C  
97  
97  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
97  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
70°C  
25°C  
0°C  
98  
29  
46  
66  
40  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
36  
µA  
DD  
No load  
70°C  
22  
Full range is 0°C to 70°C.  
NOTES:  
4
5
The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
This range also applies to each input individually.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27L2I  
TLC27L2AI  
TLC27L2BI  
TLC27L7I  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L2I  
TLC27L2AI  
TLC27L2BI  
TLC27L7I  
13  
mV  
0.9  
240  
170  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
500  
2000  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of  
input offset voltage  
25°C to  
85°C  
α
1.1  
µV/°C  
pA  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
24  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
O
IC  
1000  
2000  
0.6  
200  
I
IB  
pA  
O
IC  
0.2  
to  
0.3  
to  
4.2  
25°C  
V
V
4
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
3.5  
25°C  
40°C  
85°C  
3.2  
3
4.1  
4.1  
4.2  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 1 MΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
3
25°C  
50  
50  
50  
= 100 mV,  
= 0.25 V to 2 V,  
I
40°C  
85°C  
0
OL  
OL  
0
25°C  
50  
50  
50  
65  
60  
60  
70  
60  
60  
480  
900  
330  
94  
95  
95  
97  
97  
98  
20  
31  
15  
Large-signal differential  
voltage amplification  
A
VD  
R
= 1 MΩ  
40°C  
85°C  
L
25°C  
CMRR  
Common-mode rejection ratio  
= V  
min  
ICR  
40°C  
85°C  
IC  
25°C  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
40°C  
85°C  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
25°C  
34  
54  
26  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
40°C  
85°C  
µA  
DD  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27L2I  
TLC27L2AI  
TLC27L2BI  
TLC27L7I  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L2I  
TLC27L2AI  
TLC27L2BI  
TLC27L7I  
13  
mV  
0.9  
235  
190  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
800  
2900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
85°C  
α
1
µV/°C  
pA  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
26  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
O
IC  
1000  
2000  
0.7  
220  
I
IB  
pA  
O
IC  
0.2  
to  
0.3  
to  
9.2  
25°C  
V
V
9
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
8.5  
25°C  
40°C  
85°C  
8
7.8  
7.8  
8.9  
8.9  
8.9  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 1 MΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
25°C  
50  
50  
50  
I
40°C  
85°C  
0
OL  
OL  
0
25°C  
50  
50  
50  
65  
60  
60  
70  
60  
60  
860  
1550  
585  
97  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
40°C  
85°C  
L
25°C  
CMRR  
Common-mode rejection ratio  
= V  
min  
ICR  
40°C  
85°C  
97  
IC  
98  
25°C  
97  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
40°C  
85°C  
97  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
98  
25°C  
29  
46  
86  
36  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
40°C  
85°C  
49  
µA  
DD  
No load  
20  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27L2M  
TLC27L7M  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L2M  
TLC27L7M  
mV  
µV  
12  
V
IO  
Input offset voltage  
170  
500  
3750  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of  
input offset voltage  
25°C to  
125°C  
α
1.4  
µV/°C  
VIO  
25°C  
125°C  
25°C  
0.1  
1.4  
0.6  
9
pA  
nA  
pA  
nA  
I
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
IO  
O
IC  
15  
35  
IB  
O
IC  
125°C  
0
to  
4
0.3  
to  
4.2  
25°C  
V
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
3.5  
Full range  
25°C  
55°C  
125°C  
25°C  
3.2  
3
4.1  
4.1  
4.2  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 1 MΩ  
= 0  
OH  
ID  
ID  
O
L
3
50  
50  
50  
= 100 mV,  
= 0.25 V to 2 V,  
I
55°C  
125°C  
25°C  
0
mV  
V/mV  
dB  
OL  
OL  
0
50  
25  
25  
65  
60  
60  
70  
60  
60  
500  
1000  
200  
94  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
55°C  
125°C  
25°C  
L
CMRR  
Common-mode rejection ratio  
= V  
min  
ICR  
55°C  
125°C  
25°C  
95  
IC  
85  
97  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
55°C  
125°C  
25°C  
97  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
98  
20  
34  
60  
24  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
55°C  
125°C  
35  
µA  
DD  
No load  
14  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27L2M  
TLC27L7M  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L2M  
TLC27L7M  
mV  
µV  
12  
V
IO  
Input offset voltage  
190  
800  
4300  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of  
input offset voltage  
25°C to  
125°C  
α
1.4  
µV/°C  
VIO  
25°C  
125°C  
25°C  
0.1  
1.8  
0.7  
10  
pA  
nA  
pA  
nA  
I
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
IO  
O
IC  
15  
35  
IB  
O
IC  
125°C  
0
to  
9
0.3  
to  
9.2  
25°C  
V
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
8.5  
Full range  
25°C  
55°C  
125°C  
25°C  
8
7.8  
7.8  
8.9  
8.8  
9
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 1 MΩ  
= 0  
OH  
ID  
ID  
O
L
0
50  
50  
50  
I
55°C  
125°C  
25°C  
0
mV  
V/mV  
dB  
OL  
OL  
0
50  
25  
25  
65  
60  
60  
70  
60  
60  
860  
1750  
380  
97  
97  
91  
97  
97  
98  
29  
56  
18  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
55°C  
125°C  
25°C  
L
CMRR  
Common-mode rejection ratio  
= V  
min  
ICR  
55°C  
125°C  
25°C  
IC  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
55°C  
125°C  
25°C  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
46  
96  
30  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
55°C  
125°C  
µA  
DD  
No load  
Full range is 55 °C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
operating characteristics, V  
= 5 V  
DD  
TLC27L2C  
TLC27L2AC  
TLC27L2BC  
TLC27L7C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.03  
0.04  
0.03  
0.03  
0.03  
0.02  
MAX  
25°C  
0°C  
V
V
= 1 V  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 2.5 V  
I(PP)  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
25°C  
0°C  
5
6
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
B
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
kHz  
OM  
1
See Figure 1  
70°C  
25°C  
0°C  
4.5  
85  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
100  
65  
kHz  
70°C  
25°C  
0°C  
34°  
36°  
30°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 pF,  
70°C  
operating characteristics, V  
= 10 V  
DD  
TLC27L2C  
TLC27L2AC  
TLC27L2BC  
TLC27L7C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.05  
0.05  
0.04  
0.04  
0.05  
0.04  
MAX  
25°C  
0°C  
V
V
= 1 V  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 5.5 V  
I(PP)  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
25°C  
0°C  
1
1.3  
0.9  
110  
125  
90  
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
B
B
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
kHz  
OM  
See Figure 1  
70°C  
25°C  
0°C  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
kHz  
1
70°C  
25°C  
0°C  
38°  
40°  
34°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 pF,  
70°C  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
operating characteristics, V  
= 5 V  
DD  
TLC27L2I  
TLC27L2AI  
TLC27L2BI  
TLC27L7I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.03  
0.04  
0.03  
0.03  
0.04  
0.02  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
= 2.5 V  
40°C  
85°C  
I(PP)  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
25°C  
40°C  
85°C  
5
7
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
B
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
kHz  
OM  
1
See Figure 1  
4
25°C  
85  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
40°C  
85°C  
130  
55  
kHz  
25°C  
34°  
38°  
29°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
operating characteristics, V  
= 10 V  
DD  
TLC27L2I  
TLC27L2AI  
TLC27L2BI  
TLC27L7I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.05  
0.06  
0.03  
0.04  
0.05  
0.03  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
= 5.5 V  
40°C  
85°C  
I(PP)  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
25°C  
40°C  
85°C  
1
1.4  
0.8  
110  
155  
80  
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
B
B
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
kHz  
OM  
See Figure 1  
25°C  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
40°C  
85°C  
kHz  
1
25°C  
38°  
42°  
32°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
operating characteristics, V  
= 5 V  
DD  
TLC27L2M  
TLC27L7M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.03  
0.04  
0.02  
0.03  
0.04  
0.02  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
I(PP)  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
V
= 2.5 V  
55°C  
125°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
5
8
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 1 M,  
L
B
B
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
kHz  
OM  
See Figure 1  
3
85  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
55°C  
125°C  
25°C  
140  
45  
kHz  
1
34°  
39°  
25°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
55°C  
125°C  
C
= 20 pF,  
L
operating characteristics, V  
= 10 V  
DD  
TLC27L2M  
TLC27L7M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.05  
0.06  
0.03  
0.04  
0.06  
0.03  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
I(PP)  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
V
= 5.5 V  
55°C  
125°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
1
1.5  
0.7  
110  
165  
70  
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 1 M,  
L
B
B
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
kHz  
OM  
See Figure 1  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
55°C  
125°C  
25°C  
kHz  
1
38°  
43°  
29°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
55°C  
125°C  
C
= 20 pF,  
L
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
PARAMETER MEASUREMENT INFORMATION  
single-supply versus split-supply test circuits  
Because the TLC27L2 and TLC27L7 are optimized for single-supply operation, circuit configurations used for  
the various tests often present some inconvenience since the input signal, in many cases, must be offset from  
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to  
thenegativerail. Acomparisonofsingle-supplyversussplit-supplytestcircuitsisshownbelow. Theuseofeither  
circuit gives the same result.  
V
DD+  
V
DD  
+
+
V
O
V
O
V
I
V
I
C
R
C
R
L
L
L
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 1. Unity-Gain Amplifier  
2 kΩ  
2 kΩ  
V
DD+  
V
DD  
20 Ω  
20 Ω  
+
+
V
O
1/2 V  
V
O
DD  
20 Ω  
20 Ω  
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Test Circuit  
10 kΩ  
10 kΩ  
V
DD+  
V
DD  
100 Ω  
100 Ω  
+
+
V
I
V
I
V
O
V
O
1/2 V  
DD  
C
L
C
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 3. Gain-of-100 Inverting Amplifier  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
PARAMETER MEASUREMENT INFORMATION  
input bias current  
Becauseof the high input impedance of the TLC27L2 and TLC27L7 operational amplifiers, attempts to measure  
the input bias current can result in erroneous readings. The bias current at normal room ambient temperature  
is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are  
offered to avoid erroneous measurements:  
1. Isolate the device from other potential leakage sources.Use a grounded shield around and between the  
device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.  
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using  
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated  
by subtracting the open-socket leakage readings from the readings obtained with a device in the test  
socket.  
One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the  
servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage  
drop across the series resistor is measured and the bias current is calculated). This method requires that a  
device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not  
feasible using this method.  
8
5
V = V  
IC  
1
4
Figure 4. Isolation Metal Around Device Inputs  
(JG and P packages)  
low-level output voltage  
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise  
results in the device low-level output being dependent on both the common-mode input voltage level as well  
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted  
in the electrical specifications, these two conditions should be observed. If conditions other than these are to  
be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.  
input offset voltage temperature coefficient  
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This  
parameter is actually a calculation using input offset voltage measurements obtained at two different  
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device  
and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input  
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the  
moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these  
measurements be performed at temperatures above freezing to minimize error.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
PARAMETER MEASUREMENT INFORMATION  
full-power response  
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage  
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is  
generallymeasuredbymonitoringthedistortionleveloftheoutputwhileincreasingthefrequencyofasinusoidal  
input signal until the maximum frequency is found above which the output contains significant distortion. The  
full-peak response is defined as the maximum output frequency, without regard to distortion, above which full  
peak-to-peak output swing cannot be maintained.  
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified  
in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal  
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is  
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same  
amplitude. Thefrequencyisthenincreaseduntilthemaximumpeak-to-peakoutputcannolongerbemaintained  
(Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum  
peak-to-peak output is reached.  
(a) f = 100 kHz  
(b) B  
> f > 100 kHz  
(c) f = B  
OM  
(d) f > B  
OM  
OM  
Figure 5. Full-Power-Response Output Signal  
test time  
Inadequate test time is a frequent problem, especially when testing CMOS high-volume, short-test-time  
environment. Internal capacitances are inherently higher in CMOS devices and require longer test times than  
their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and  
lower temperatures.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
6, 7  
V
Input offset voltage  
Distribution  
Distribution  
IO  
α
Temperature coefficient of input offset voltage  
8, 9  
VIO  
vs High-level output current  
vs Supply voltage  
vs Free-air temperature  
10, 11  
12  
13  
V
V
A
High-level output voltage  
OH  
OL  
vs Common-mode input voltage  
vs Differential input voltage  
vs Free-air temperature  
14, 15  
16  
17  
Low-level output voltage  
vs Low-level output current  
18, 19  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
20  
21  
32, 33  
Large-signal differential voltage amplification  
VD  
I
I
Input bias current  
vs Free-air temperature  
vs Free-air temperature  
vs Supply voltage  
22  
22  
23  
IB  
Input offset current  
IO  
V
Common-mode input voltage  
IC  
vs Supply voltage  
vs Free-air temperature  
24  
25  
I
Supply current  
Slew rate  
DD  
vs Supply voltage  
vs Free-air temperature  
26  
27  
SR  
Normalized slew rate  
vs Free-air temperature  
vs Frequency  
28  
29  
V
B
Maximum peak-to-peak output voltage  
O(PP)  
vs Free-air temperature  
vs Supply voltage  
30  
31  
Unity-gain bandwidth  
1
vs Supply voltage  
vs Free-air temperature  
vs Load capacitance  
34  
35  
36  
φ
m
Phase margin  
V
n
Equivalent input noise voltage  
Phase shift  
vs Frequency  
vs Frequency  
37  
32, 33  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC27L2  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27L2  
INPUT OFFSET VOLTAGE  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
905 Amplifiers Tested From 6 Wafer Lots  
905 Amplifiers Tested From 6 Wafer Lots  
V
= 10 V  
V
= 5 V  
DD  
T = 25°C  
A
DD  
= 25°C  
T
A
P Package  
P Package  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
–5 –4 –3 –2 –1  
0
1
2
3
4
5
V
IO  
– Input Offset Voltage – mV  
V
IO  
– Input Offset Voltage – mV  
Figure 6  
Figure 7  
DISTRIBUTION OF TLC27LC AND TLC27L7  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27LC AND TLC27L7  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
70  
70  
60  
50  
40  
30  
20  
10  
0
356 Amplifiers Tested From 8 Wafer Lots  
356 Amplifiers Tested From 8 Wafer Lots  
V
T
= 5 V  
V
T
= 10 V  
DD  
= 25°C to 125°C  
DD  
= 25°C to 125°C  
60  
50  
40  
30  
20  
10  
0
A
A
P Package  
Outliers:  
(1) 19.2 µV/°C  
(1) 12.1 µV/°C  
P Package  
Outliers:  
(1) 18.7 µV/°C  
(1) 11.6 µV/°C  
10 8 –6 –4 –2  
0
2
4
6
8
10  
10 8 –6 –4 –2  
0
2
4
6
8
10  
α
– Temperature Coefficient – µV/°C  
α
– Temperature Coefficient – µV/°C  
VIO  
VIO  
Figure 8  
Figure 9  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
1
0
16  
14  
12  
10  
8
V
T
= 100 mV  
V
T
= 100 mV  
ID  
= 25°C  
ID  
= 25°C  
A
A
V
= 16 V  
DD  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
DD  
= 3 V  
6
4
2
0
0
– 2  
– 4  
– 6  
– 8  
– 10  
0
– 5 – 10 – 15 – 20 – 25 – 30 – 35 – 40  
I
– High-Level Output Current – mA  
I
– High-Level Output Current – mA  
OH  
OH  
Figure 10  
Figure 11  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
V
DD  
1.6  
1.7  
1.8  
1.9  
–2  
16  
14  
12  
10  
8
V
= 100 mV  
= 10 kΩ  
= 25°C  
I
= 5 mA  
ID  
L
OH  
R
T
V
ID  
= 100 mA  
V
DD  
= 5 V  
A
V
DD  
= 10 V  
2.1  
2.2  
2.3  
2.4  
6
4
2
0
75 50 25  
0
20  
50  
75  
100 125  
0
2
4
V
6
8
10  
12  
14  
16  
T
– Free-Air Temperature – °C  
A
– Supply Voltage – V  
DD  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
700  
600  
500  
400  
300  
500  
450  
400  
350  
300  
250  
V
= 5 V  
= 5 mA  
= 25°C  
DD  
V
= 10 V  
= 5 mA  
DD  
I
OL  
I
OL  
T
A
T
A
= 25°C  
V
= 100 mV  
ID  
V
V
= 100 mV  
= 1 V  
ID  
ID  
V
ID  
= – 2.5 V  
V
= 1 V  
ID  
0
0.5  
V
1
1.5  
2
2.5  
3
3.3  
4
0
1
V
2
3
4
5
6
7
8
9
10  
– Common-Mode Input Voltage – V  
– Common-Mode Input Voltage – V  
IC  
IC  
Figure 14  
Figure 15  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
DIFFERENTIAL INPUT VOLTAGE  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
V
V
= 5 mA  
= 1 V  
= 0.5 V  
OL  
ID  
IC  
I
V
T
= 5 mA  
OL  
= |V 2|  
ID/  
IC  
= 25°C  
A
V
= 5 V  
DD  
V
DD  
= 5 V  
V
DD  
= 10 V  
V
= 10 V  
DD  
75 50 25  
0
25  
50  
75  
100 125  
0
–1 –2 –3 –4 –5 –6 –7 –8 –9 –10  
T
A
– Free-Air Temperature – °C  
V
ID  
– Differential Input Voltage – V  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2.5  
2
V
V
T
A
= 1 V  
= 0.5 V  
= 25°C  
ID  
V
V
= 1 V  
= 0.5 V  
ID  
IC  
IC  
T
A
= 25°C  
V
= 16 V  
DD  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
1.5  
1
0.5  
0
0
1
I
2
3
4
5
6
7
8
0
5
10  
15  
20  
25  
30  
– Low-Level Output Current – mA  
OL  
I
– Low-Level Output Current – mA  
OL  
Figure 18  
Figure 19  
LARGE-SIGNAL  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
T
A
= 55°C  
R
= 1 MΩ  
R
= 1 MΩ  
L
L
40°C  
= 0°C  
T
A
V
DD  
= 10 V  
25°C  
70°C  
85°C  
600  
600  
V
DD  
= 5 V  
400  
400  
125°C  
200  
200  
0
0
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
COMMON-MODE  
INPUT VOLTAGE POSITIVE LIMIT  
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
10000  
1000  
100  
10  
16  
14  
12  
10  
8
V
V
= 10 V  
DD  
= 5 V  
T
A
= 25°C  
IC  
See Note A  
I
IB  
I
IO  
6
4
1
2
0.1  
0
25  
45  
A
65  
85  
105  
125  
0
2
4
6
8
10  
12  
14  
16  
T
– Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
NOTE A: The typical values of input bias current and input offset  
current below 5 pA were determined mathematically.  
Figure 22  
Figure 23  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
90  
60  
50  
40  
30  
20  
10  
0
T
= 55°C  
A
V
= V /2  
DD  
V = V /2  
O DD  
O
80  
70  
60  
50  
40  
30  
20  
10  
0
No Load  
No Load  
40°C  
V
DD  
= 10 V  
0°C  
25°C  
70°C  
V
DD  
= 5 V  
125°C  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
R
C
A
=1 MΩ  
= 20 pF  
= 1  
A
= 1  
= 1 V  
=1 MΩ  
= 20 pF  
= 25°C  
L
L
V
V
V
V
= 10 V  
= 5.5 V  
DD  
I(PP)  
V
I(PP)  
R
C
T
L
L
See Figure 1  
A
See Figure 1  
V
V
= 10 V  
DD  
= 1 V  
I(PP)  
V
V
= 5 V  
DD  
= 1 V  
I(PP)  
V
= 5 V  
= 2.5 V  
DD  
V
I(PP)  
75 50 25  
0
25  
50  
75  
100 125  
16  
0
2
4
6
8
10  
12  
14  
TA – Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
Figure 26  
Figure 27  
NORMALIZED SLEW RATE  
vs  
MAXIMUM-PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
1.4  
1.3  
10  
9
8
7
6
5
4
3
2
1
0
A
= 1  
V
V
IPP  
= 1 V  
=1 MΩ  
= 20 pF  
V
= 10 V  
DD  
R
C
L
L
1.2  
1.1  
1
T
A
= 125°C  
= 25°C  
= 55°C  
V
DD  
= 10 V  
T
A
T
A
V
DD  
= 5 V  
V
DD  
= 5 V  
0.9  
0.8  
0.7  
0.6  
0.5  
R
= 1 MΩ  
L
See Figure 1  
75 50 25  
0
25  
50  
75  
100 125  
0.1  
1
10  
100  
T
A
– Free-Air Temperature – °C  
f – Frequency – kHz  
Figure 28  
Figure 29  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH  
UNITY-GAIN BANDWIDTH  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
150  
130  
110  
90  
140  
130  
120  
110  
100  
90  
V
= 5 V  
DD  
V = 10 mV  
V = 10 mV  
I
I
C
C
= 20 pF  
L
= 20 pF  
L
T
A
= 25°C  
See Figure 3  
See Figure 3  
80  
70  
70  
50  
60  
50  
30  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
T
A
– Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
Figure 30  
Figure 31  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
10  
10  
10  
V
= 10 V  
= 1 MΩ  
= 25°C  
DD  
R
T
A
L
0°  
4
3
10  
10  
30°  
60°  
A
VD  
2
1
10  
10  
90°  
Phase Shift  
120°  
1
150°  
180°  
0.1  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
Figure 32  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
10  
10  
V
= 10 V  
= 1 MΩ  
= 25°C  
DD  
R
T
A
L
5
4
0°  
10  
10  
30°  
60°  
A
VD  
3
2
10  
10  
90°  
Phase Shift  
1
10  
120°  
1
150°  
180°  
0.1  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
Figure 33  
PHASE MARGIN  
vs  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
42°  
40°  
38°  
40°  
36°  
V = 10 mV  
V
= 5 mV  
I
DD  
V = 10 mV  
C
= 20 pF  
L
I
T
A
= 25°C  
C
= 20 pF  
L
See Figure 3  
See Figure 3  
32°  
36°  
34°  
32°  
30°  
28°  
24°  
20°  
75 – 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 34  
Figure 35  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
CAPACITIVE LOAD  
FREQUENCY  
37°  
35°  
33°  
31°  
29°  
27°  
25°  
200  
V
= 5 mV  
DD  
I
V
= 5 V  
DD  
V = 10 mV  
175  
150  
R
T
A
= 20 Ω  
= 25°C  
S
T
= 25°C  
A
See Figure 3  
See Figure 2  
125  
100  
75  
50  
25  
0
100  
10 20 30 40 50 60 70 80 90  
0
1
10  
100  
1000  
C
– Capacitive Load – pF  
f – Frequency – Hz  
L
Figure 36  
Figure 37  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
single-supply operation  
While the TLC27L2 and TLC27L7 perform well using dual power supplies (also called balanced or split  
supplies), the design is optimized for single-supply operation. This design includes an input common-mode  
voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The  
supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly  
available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is  
recommended.  
Many single-supply applications require that a voltage be applied to one input to establish a reference level that  
is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38).  
The low input bias current of the TLC27L2 and TLC27L7 permits the use of very large resistive values to  
implement the voltage divider, thus minimizing power consumption.  
The TLC27L2 and TLC27L7 work well in conjunction with digital logic; however, when powering both linear  
devices and digital logic from the same power supply, the following precautions are recommended:  
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear  
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital  
logic.  
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive  
decoupling is often adequate; however, high-frequency applications may require RC decoupling.  
V
DD  
R4  
R1  
R3  
R2  
V
I
R3  
V
O
V
V
V
+
REF  
DD  
R1  
–V  
R3  
V
REF  
R4  
V
V
C
O
REF  
REF  
I
R2  
0.01 µF  
Figure 38. Inverting Amplifier With Voltage Reference  
Power  
Supply  
Logic  
Logic  
Logic  
V
O
+
(a) COMMON SUPPLY RAILS  
+
Power  
Supply  
Logic  
Logic  
Logic  
V
O
(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)  
Figure 39. Common Versus Separate Supply Rails  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
input characteristics  
The TLC27L2 and TLC27L7 are specified with a minimum and a maximum input voltage that, if exceeded at  
either input, could cause the device to malfunction. Exceeding this specified range is a common problem,  
especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper  
range limit is specified at V  
–1 V at T = 25°C and at V  
1.5 V at all other temperatures.  
DD  
A
DD  
The use of the polysilicon-gate process and the careful input circuit design gives the TLC27L2 and TLC27L7  
very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage  
drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus  
dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate)  
alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude.  
The offset voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of  
operation.  
Because of the extremely high input impedance and resulting low bias current requirements, the TLC27L2 and  
TLC27L7 are well suited for low-level signal processing; however, leakage currents on printed circuit boards  
and sockets can easily exceed bias current requirements and cause a degradation in device performance. It  
is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement  
Information section). These guards should be driven from a low-impedance source at the same voltage level  
as the common-mode input (see Figure 40).  
Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.  
noise performance  
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage  
differential amplifier. The low input bias current requirements of the TLC27L2 and TLC27L7 result in a very low  
noise current, which is insignificant in most applications. This feature makes the devices especially favorable  
over bipolar devices when using values of circuit impedance greater than 50 k, since bipolar devices exhibit  
greater noise currents.  
+
+
+
V
I
V
O
V
O
V
O
V
I
V
I
(a) NONINVERTING AMPLIFIER  
(b) INVERTING AMPLIFIER  
(c) UNITY-GAIN AMPLIFIER  
Figure 40. Guard-Ring Schemes  
output characteristics  
The output stage of the TLC27L2 and TLC27L7 is designed to sink and source relatively high amounts of current  
(see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can  
cause device damage under certain conditions. Output current capability increases with supply voltage.  
All operating characteristics of the TLC27L2 and TLC27L7 were measured using a 20-pF load. The devices  
drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole  
occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many  
cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
output characteristics (continued)  
(a) C = 20 pF, R = NO LOAD  
(b) C = 260 pF, R = NO LOAD  
L
L
L
L
2.5 V  
+
T
= 25°C  
A
f = 1 kHz  
= 1 V  
V
O
V
I(PP)  
V
I
C
L
2.5 V  
(d) TEST CIRCUIT  
(c) C = 310 pF, R = NO LOAD  
L
L
Figure 41. Effect of Capacitive Loads and Test Circuit  
Although the TLC27L2 and TLC27L7 possess excellent high-level output voltage and current capability,  
methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup  
resistor (R ) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages  
P
to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a  
comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance  
between approximately 60 and 180 , depending on how hard the operational amplifier input is driven. With  
very low values of R , a voltage offset from 0 V at the output occurs. Second, pullup resistor R acts as a  
P
P
drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not  
supplying the output current.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
output characteristics (continued)  
V
DD  
R
V
I
+
P
I
I
P
V
O
C
F
R2  
I
R1  
R
L
L
V
O
+
V
–V  
DD  
I
O
R
P
I
I
F
L
P
I
= Pullup current required  
P
by the operational amplifier  
(typically 500 µA)  
Figure 43. Compensation for  
Input Capacitance  
Figure 42. Resistive Pullup to Increase V  
OH  
feedback  
Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for  
oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads  
(discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with  
the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.  
electrostatic discharge protection  
The TLC27L2 and TLC27L7 incorporate an internal electrostatic discharge (ESD) protection circuit that  
prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care  
should be exercised, however, when handling these devices, as exposure to ESD may result in the degradation  
of the device parametric performance. The protection circuit also causes the input bias currents to be  
temperature dependent and have the characteristics of a reverse-biased diode.  
latch-up  
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27L2 and  
TLC27L7 inputs and outputs were designed to withstand –100-mA surge currents without sustaining latch-up;  
however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection  
diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply  
voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators.  
Supply transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the  
supply rails as close to the device as possible.  
The current path established if latch-up occurs is usually between the positive supply rail and ground and can  
be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply  
voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the  
forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of  
latch-up occurring increases with increasing temperature and supply voltages.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
1/2  
TLC27L2  
+
V
O1  
500 kΩ  
5 V  
500 kΩ  
+
V
O2  
1/2  
TLC27L2  
0.1 µF  
500 kΩ  
500 kΩ  
Figure 44. Multivibrator  
100 kΩ  
V
DD  
100 kΩ  
100 kΩ  
Set  
+
1/2  
TLC27L2  
Reset  
33 kΩ  
NOTE: V  
= 5 V to 16 V  
DD  
Figure 45. Set/Reset Flip-Flop  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
V
DD  
1/2  
TLC27L7  
V
I
+
V
O
90 kΩ  
V
DD  
C
S
1
X1  
B
1
2
TLC4066  
A
C
S
S
2
100  
SELECT:  
A
V
1
1
9 kΩ  
1 kΩ  
10  
S
2
X2  
B
Analog  
Switch  
A
2
NOTE: V  
= 5 V to 12 V  
DD  
Figure 46. Amplifier With Digital Gain Selection  
10 kΩ  
V
DD  
20 kΩ  
+
V
I
V
O
1/2  
TLC27L2  
100 kΩ  
NOTE: V  
= 5 V to 16 V  
DD  
Figure 47. Full-Wave Rectifier  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS052B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
0.016 µF  
5 V  
10 kΩ  
10 kΩ  
V
I
+
V
O
0.016 µF  
1/2  
TLC27L2  
NOTE: Normalized to f = 1 kHz and R = 10 kΩ  
c
L
Figure 48. Two-Pole Low-Pass Butterworth Filter  
R2  
100 kΩ  
V
DD  
R1  
10 kΩ  
V
V
+
IA  
V
O
R1  
10 kΩ  
1/2  
TLC27L7  
IB  
R2  
100 kΩ  
NOTE: V  
V
= 5 V to 16 V  
R2  
DD  
V
– V  
O
IB  
IA  
R1  
Figure 49. Difference Amplifier  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  
配单直通车
TLC27L2CD产品参数
型号:TLC27L2CD
是否无铅: 不含铅
生命周期:Active
零件包装代码:SOIC
包装说明:SOP,
针数:8
Reach Compliance Code:unknown
风险等级:5.08
放大器类型:OPERATIONAL AMPLIFIER
最大平均偏置电流 (IIB):0.0006 µA
标称共模抑制比:95 dB
最大输入失调电压:12000 µV
JESD-30 代码:R-PDSO-G8
JESD-609代码:e4
长度:4.9 mm
湿度敏感等级:1
功能数量:2
端子数量:8
最高工作温度:70 °C
最低工作温度:
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
座面最大高度:1.75 mm
标称压摆率:0.04 V/us
子类别:Operational Amplifier
供电电压上限:18 V
标称供电电压 (Vsup):5 V
表面贴装:YES
技术:CMOS
温度等级:COMMERCIAL
端子面层:NICKEL PALLADIUM GOLD
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
标称均一增益带宽:100 kHz
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!