欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • TNY266PN图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TNY266PN 现货库存
  • 数量21000 
  • 厂家POWER 
  • 封装DIP8 
  • 批号23+ 
  • 代理原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • TNY266PN图
  • 集好芯城

     该会员已使用本站13年以上
  • TNY266PN 现货库存
  • 数量17769 
  • 厂家Raspberry Pi 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TNY266PN图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • TNY266PN 现货库存
  • 数量5098 
  • 厂家Power Integrations(帕沃英蒂格盛) 
  • 封装DIP-8B 
  • 批号23+ 
  • 百分百原装正品,可原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • TNY266PN图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • TNY266PN 现货库存
  • 数量8500 
  • 厂家POWER 
  • 封装DIP-8 
  • 批号25+ 
  • 只做原装正品现货销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • TNY266PN图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TNY266PN 现货库存
  • 数量6980 
  • 厂家Power Integrations( 
  • 封装DIP-8B 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TNY266PN图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • TNY266PN 现货库存
  • 数量8500 
  • 厂家POWER 
  • 封装DIP 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • TNY266PN图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • TNY266PN 现货库存
  • 数量9000 
  • 厂家POWER 
  • 封装 
  • 批号2024+ 
  • 全新原装现货,全网最低价
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • TNY266PN图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • TNY266PN 现货库存
  • 数量5000 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号24+ 
  • 全新原装现货,低价出售,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • TNY266PN图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TNY266PN 现货库存
  • 数量69850 
  • 厂家POWER原装 
  • 封装22+ 
  • 批号DIP-7 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • TNY266PN图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • TNY266PN 现货库存
  • 数量6945 
  • 厂家POWER 
  • 封装原厂封装 
  • 批号22+ 
  • 市场最低价!原厂原装假一罚十
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • TNY266PN图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • TNY266PN 现货库存
  • 数量20000 
  • 厂家POWER 
  • 封装DIP 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • TNY266PN图
  • 深圳西迈尔科技有限公司

     该会员已使用本站9年以上
  • TNY266PN 现货库存
  • 数量32500 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号12+ 
  • 热卖
  • QQ:13316801556QQ:13316801556 复制
    QQ:2706801556QQ:2706801556 复制
  • 13316801556 QQ:13316801556QQ:2706801556
  • TNY266PN图
  • 北京罗彻斯特电子科技有限公司

     该会员已使用本站18年以上
  • TNY266PN 现货库存
  • 数量1412 
  • 厂家TNY 
  • 封装 
  • 批号1230+ 
  • ▊▊真实原装现货▊可出售样品及配套服务
  • QQ:674627925QQ:674627925 复制
    QQ:372787046QQ:372787046 复制
  • 13261827936军工芯片优势 QQ:674627925QQ:372787046
  • TNY266PN图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • TNY266PN 现货库存
  • 数量60030 
  • 厂家POWER INTEGRATIONS/帕沃英蒂格盛 
  • 封装DIP 
  • 批号2023+ 
  • 专营原装正品量大可定货
  • QQ:2885134554QQ:2885134554 复制
    QQ:2885134398QQ:2885134398 复制
  • 0755-22669259 QQ:2885134554QQ:2885134398
  • TNY266PN图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TNY266PN 现货库存
  • 数量8000 
  • 厂家Raspberry Pi 
  • 封装 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TNY266PN图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TNY266PN
  • 数量3265 
  • 厂家POWER 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TNY266PN图
  • 首天国际(深圳)科技有限公司

     该会员已使用本站16年以上
  • TNY266PN
  • 数量92845 
  • 厂家POWER 
  • 封装OEM渠道,价格超越代理! 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807802 QQ:528164397QQ:1318502189
  • TNY266PN图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • TNY266PN
  • 数量85000 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • TNY266PN 电源IC图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • TNY266PN 电源IC
  • 数量45000 
  • 厂家POWER INTEGRATIONS/帕沃英蒂格盛 
  • 封装DIP 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • TNY266PN图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • TNY266PN
  • 数量6878 
  • 厂家POWER/拓普 
  • 封装DIP-7 
  • 批号07+ 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • TNY266PN图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TNY266PN
  • 数量24251 
  • 厂家POWER 
  • 封装DIP7P 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • TNY266PN图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TNY266PN
  • 数量24251 
  • 厂家POWER 
  • 封装DIP7P 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • TNY266PN图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TNY266PN
  • 数量13500 
  • 厂家POWER INTEGRATIONS INC. 
  • 封装50 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • TNY266PN图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • TNY266PN
  • 数量134652 
  • 厂家POWER 
  • 封装DIP8 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • TNY266PN图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TNY266PN
  • 数量12500 
  • 厂家POWER 
  • 封装DIP8 
  • 批号23+ 
  • 代理原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • TNY266PN图
  • 集好芯城

     该会员已使用本站13年以上
  • TNY266PN
  • 数量15643 
  • 厂家POWER 
  • 封装DIP 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TNY266PN图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • TNY266PN
  • 数量8635 
  • 厂家Power Integrations 
  • 封装8-PDIP-B 
  • 批号23+ 
  • PMIC - AC DC 转换器,离线转换开关
  • QQ:3004306594QQ:3004306594 复制
  • 0755-82777852 QQ:3004306594
  • TNY266PN图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • TNY266PN
  • 数量5000 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • TNY266PN图
  • 深圳市捷立辉科技有限公司

     该会员已使用本站10年以上
  • TNY266PN
  • 数量69896 
  • 厂家POWER出售 
  • 封装DIP 
  • 批号21+ 
  • 绝对原装现货,公司真实库存
  • QQ:1803576909QQ:1803576909 复制
  • -0755-82792948 QQ:1803576909
  • TNY266PN图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • TNY266PN
  • 数量30300 
  • 厂家POWER 
  • 封装DIP 
  • 批号2018+ 
  • 原装房间现货可含票
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • TNY266PN图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TNY266PN
  • 数量85000 
  • 厂家POWER 
  • 封装DIP7 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TNY266PN图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TNY266PN
  • 数量3000 
  • 厂家POWER 
  • 封装DIP 
  • 批号25+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TNY266PN图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • TNY266PN
  • 数量3500 
  • 厂家POWER 
  • 封装DIP-6 
  • 批号25+ 
  • 全新原装现货特价销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • TNY266PN图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • TNY266PN
  • 数量20400 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • TNY266PN图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • TNY266PN
  • 数量5000 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • TNY266PN图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • TNY266PN
  • 数量9800 
  • 厂家PI 
  • 封装DIP 
  • 批号24+ 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • TNY266PN图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TNY266PN
  • 数量6980 
  • 厂家Power Integrations( 
  • 封装DIP-8B 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844

产品型号TNY266PN的概述

芯片TNY266PN的概述 TNY266PN是一款高效的开关电源控制芯片,广泛用于各种电源设计中。其具有小型化、低功耗和高集成度等特点,适用于需要节省空间和提高效率的应用场景。TNY266PN是专为适应小型电源适配器和其它电源转换器而设计的,能够在多种条件下稳定工作。 芯片TNY266PN的详细参数 TNY266PN属于TinySwitch系列,其主要数据参数如下: - 输入电压范围:85V至265V AC - 输出功率:最大可达2.7W - 工作频率:66kHz - 极限电流:最大300mA - 工作温度范围:-40°C至+150°C - 输出电压精度:±5% - 启动电流:约18μA - 有效功率因数:可实现>0.85的功率因数 - 绝缘等级:符合UL 60950标准 TNY266PN还集成了多个保护功能,如过流保护、过温保护和短路保护等,确保设备在异常情况下的安全运行。此外,芯片...

产品型号TNY266PN的Datasheet PDF文件预览

TNY263-268  
®
TinySwitch-II Family  
Enhanced, Energy Efficient,  
Low Power Off-line Switcher  
Product Highlights  
+
+
DC Output  
-
TinySwitch-II Features Reduce System Cost  
Optional  
UV Resistor  
Fully integrated auto-restart for short circuit and open  
loop fault protection – saves external component costs  
Built-in circuitry practically eliminates audible noise with  
ordinary dip-varnished transformer  
Programmable line under-voltage detect feature prevents  
power on/off glitches – saves external components  
Frequency jittering dramatically reduces EMI (~10 dB)  
– minimizes EMI filter component costs  
132 kHz operation reduces transformer size – allows use  
of EF12.6 or EE13 cores for low cost and small size  
Very tight tolerances and negligible temperature variation  
on key parameters eases design and lowers cost  
Lowest component count switcher solution  
Wide-Range  
HV DC Input  
D
EN/UV  
BP  
S
TinySwitch-II  
-
PI-2684-101700  
Figure 1. Typical Standby Application.  
OUTPUT POWER TABLE  
Expanded scalable device family for low system cost  
230 VAC ±15%  
85-265 VAC  
PRODUCT3  
Open  
Adapter1  
Open  
Adapter1  
Better Cost/Performance over RCC & Linears  
Frame2  
Frame2  
Lower system cost than RCC, discrete PWM and other  
integrated/hybrid solutions  
TNY263 P or G 5 W  
TNY264 P or G 5.5 W  
TNY265 P or G 8.5 W  
TNY266 P or G 10 W  
TNY267 P or G 13 W  
TNY268 P or G 16 W  
7.5 W  
9 W  
3.7 W  
4 W  
4.7 W  
6 W  
Cost effective replacement for bulky regulated linears  
Simple ON/OFF control – no loop compensation needed  
No bias winding – simpler, lower cost transformer  
Simple design practically eliminates rework in  
manufacturing  
11 W  
15 W  
19 W  
23 W  
5.5 W  
6 W  
7.5 W  
9.5 W  
12 W  
15 W  
8 W  
10 W  
EcoSmart®– Extremely Energy Efficient  
Table 1. Notes: 1. Minimum continuous power in a typical  
non-ventilated enclosed adapter measured at 50 °C ambient.  
2. Minimum practical continuous power in an open frame  
design with adequate heat sinking, measured at 50 °C  
ambient (See Key Applications Considerations). 3. Packages:  
P: DIP-8B, G: SMD-8B. For lead-free package options, see Part  
Ordering Information.  
No load consumption <50 mW with bias winding and  
<250 mW without bias winding at 265 VAC input  
Meets California Energy Commission (CEC), Energy  
Star, and EU requirements  
Ideal for cell-phone charger and PC standby applications  
High Performance at Low Cost  
TinySwitch-II devices incorporate auto-restart, line under-  
voltage sense, and frequency jittering. An innovative design  
minimizes audio frequency components in the simple ON/OFF  
control scheme to practically eliminate audible noise with  
standard taped/varnished transformer construction. The fully  
integrated auto-restart circuit safely limits output power during  
fault conditions such as output short circuit or open loop,  
reducing component count and secondary feedback circuitry  
cost. An optional line sense resistor externally programs a line  
under-voltagethreshold,whicheliminatespowerdownglitches  
causedbytheslowdischargeofinputstoragecapacitorspresent  
inapplicationssuchasstandbysupplies.Theoperatingfrequency  
of132kHzisjitteredtosignificantlyreduceboththequasi-peak  
and average EMI, minimizing filtering cost.  
High voltage powered – ideal for charger applications  
High bandwidth provides fast turn on with no overshoot  
Current limit operation rejects line frequency ripple  
Built-in current limit and thermal protection improves  
safety  
Description  
TinySwitch-II integrates a 700 V power MOSFET, oscillator,  
high voltage switched current source, current limit and  
thermal shutdown circuitry onto a monolithic device. The  
start-up and operating power are derived directly from  
the voltage on the DRAIN pin, eliminating the need for  
a bias winding and associated circuitry. In addition, the  
April 2005  
TNY263-268  
BYPASS  
(BP)  
DRAIN  
(D)  
REGULATOR  
5.8 V  
LINE UNDER-VOLTAGE  
240 µA  
50 µA  
FAULT  
PRESENT  
BYPASS PIN  
UNDER-VOLTAGE  
+
-
AUTO-  
RESTART  
COUNTER  
5.8 V  
4.8 V  
CURRENT  
LIMIT STATE  
MACHINE  
V
I
LIMIT  
RESET  
6.3 V  
CURRENT LIMIT  
COMPARATOR  
-
ENABLE  
+
JITTER  
CLOCK  
1.0 V + V  
THERMAL  
SHUTDOWN  
T
DC  
MAX  
OSCILLATOR  
ENABLE/  
UNDER-  
VOLTAGE  
(EN/UV)  
1.0 V  
S
Q
Q
R
LEADING  
EDGE  
BLANKING  
SOURCE  
(S)  
PI-2643-030701  
Figure 2. Functional Block Diagram.  
Pin Functional Description  
P Package (DIP-8B)  
G Package (SMD-8B)  
DRAIN (D) Pin:  
Power MOSFETdrain connection. Provides internal operating  
current for both start-up and steady-state operation.  
BP  
S
S (HV RTN)  
S (HV RTN)  
1
2
8
7
BYPASS (BP) Pin:  
Connection point for a 0.1 µF external bypass capacitor for the  
internally generated 5.8 V supply.  
S
3
4
EN/UV  
5
ENABLE/UNDER-VOLTAGE (EN/UV) Pin:  
D
Thispinhasdualfunctions:enableinputandlineunder-voltage  
sense. During normal operation, switching of the power  
MOSFET is controlled by this pin. MOSFET switching is  
terminated when a current greater than 240 µA is drawn from  
this pin. This pin also senses line under-voltage conditions  
through an external resistor connected to the DC line  
voltage. If there is no external resistor connected to this pin,  
TinySwitch-II detects its absence and disables the line under-  
voltage function.  
PI-2685-101600  
Figure 3. Pin Configuration.  
SOURCE (S) Pin:  
Control circuit common, internally connected to output  
MOSFET source.  
SOURCE (HV RTN) Pin:  
Output MOSFET source connection for high voltage return.  
G
4/05  
2
TNY263-268  
(disable) is generated at the output of the enable circuit. This  
enable circuit output is sampled at the beginning of each  
cycle on the rising edge of the clock signal. If high, the power  
MOSFETisturnedonforthatcycle(enabled). Iflow, thepower  
MOSFET remains off (disabled). Since the sampling is done  
only at the beginning of each cycle, subsequent changes in the  
EN/UV pin voltage or current during the remainder of the  
cycle are ignored.  
TinySwitch-II Functional Description  
TinySwitch-II combines a high voltage power MOSFET switch  
withapowersupplycontrollerinonedevice.Unlikeconventional  
PWM (pulse width modulator) controllers, TinySwitch-II uses  
a simple ON/OFF control to regulate the output voltage.  
The TinySwitch-II controller consists of an oscillator,  
enable circuit (sense and logic), current limit state machine,  
5.8 V regulator, BYPASS pin under-voltage circuit, over-  
temperature protection, current limit circuit, leading edge  
blanking and a 700 V power MOSFET. TinySwitch-II  
incorporates additional circuitry for line under-voltage sense,  
auto-restart and frequency jitter. Figure 2 shows the functional  
block diagram with the most important features.  
The current limit state machine reduces the current limit by  
discrete amounts at light loads when TinySwitch-II is likely to  
switch in the audible frequency range. The lower current limit  
raises the effective switching frequency above the audio range  
andreducesthetransformeruxdensity,includingtheassociated  
audible noise. The state machine monitors the sequence of  
EN/UV pin voltage levels to determine the load condition and  
adjusts the current limit level accordingly in discrete amounts.  
Oscillator  
The typical oscillator frequency is internally set to an average  
of 132 kHz. Two signals are generated from the oscillator: the  
maximum duty cycle signal (DCMAX) and the clock signal that  
indicates the beginning of each cycle.  
Undermostoperatingconditions(exceptwhenclosetono-load),  
the low impedance of the source follower keeps the voltage on  
the EN/UV pin from going much below 1.0 V in the disabled  
state. This improves the response time of the optocoupler that  
is usually connected to this pin.  
The TinySwitch-II oscillator incorporates circuitry that  
introduces a small amount of frequency jitter, typically 8 kHz  
peak-to-peak, to minimize EMI emission. The modulation rate  
of the frequency jitter is set to 1 kHz to optimize EMI reduction  
forbothaverageandquasi-peakemissions.Thefrequencyjitter  
shouldbemeasuredwiththeoscilloscopetriggeredatthefalling  
edge of the DRAIN waveform. The waveform in Figure 4  
illustrates the frequency jitter of the TinySwitch-II.  
5.8 V Regulator and 6.3 V Shunt Voltage Clamp  
The 5.8 V regulator charges the bypass capacitor connected to  
the BYPASS pin to 5.8 V by drawing a current from the voltage  
ontheDRAINpinwhenevertheMOSFETisoff. TheBYPASS  
pin is the internal supply voltage node for the TinySwitch-II.  
When the MOSFET is on, the TinySwitch-II operates from the  
energy stored in the bypass capacitor. Extremely low power  
consumption of the internal circuitry allows TinySwitch-II to  
operate continuously from current it takes from the DRAIN  
pin. A bypass capacitor value of 0.1 µF is sufficient for both  
high frequency decoupling and energy storage.  
Enable Input and Current Limit State Machine  
The enable input circuit at the EN/UV pin consists of a low  
impedance source follower output set at 1.0 V. The current  
through the source follower is limited to 240 µA. When the  
current out of this pin exceeds 240 µA, a low logic level  
In addition, there is a 6.3 V shunt regulator clamping the  
BYPASS pin at 6.3 V when current is provided to the BYPASS  
pin through an external resistor. This facilitates powering of  
TinySwitch-II externally through a bias winding to decrease the  
no-load consumption to about 50 mW.  
600  
500  
VDRAIN  
400  
BYPASS Pin Under-Voltage  
300  
The BYPASS pin under-voltage circuitry disables the power  
MOSFET when the BYPASS pin voltage drops below 4.8 V.  
Once the BYPASS pin voltage drops below 4.8 V, it must rise  
back to 5.8 V to enable (turn-on) the power MOSFET.  
200  
100  
0
Over Temperature Protection  
136 kHz  
Thethermalshutdowncircuitrysensesthedietemperature. The  
threshold is typically set at 135 °C with 70 °C hysteresis. When  
thedietemperaturerisesabovethisthresholdthepowerMOSFET  
is disabled and remains disabled until the die temperature falls  
by 70 °C, at which point it is re-enabled. A large hysteresis of  
128 kHz  
0
5
10  
Time (µs)  
Figure 4. Frequency Jitter.  
G
4/05  
3
TNY263-268  
70 °C (typical) is provided to prevent overheating of the PC  
Line Under-Voltage Sense Circuit  
board due to a continuous fault condition.  
TheDClinevoltagecanbemonitoredbyconnectinganexternal  
resistor from the DC line to the EN/UV pin. During power-up  
or when the switching of the power MOSFET is disabled in  
auto-restart, the current into the EN/UVpin must exceed 49 µA  
to initiate switching of the power MOSFET. During power-up,  
this is accomplished by holding the BYPASS pin to 4.8Vwhile  
the line under-voltage condition exists. The BYPASS pin then  
rises from 4.8 V to 5.8 V when the line under-voltage condition  
goes away. When the switching of the power MOSFET is  
disabledinauto-restartmodeandalineunder-voltagecondition  
exists, the auto-restart counter is stopped. This stretches the  
disable time beyond its normal 850 ms until the line under-  
voltage condition ends.  
Current Limit  
ThecurrentlimitcircuitsensesthecurrentinthepowerMOSFET.  
When this current exceeds the internal threshold (ILIMIT), the  
powerMOSFETisturnedofffortheremainderofthatcycle.The  
current limit state machine reduces the current limit threshold  
by discrete amounts under medium and light loads.  
The leading edge blanking circuit inhibits the current limit  
comparator for a short time (tLEB) after the power MOSFET is  
turned on. This leading edge blanking time has been set so that  
currentspikescausedbycapacitanceandsecondary-siderectifier  
reverse recovery time will not cause premature termination of  
the switching pulse.  
The line under-voltage circuit also detects when there is  
no external resistor connected to the EN/UV pin (less than  
~ 2 µAinto the pin). In this case the line under-voltage function  
is disabled.  
Auto-Restart  
In the event of a fault condition such as output overload, output  
short circuit, or an open loop condition, TinySwitch-II enters  
into auto-restart operation. An internal counter clocked by the  
oscillator gets reset every time the EN/UV pin is pulled low. If  
the EN/UVpin is not pulled low for 50 ms, the power MOSFET  
switching is normally disabled for 850 ms (except in the case of  
line under-voltage condition, in which case it is disabled until  
the condition is removed). The auto-restart alternately enables  
anddisablestheswitchingofthepowerMOSFETuntilthefault  
condition is removed. Figure 5 illustrates auto-restart circuit  
operation in the presence of an output short circuit.  
TinySwitch-II Operation  
TinySwitch-II devices operate in the current limit mode. When  
enabled, the oscillator turns the power MOSFET on at the  
beginning of each cycle. The MOSFET is turned off when the  
current ramps up to the current limit or when the DCMAX limit is  
reached. Since the highest current limit level and frequency of  
a TinySwitch-II design are constant, the power delivered to the  
loadisproportionaltotheprimaryinductanceofthetransformer  
and peak primary current squared. Hence, designing the supply  
involves calculating the primary inductance of the transformer  
for the maximum output power required. If the TinySwitch-II  
is appropriately chosen for the power level, the current in the  
calculated inductance will ramp up to current limit before the  
DCMAX limit is reached.  
In the event of a line under-voltage condition, the switching  
of the power MOSFET is disabled beyond its normal 850 ms  
time until the line under-voltage condition ends.  
Enable Function  
300  
TinySwitch-IIsensestheEN/UVpintodeterminewhetherornot  
to proceed with the next switching cycle as described earlier.  
The sequence of cycles is used to determine the current limit.  
Onceacycleisstarted,italwayscompletesthecycle(evenwhen  
the EN/UV pin changes state half way through the cycle). This  
operation results in a power supply in which the output voltage  
ripple is determined by the output capacitor, amount of energy  
per switch cycle and the delay of the feedback.  
200  
100  
0
10  
5
The EN/UV pin signal is generated on the secondary by  
comparing the power supply output voltage with a reference  
voltage. The EN/UV pin signal is high when the power supply  
output voltage is less than the reference voltage.  
0
1000  
2000  
0
Time (ms)  
In a typical implementation, the EN/UV pin is driven by an  
optocoupler. The collector of the optocoupler transistor is  
connected to the EN/UV pin and the emitter is connected to  
Figure 5. TinySwitch-II Auto-Restart Operation.  
G
4/05  
4
TNY263-268  
the SOURCE pin. The optocoupler LED is connected in series  
withaZenerdiodeacrosstheDCoutputvoltagetoberegulated.  
When the output voltage exceeds the target regulation voltage  
level (optocoupler LED voltage drop plus Zener voltage), the  
optocoupler LED will start to conduct, pulling the EN/UV pin  
low. The Zener diode can be replaced by a TL431 reference  
circuit for improved accuracy.  
the beginning of each clock cycle, it samples the EN/UV pin to  
decide whether or not to implement a switch cycle, and based  
on the sequence of samples over multiple cycles, it determines  
the appropriate current limit. At high loads, when the EN/UV  
pin is high (less than 240 µA out of the pin), a switching cycle  
with the full current limit occurs.At lighterloads, when EN/UV  
is high, a switching cycle with a reduced current limit occurs.  
ON/OFF Operation with Current Limit State Machine  
The internal clock of the TinySwitch-II runs all the time. At  
Atnearmaximumload,TinySwitch-IIwillconductduringnearly  
all of its clock cycles (Figure 6). At slightly lower load, it will  
“skip” additional cycles in order to maintain voltage regulation  
at the power supply output (Figure 7). At medium loads, cycles  
will be skipped and the current limit will be reduced (Figure 8).  
Atverylightloads,thecurrentlimitwillbereducedevenfurther  
(Figure 9). Only a small percentage of cycles will occur to  
satisfy the power consumption of the power supply.  
V
EN  
CLOCK  
TheresponsetimeoftheTinySwitch-IION/OFFcontrolscheme  
is very fast compared to normal PWM control. This provides  
tight regulation and excellent transient response.  
D
MAX  
I
Power Up/Down  
DRAIN  
The TinySwitch-II requires only a 0.1 µF capacitor on the  
BYPASS pin. Because of its small size, the time to charge this  
capacitoriskepttoanabsoluteminimum, typically0.6ms. Due  
tothefastnatureoftheON/OFFfeedback, thereisnoovershoot  
at the power supply output. When an external resistor (2 M)  
is connected from the positive DC input to the EN/UV pin, the  
powerMOSFETswitchingwillbedelayedduringpower-upuntil  
the DC line voltage exceeds the threshold (100 V). Figures 10  
and 11 show the power-up timing waveform of TinySwitch-II  
in applications with and without an external resistor (2 M)  
connected to the EN/UV pin.  
V
DRAIN  
PI-2749-050301  
Figure 6. TinySwitch-II Operation at Near Maximum Loading.  
V
V
EN  
EN  
CLOCK  
CLOCK  
D
D
MAX  
MAX  
I
I
DRAIN  
DRAIN  
V
DRAIN  
V
DRAIN  
PI-2667-090700  
PI-2377-091100  
Figure 8. TinySwitch-II Operation at Medium Loading.  
Figure 7. TinySwitch-II Operation at Moderately Heavy Loading.  
G
4/05  
5
TNY263-268  
200  
100  
V
EN  
V
DC-INPUT  
0
CLOCK  
10  
D
MAX  
V
5
0
BYPASS  
I
DRAIN  
400  
200  
0
V
DRAIN  
1
2
0
Time (ms)  
V
DRAIN  
Figure 11. TinySwitch-II Power-up without Optional External UV  
Resistor Connected to EN/UV Pin.  
PI-2661-072400  
200  
Figure 9. TinySwitch-II Operation at Very Light Load.  
V
100  
0
DC-INPUT  
During power-down, when an external resistor is used, the  
power MOSFET will switch for 50 ms after the output loses  
regulation. The power MOSFET will then remain off without  
any glitches since the under-voltage function prohibits restart  
when the line voltage is low.  
400  
300  
V
200  
100  
0
DRAIN  
Figure 12 illustrates a typical power-down timing waveform of  
TinySwitch-II. Figure 13 illustrates a very slow power-down  
timing waveform of TinySwitch-II as in standby applications.  
The external resistor (2 M) is connected to the EN/UV pin  
in this case to prevent unwanted restarts.  
.5  
1
0
Time (s)  
Figure 12. Normal Power-down Timing (without UV).  
200  
V
100  
200  
DC-INPUT  
0
100  
0
10  
V
5
400  
300  
BYPASS  
0
400  
200  
100  
0
200  
0
1
2
2.5  
5
0
0
Time (s)  
Time (ms)  
Figure 13. Slow Power-down Timing with Optional External  
Figure 10. TinySwitch-II Power-up with Optional External UV  
(2 M) UV Resistor Connected to EN/UV Pin.  
Resistor (2 M) Connected to EN/UV Pin.  
G
4/05  
6
TNY263-268  
C8 680 pF  
Y1 Safety  
Shield  
T1  
D5  
1N5819  
L2  
3.3 µ  
H
1
4
8
+ 5 V  
500 mA  
C5  
C6  
C3  
330 µF  
16 V  
100 µF  
35 V  
2.2 nF  
R2  
200 k  
RTN  
D1  
5
1N4005  
D2  
R8  
270  
1N4005  
D6  
1N4937  
U2  
LTV817  
C1  
3.3 µF  
400 V  
C2  
3.3 µF  
400 V  
R7  
100 Ω  
85-265  
VAC  
D
S
RF1  
8.2  
EN/UV  
BP  
U1  
TNY264  
R9  
47  
R3  
22 Ω  
VR1  
BZX79-  
B3V9  
TinySwitch-II  
Fusible  
Q1  
2N3904  
3.9 V  
R1  
1.2 k  
C3  
0.1 µF  
D3  
1N4005  
D4  
1N4005  
C7  
10 µF  
10 V  
L1  
2.2 mH  
R4  
R6  
1 Ω  
1.2  
1/2 W 1/2 W  
PI-2706-080404  
Figure 14. 2.5 W Constant Voltage, Constant Current Battery Charger with Universal Input (85-265 VAC).  
The TinySwitch-II does not require a bias winding to provide  
power to the chip, because it draws the power directly from  
Application Examples  
The TinySwitch-II is ideal for low cost, high efficiency power  
supplies in a wide range of applications such as cellular phone  
chargers, PC standby, TV standby,AC adapters, motor control,  
appliance control and ISDN or a DSL network termination.  
The 132 kHz operation allows the use of a low cost EE13 or  
EF12.6 core transformer while still providing good efficiency.  
The frequency jitter in TinySwitch-II makes it possible to use a  
singleinductor(ortwosmallresistorsforunder3Wapplications  
if lower efficiency is acceptable) in conjunction with two input  
capacitors for input EMI filtering. The auto-restart function  
removes the need to oversize the output diode for short circuit  
conditions allowing the design to be optimized for low cost  
and maximum efficiency. In charger applications, it eliminates  
the need for a second optocoupler and Zener diode for open  
loop fault protection. Auto-restart also saves the cost of adding  
a fuse or increasing the power rating of the current sense  
resistors to survive reverse battery conditions. For applications  
requiring under-voltage lock out (UVLO), such as PC standby,  
the TinySwitch-II eliminates several components and saves  
cost. TinySwitch-II is well suited for applications that require  
constant voltage and constant current output. As  
TinySwitch-II is always powered from the input high voltage, it  
therefore does not rely on bias winding voltage. Consequently  
this greatly simplifies designing chargers that must work down  
to zero volts on the output.  
the DRAIN pin (see Functional Description above). This  
has two main benefits. First, for a nominal application, this  
eliminatesthecostofabiaswindingandassociatedcomponents.  
Secondly, for battery charger applications, the current-voltage  
characteristic often allows the output voltage to fall close to  
zero volts while still delivering power. This type of application  
normally requires a forward-bias winding which has many  
more associated components. With TinySwitch-II, neither are  
necessary.Forapplicationsthatrequireaverylowno-loadpower  
consumption (50 mW), a resistor from a bias winding to the  
BYPASS pin can provide the power to the chip. The minimum  
recommended current supplied is 750 µA. The BYPASS pin in  
thiscasewillbeclampedat6.3V.Thismethodwilleliminatethe  
power draw from the DRAIN pin, thereby reducing the no-load  
power consumption and improving full-load efficiency.  
Current Limit Operation  
Each switching cycle is terminated when the DRAIN current  
reaches the current limit of the TinySwitch-II. Current limit  
operation provides good line ripple rejection and relatively  
constant power delivery independent of input voltage.  
BYPASS Pin Capacitor  
The BYPASS pin uses a small 0.1 µF ceramic capacitor for  
decoupling the internal power supply of the TinySwitch-II.  
G
4/05  
7
TNY263-268  
2.5 W CV/CC Cell-Phone Charger  
line sense resistors R2 and R3 sense the DC input voltage  
for line under-voltage. When the AC is turned off, the under-  
voltage detect feature of the TinySwitch-II prevents auto-restart  
glitches at the output caused by the slow discharge of large  
storage capacitance in the main converter. This is achieved by  
preventing the TinySwitch-II from switching when the input  
voltagegoesbelowalevelneededtomaintainoutputregulation,  
and keeping it off until the input voltage goes above the under-  
voltage threshold, when the AC is turned on again. With R2  
and R3, giving a combined value of 2 M, the power up under-  
voltage threshold is set at 200 VDC, slightly below the lowest  
required operating DC input voltage, for start-up at 170 VAC,  
with doubler. This feature saves several components needed to  
implement the glitch-free turn-off compared with discrete or  
TOPSwitch-II based designs. During turn-on the rectified DC  
input voltage needs to exceed 200 V under-voltage threshold  
for the power supply to start operation. But, once the power  
supply is on it will continue to operate down to 140 V rectified  
DC input voltage to provide the required hold up time for the  
standby output.  
As an example, Figure 14 shows a TNY264 based 5 V,  
0.5 A, cellular phone charger operating over a universal input  
range (85 VAC to 265 VAC). The inductor (L1) forms a  
π-filter in conjunction with C1 and C2. The resistor R1 damps  
resonances in the inductor L1. Frequency jittering operation  
of TinySwitch-II allows the use of a simple π-filter described  
aboveincombinationwithasinglelowvalueY1-capacitor(C8)  
to meet worldwide conducted EMI standards. The addition  
of a shield winding in the transformer allows conducted EMI  
to be met even with the output capacitively earthed (which is  
the worst case condition for EMI). The diode D6, capacitor  
C3 and resistor R2 comprise the clamp circuit, limiting the  
leakage inductance turn-off voltage spike on the TinySwitch-II  
DRAIN pin to a safe value. The output voltage is determined  
by the sum of the optocoupler U2 LED forward drop (~1 V),  
and Zener diode VR1 voltage. Resistor R8 maintains a bias  
current through the Zener diode to ensure it is operated close  
to the Zener test current.  
Asimple constant current circuit is implemented using the VBE  
of transistor Q1 to sense the voltage across the current sense  
resistor R4. When the drop across R4 exceeds the VBE of  
transistor Q1, it turns on and takes over control of the loop by  
driving the optocoupler LED. Resistor R6 assures sufficient  
voltage to keep the control loop in operation down to zero volts  
at the output. With the output shorted, the drop across R4 and  
R6 (~1.2 V) is sufficient to keep the Q1 and LED circuit active.  
Resistors R7 and R9 limit the forward current that could be  
drawnthroughVR1byQ1underoutputshortcircuitconditions,  
due to the voltage drop across R4 and R6.  
The auxiliary primary side winding is rectified and filtered by  
D2 and C2 to create a 12 V primary bias output voltage for the  
mainpowersupplyprimarycontroller.Inaddition,thisvoltageis  
usedtopowerthe TinySwitch-II via R4.Althoughnot necessary  
for operation, supplying the TinySwitch-II externally reduces  
the device quiescent dissipation by disabling the internal drain  
derived current source normally used to keep the BYPASS pin  
capacitor (C3) charged. An R4 value of 10 kprovides 600 µA  
into the BYPASS pin, which is slightly in excess of the current  
consumption of TinySwitch-II. The excess current is safely  
clamped by an on-chip active Zener diode to 6.3 V.  
10 and 15 W Standby Circuits  
Figures 15 and 16 show examples of circuits for standby  
applications.Theybothprovidetwooutputs:anisolated5 Vand  
a 12 V primary referenced output. The first, using TNY266P,  
provides 10 W, and the second, using TNY267P, 15 W of  
output power. Both operate from an input range of 140 VDC to  
375 VDC, corresponding to a 230 VAC or 100/115 VAC with  
doubler input. The designs take advantage of the line under-  
voltage detect, auto-restart and higher switching frequency of  
TinySwitch-II. Operation at 132 kHz allows the use of a smaller  
and lower cost transformer core, EE16 for 10 W and EE22 for  
15 W. The removal of pin 6 from the 8 pin DIP TinySwitch-II  
packages provides a large creepage distance which improves  
reliability in high pollution environments such as fan cooled  
power supplies.  
The secondary winding is rectified and filtered by D3 and C6.  
Fora15 Wdesignanadditionaloutputcapacitor,C7,isrequired  
duetothelargersecondaryripplecurrentscomparedtothe10 W  
standby design. The auto-restart function limits output current  
during short circuit conditions, removing the need to over rate  
D3. Switching noise filtering is provided by L1 and C8. The  
5 V output is sensed by U2 and VR1. R5 is used to ensure that  
the Zener diode is biased at its test current and R6 centers the  
output voltage at 5 V.  
In many cases the Zener regulation method provides sufficient  
accuracy (typically ± 6% over a 0 °C to 50 °C temperature  
range). This is possible because TinySwitch-II limits the  
dynamic range of the optocoupler LED current, allowing the  
Zener diode to operate at near constant bias current. However,  
if higher accuracy is required, a TL431 precision reference IC  
may be used to replace VR1.  
Capacitor C1 provides high frequency decoupling of the high  
voltage DC supply, only necessary if there is a long trace  
length from the DC bulk capacitors of the main supply. The  
G
4/05  
8
TNY263-268  
PERFORMANCE SUMMARY  
C4  
Continuous Output Power:  
Efficiency:  
10.24 W  
75%  
1 nF Y1  
C5  
L1  
10 µH  
2 A  
D3  
1N5822  
2.2 nF  
1 kV  
R1  
200 k  
140-375  
VDC  
INPUT  
+5 V  
2 A  
1
2
10  
C6  
1000 µF  
10 V  
C8  
470 µF  
10 V  
8
C1  
RTN  
0.01 µF  
D1  
1N4005GP  
1 kV  
4
5
VR1  
BZX79B3V9  
U1  
TNY266P  
R2  
1 MΩ  
D2  
1N4148  
T1  
R6  
59 Ω  
1%  
+12 VDC  
20 mA  
R3  
1 MΩ  
R4  
U2  
TLP181Y  
10 kΩ  
D
EN  
BP  
C2  
82 µF  
35 V  
TinySwitch-II  
R5  
680 Ω  
S
C3  
0.1 µF  
50 V  
0 V  
PI-2713-080404  
Figure 15. 10 W Standby Supply.  
PERFORMANCE SUMMARY  
Continuous Output Power:  
Efficiency:  
15.24 W  
78%  
C4  
1 nF Y1  
L1  
C5  
D3  
SB540  
10 µH  
2.2 nF  
1 kV  
R1  
3 A  
100 k  
140-375  
VDC  
INPUT  
+5 V  
3 A  
1
2
10  
C6  
C7  
C8  
470 µF  
10 V  
1000 µF  
1000 µF  
10 V  
10 V  
8
C1  
RTN  
0.01 µF  
D1  
1N4005GP  
1 kV  
4
5
VR1  
BZX79B3V9  
U1  
TNY267P  
R2  
1 MΩ  
D2  
1N4148  
T1  
R6  
59  
1%  
+12 VDC  
20 mA  
R3  
1 MΩ  
R4  
U2  
TLP181Y  
10 kΩ  
D
EN  
BP  
C2  
82 µF  
35 V  
TinySwitch-II  
R5  
680 Ω  
S
C3  
0.1 µF  
50 V  
0 V  
PI-2712-080404  
Figure 16. 15 W Standby Supply.  
G
4/05  
9
TNY263-268  
Design  
Key Application Considerations  
TinySwitch-II vs. TinySwitch  
Output Power  
Table1(frontpage)showsthepracticalcontinuousoutputpower  
levels that can be obtained under the following conditions:  
Table 2 compares the features and performance differences  
between the TNY254 device of the TinySwitch family with  
the TinySwitch-II family of devices. Many of the new features  
eliminate the need for or reduce the cost of circuit components.  
Other features simplify the design and enhance performance.  
1. The minimum DC input voltage is 90 V or higher for  
85 VAC input, or 240 V or higher for 230 VAC input or  
115 VAC input with a voltage doubler. This corresponds to  
a filter capacitor of 3 µF/W for universal input and 1 µF/W  
for 230 VAC or 115 VAC with doubler input.  
TinySwitch  
TinySwitch-II  
TNY263-268  
TinySwitch-II  
Advantages  
Function  
TNY254  
Switching Frequency  
and Tolerance  
44 kHz ±10% (at 25 °C) 132 kHz ±6% (at 25 °C) • Smaller transformer for low cost  
• Ease of design  
Temperature Variation  
(0-100 °C)**  
+8%  
N/A*  
N/A*  
+2%  
• Manufacturability  
• Optimum design for lower cost  
Active Frequency Jitter  
±4 kHz  
• Lower EMI minimizing filter  
component costs  
Transformer Audible  
Noise Reduction  
Yes–built into controller • Practically eliminates audible  
noise with ordinary dip varnished  
transformer – no special  
construction or gluing required  
Line UV Detect  
N/A*  
Single resistor  
programmable  
• Prevents power on/off glitches  
Current Limit Tolerance ±11% (at 25 °C)  
±7% (at 25 °C)  
0%  
• Increases power capability and  
simplifies design for high volume  
manufacturing  
Temperature Variation  
-8%  
(0-100 °C)**  
Auto-Restart  
N/A*  
6% effective on-time  
• Limits output short-circuit current  
to less than full load current  
- No output diode size penalty  
• Protects load in open loop fault  
conditions  
- No additional components  
required  
BYPASS Pin Zener  
Clamp  
N/A*  
Internally clamped to  
6.3 V  
• Allows TinySwitch-II to be  
powered from a low voltage bias  
winding to improve efficiency and  
to reduce on-chip power  
dissipation  
DRAIN Creepage at  
Package  
0.037 in. / 0.94 mm  
0.137 in. / 3.48 mm  
• Greater immunity to arcing as a  
result of dust, debris or other  
contaminants build-up  
*Not available.  
** See typical performance curves.  
Table 2. Comparison Between TinySwitch and TinySwitch-II.  
G
4/05  
10  
TNY263-268  
2. A secondary output of 5 V with a Schottky rectifier diode.  
Thermal Considerations  
Copper underneath the TinySwitch-II acts not only as a single  
point ground, but also as a heatsink. The hatched areas shown  
in Figure 17 should be maximized for good heat sinking of  
TinySwitch-II and the same applies to the output diode.  
3. Assumed efficiency of 77% (TNY267 & TNY268),  
75% (TNY265&TNY266)and73%(TNY263&TNY264).  
4. The parts are board mounted with SOURCE pins soldered  
to sufficient area of copper to keep the die temperature at  
or below 100 °C.  
EN/UV pin  
If a line under-voltage detect resistor is used then the resistor  
should be mounted as close as possible to the EN/UV pin to  
minimize noise pick up.  
In addition to the thermal environment (sealed enclosure,  
ventilated, open frame, etc.), the maximum power capability  
of TinySwitch-II in a given application depends on transformer  
core size and design (continuous or discontinuous), efficiency,  
minimum specified input voltage, input storage capacitance,  
output voltage, output diode forward drop, etc., and can be  
different from the values shown in Table 1.  
Thevoltageratingofaresistorshouldbeconsideredfortheunder-  
voltagedetect(Figure15:R2,R3)resistors. For1/4 Wresistors,  
the voltage rating is typically 200 V continuous, whereas for  
1/2 W resistors the rating is typically 400 V continuous.  
Y-Capacitor  
Audible Noise  
The placement of the Y-capacitor should be directly from the  
primary bulk capacitor positive rail to the common/return  
terminal on the secondary side. Such placement will maximize  
the EMI benefit of the Y-capacitor and avoid problems in  
common-mode surge testing.  
The TinySwitch-II practically eliminates any transformer audio  
noiseusingsimpleordinaryvarnishedtransformerconstruction.  
No gluing of the cores is needed. The audio noise reduction  
is accomplished by the TinySwitch-II controller reducing the  
current limit in discrete steps as the load is reduced. This  
minimizes the flux density in the transformer when switching  
at audio frequencies.  
Optocoupler  
It is important to maintain the minimum circuit path from  
the optocoupler transistor to the TinySwitch-II EN/UV and  
SOURCE pins to minimize noise coupling.  
Worst Case EMI & Efficiency Measurement  
Since identical TinySwitch-II supplies may operate at several  
different frequencies under the same load and line conditions,  
care must be taken to ensure that measurements are made under  
worstcaseconditions.WhenmeasuringefficiencyorEMIverify  
that the TinySwitch-II is operating at maximum frequency and  
that measurements are made at both low and high line input  
voltages to ensure the worst case result is obtained.  
The EN/UV pin connection to the optocoupler should be kept  
to an absolute minimum (less than 12.7 mm or 0.5 in.), and  
this connection should be kept away from the DRAIN pin  
(minimum of 5.1 mm or 0.2 in.).  
Output Diode  
Forbestperformance,theareaoftheloopconnectingthesecondary  
winding, the output diode and the output filter capacitor, should  
be minimized. See Figure 17 for optimized layout. In addition,  
sufficient copper area should be provided at the anode and  
cathode terminals of the diode for adequate heatsinking.  
Layout  
Single Point Grounding  
Use a single point ground connection at the SOURCE pin for  
the BYPASS pin capacitor and the Input Filter Capacitor  
(see Figure 17).  
Input and Output Filter Capacitors  
There are constrictions in the traces connected to the input and  
output filter capacitors. These constrictions are present for two  
reasons. The first is to force all the high frequency currents  
to flow through the capacitor (if the trace were wide then it  
could flow around the capacitor). Secondly, the constrictions  
minimizetheheattransferredfromtheTinySwitch-IItotheinput  
filter capacitor and from the secondary diode to the output filter  
capacitor. The common/return (the negative output terminal  
in Figure 17) terminal of the output filter capacitor should be  
connected with a short, low impedance path to the secondary  
winding. In addition, the common/return output connection  
should be taken directly from the secondary winding pin and  
not from the Y-capacitor connection point.  
Primary Loop Area  
The area of the primary loop that connects the input filter  
capacitor, transformer primary and TinySwitch-II together  
should be kept as small as possible.  
Primary Clamp Circuit  
A clamp is used to limit peak voltage on the DRAIN pin at  
turn-off. This can be achieved by using an RCD clamp (as  
shown in Figure 14). A Zener and diode clamp (200 V) across  
the primary or a single 550 V Zener clamp from DRAIN to  
SOURCE can also be used. In all cases care should be taken  
to minimize the circuit path from the clamp components to the  
transformer and TinySwitch-II.  
G
4/05  
11  
TNY263-268  
Safety Spacing  
Input Filter Capacitor  
Y1-  
Capacitor  
+
Output Filter Capacitor  
T
r
HV  
a
n
s
f
o
r
PRI  
SEC  
D
S
m
e
r
TOP VIEW  
TinySwitch-II  
Opto-  
coupler  
DC  
Out  
+
CBP  
S
BP  
EN/UV  
Maximize hatched copper  
areas (  
) for optimum  
heat sinking  
PI-2707-012901  
Figure 17. Recommended Circuit Board Layout for TinySwitch-II with Under-Voltage Lock Out Resistor.  
PC Board Cleaning  
For the most up-to-date information visit the  
Power Integrations does not recommend the use of “no clean”  
flux.  
PI website at: www.powerint.com.  
G
4/05  
12  
TNY263-268  
ABSOLUTE MAXIMUM RATINGS(1,4)  
DRAIN Voltage ..................................................-0.3Vto700V Operating Junction Temperature(2) .................-40 °C to 150 °C  
DRAIN Peak Current: TNY263......................................400mA Lead Temperature(3) ....................................................... 260 °C  
TNY264......................................400mA  
TNY265......................................440mA Notes:  
TNY266......................................560mA 1. All voltages referenced to SOURCE, TA = 25 °C.  
TNY267......................................720mA 2. Normally limited by internal circuitry.  
TNY268......................................880mA 3. 1/16 in. from case for 5 seconds.  
EN/UV Voltage ................................................ -0.3 V to 9 V 4. Maximum ratings specified may be applied one at a time,  
EN/UV Current .................................................... 100 mA  
BYPASS Voltage ..................................................-0.3 V to 9 V  
Storage Temperature ......................................-65 °C to 150 °C  
without causing permanent damage to the product.  
Exposure to Absolute Maximum Rating conditions for  
extended periods of time may affect product reliability.  
THERMAL IMPEDANCE  
Thermal Impedance: P or G Package:  
Notes:  
(θJA) ........................... 70 °C/W(2); 60 °C/W(3) 1. Measured on the SOURCE pin close to plastic interface.  
(θJC)(1) ............................................... 11 °C/W 2. Soldered to 0.36 sq. in. (232 mm2), 2 oz. (610 g/m2) copper clad.  
3. Soldered to 1 sq. in. (645 mm2), 2 oz. (610 g/m2) copper clad.  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
See Figure 18  
(Unless Otherwise Specified)  
CONTROL FUNCTIONS  
Average  
124  
132  
8
140  
TJ = 25 °C  
See Figure 4  
fOSC  
kHz  
Output Frequency  
Peak-Peak Jitter  
S1 Open  
Maximum Duty  
Cycle  
DCMAX  
62  
65  
68  
%
EN/UV Pin Turnoff  
Threshold Current  
IDIS  
TJ = -40 °C to 125 °C  
-300  
-240  
-170  
µA  
IEN/UV = -125 µA  
IEN/UV = 25 µA  
VEN/UV = 0 V  
0.4  
1.3  
1.0  
2.3  
1.5  
2.7  
EN/UV Pin  
Voltage  
VEN  
V
IS1  
430  
500  
µA  
TNY263  
200  
225  
245  
265  
315  
380  
250  
270  
295  
320  
380  
460  
TNY264  
TNY265  
TNY266  
TNY267  
TNY268  
EN/UV Open  
(MOSFET  
Switching)  
DRAIN Supply  
Current  
IS2  
µA  
See Note A, B  
VBP = 0 V,  
TJ = 25 °C  
TNY263-264  
TNY265-268  
TNY263-264  
TNY265-268  
-5.5  
-7.5  
-3.8  
-4.5  
-3.3  
-4.6  
-2.0  
-3.0  
-1.8  
-2.5  
-1.0  
-1.5  
ICH1  
See Note C, D  
BYPASS Pin  
Charge Current  
mA  
VBP = 4 V,  
TJ = 25 °C  
See Note C, D  
ICH2  
G
4/05  
13  
TNY263-268  
Parameter  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
See Figure 18  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
CONTROL FUNCTIONS (cont.)  
BYPASS Pin  
Voltage  
VBP  
See Note C  
5.6  
5.85  
0.95  
6.15  
1.20  
V
V
BYPASS Pin  
Voltage Hysteresis  
VBPH  
0.80  
EN/UV Pin Line  
ILUV  
TJ = 25 °C  
44  
49  
54  
µA  
Under-Voltage  
Threshold  
CIRCUIT PROTECTION  
TNY263  
TJ = 25 °C  
di/dt = 42 mA/µs  
195  
233  
255  
325  
419  
512  
210  
250  
275  
350  
450  
550  
225  
267  
295  
375  
481  
588  
See Note E  
TNY264  
TJ = 25 °C  
di/dt = 50 mA/µs  
See Note E  
TNY265  
TJ = 25 °C  
di/dt = 55 mA/µs  
See Note E  
ILIMIT  
mA  
Current Limit  
TNY266  
TJ = 25 °C  
di/dt = 70 mA/µs  
See Note E  
TNY267  
TJ = 25 °C  
di/dt = 90 mA/µs  
See Note E  
TNY268  
TJ = 25 °C  
di/dt = 110 mA/µs  
See Note E  
See Figure 21  
TJ = 25 °C  
0.65 x  
ILIMIT(MIN)  
IINIT  
tLEB  
tILD  
mA  
ns  
Initial Current Limit  
Leading Edge  
Blanking Time  
TJ = 25 °C  
See Note F  
170  
125  
215  
150  
135  
70  
Current Limit  
Delay  
TJ = 25 °C  
See Note F, G  
ns  
Thermal Shutdown  
Temperature  
150  
°C  
°C  
Thermal Shutdown  
Hysteresis  
G
4/05  
14  
TNY263-268  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
See Figure 18  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
OUTPUT  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
33  
50  
38  
57  
TNY263  
ID = 21 mA  
28  
32  
TNY264  
ID = 25 mA  
42  
48  
19  
22  
TNY265  
ID = 28 mA  
29  
33  
ON-State  
Resistance  
RDS(ON)  
14  
16  
TNY266  
ID = 35 mA  
21  
24  
7.8  
11.7  
5.2  
7.8  
9.0  
13.5  
6.0  
9.0  
TNY267  
ID = 45 mA  
TNY268  
ID = 55 mA  
VBP = 6.2 V,  
VEN/UV = 0 V,  
VDS = 560 V,  
TJ = 125 °C  
TNY263-266  
TNY267-268  
50  
OFF-State Drain  
Leakage Current  
IDSS  
µA  
100  
Breakdown  
Voltage  
VBP = 6.2 V, VEN/UV = 0 V,  
See Note H, TJ = 25 °C  
BVDSS  
700  
50  
V
tR  
tF  
50  
50  
ns  
ns  
Rise Time  
Fall Time  
Measured in a Typical Flyback  
Converter Application  
Drain Supply  
Voltage  
V
µs  
µs  
ms  
%
Output EN/UV  
Delay  
tEN/UV  
See Figure 20  
10  
Output Disable  
Setup Time  
tDST  
0.5  
50  
Auto-Restart  
ON-Time  
TJ = 25 °C  
See Note I  
tAR  
Auto-Restart  
Duty Cycle  
DCAR  
5.6  
G
4/05  
15  
TNY263-268  
NOTES:  
A. Total current consumption is the sum of IS1 and IDSS when EN/UV pin is shorted to ground (MOSFET not  
switching) and the sum of IS2 and IDSS when EN/UV pin is open (MOSFET switching).  
B Since the output MOSFET is switching, it is difficult to isolate the switching current from the supply current at the  
DRAIN. An alternative is to measure the BYPASS pin current at 6.1 V.  
C. BYPASS pin is not intended for sourcing supply current to external circuitry.  
D. See Typical Performance Characteristics section for BYPASS pin start-up charging waveform.  
E. For current limit at other di/dt values, refer to Figure 25.  
F. This parameter is derived from characterization.  
G. This parameter is derived from the change in current limit measured at 1X and 4X of the di/dt shown in the ILIMIT  
specification.  
H. Breakdown voltage may be checked against minimum BVDSS specification by ramping the DRAIN pin voltage up  
to but not exceeding minimum BVDSS  
.
I. Auto-restart on time has the same temperature characteristics as the oscillator (inversely proportional to  
frequency).  
G
4/05  
16  
TNY263-268  
470  
5 W  
S2  
470 Ω  
EN/UV  
S
D
S1  
2 M  
S
S
S
50 V  
10 V  
BP  
150 V  
0.1 µF  
NOTE: This test circuit is not applicable for current limit or output characteristic measurements.  
PI-2686-101700  
Figure 18. TinySwitch-II General Test Circuit.  
DC  
(internal signal)  
MAX  
t
P
EN/UV  
t
EN/UV  
V
DRAIN  
1
tP  
=
fOSC  
PI-2364-012699  
Figure 19. TinySwitch-II Duty Cycle Measurement.  
Figure 20. TinySwitch-II Output Enable Timing.  
0.8  
Figure 21. Current Limit Envelope.  
G
4/05  
17  
TNY263-268  
Typical Performance Characteristics  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.1  
1.0  
0.9  
0
-50 -25  
0
25  
50 75 100 125  
-50 -25  
0
25 50 75 100 125 150  
Junction Temperature (°C)  
Junction Temperature (°C)  
Figure 22. Breakdown vs. Temperature.  
Figure 23. Frequency vs. Temperature.  
1.2  
1
1.4  
1.2  
1.0  
TNY263  
TNY264-266  
0.8  
Normalized  
Current  
Limit = 1  
TNY267  
TNY268  
0.8  
Normalized  
di/dt = 1  
0.6  
TNY263  
TNY264  
TNY265  
TNY266  
TNY267  
42 mA/µs  
50 mA/µs  
55 mA/µs  
70 mA/µs  
90 mA/µs  
210 mA  
250 mA  
275 mA  
350 mA  
450 mA  
550 mA  
0.6  
0.4  
0.2  
0.4  
0.2  
TNY268 110 mA/µs  
0
0
-50  
0
50  
100  
150  
1
2
3
4
Temperature (°C)  
Normalized di/dt  
Figure 24. Current Limit vs. Temperature.  
Figure 25. Current Limit vs. di/dt.  
7
6
5
300  
TCASE = 25 °C  
TCASE = 100 °C  
250  
Scaling Factors:  
TNY263 0.85  
200  
150  
100  
50  
TNY264 1.0  
TNY265 1.5  
TNY266 2.0  
TNY267 3.5  
TNY268 5.5  
4
3
2
1
0
0
0
2
4
6
8
10  
0
0.2  
0.4  
0.6  
0.8  
1.0  
Time (ms)  
Drain Voltage (V)  
Figure 27. Output Characteristic.  
Figure 26. BYPASS Pin Start-up Waveform.  
G
4/05  
18  
TNY263-268  
Typical Performance Characteristics (cont.)  
1000  
35  
30  
25  
Scaling Factors:  
TNY263 1.0  
TNY264 1.0  
TNY265 1.5  
TNY266 2.0  
TNY267 3.5  
TNY268 5.5  
100  
Scaling Factors:  
TNY263 1.0  
TNY264 1.0  
TNY265 1.5  
TNY266 2.0  
TNY267 3.5  
TNY268 5.5  
20  
15  
10  
5
10  
1
0
0
100 200 300 400 500 600  
0
200  
400  
600  
Drain Voltage (V)  
Drain Voltage (V)  
Figure 28. COSS vs. Drain Voltage.  
Figure 29. Drain Capacitance Power.  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
-50 -25  
Junction Temperature (°C)  
Figure 30. Under-voltage Threshold vs. Temperature.  
0
25 50 75 100 125  
G
4/05  
19  
TNY263-268  
PART ORDERING INFORMATION  
TinySwitch Product Family  
Series Number  
Package Identifier  
G
P
Plastic Surface Mount SMD-8B  
Plastic DIP-8B  
Lead Finish  
Blank Standard (Sn Pb)  
N
Pure Matte Tin (Pb-Free)  
Tape & Reel and Other Options  
Blank Standard Configurations  
TL  
Tape & Reel, 1 k pcs minimum, G Package only  
TNY 264 G N - TL  
DIP-8B  
D S .004 (.10)  
Notes:  
.137 (3.48)  
MINIMUM  
1. Package dimensions conform to JEDEC specification  
MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP)  
package with .300 inch row spacing.  
-E-  
2. Controlling dimensions are inches. Millimeter sizes are  
shown in parentheses.  
3. Dimensions shown do not include mold flash or other  
protrusions. Mold flash or protrusions shall not exceed  
.006 (.15) on any side.  
.240 (6.10)  
.260 (6.60)  
4. Pin locations start with Pin 1, and continue counter-clock-  
wise to Pin 8 when viewed from the top. The notch and/or  
dimple are aids in locating Pin 1. Pin 6 is omitted.  
5. Minimum metal to metal spacing at the package body for  
the omitted lead location is .137 inch (3.48 mm).  
6. Lead width measured at package body.  
Pin 1  
-D-  
.367 (9.32)  
.387 (9.83)  
7. Lead spacing measured with the leads constrained to be  
perpendicular to plane T.  
.057 (1.45)  
.068 (1.73)  
(NOTE 6)  
.125 (3.18)  
.145 (3.68)  
.015 (.38)  
MINIMUM  
-T-  
SEATING  
PLANE  
.008 (.20)  
.015 (.38)  
.120 (3.05)  
.140 (3.56)  
.300 (7.62) BSC  
(NOTE 7)  
.300 (7.62)  
.390 (9.91)  
.100 (2.54) BSC  
.048 (1.22)  
.053 (1.35)  
P08B  
.014 (.36)  
.022 (.56)  
T E D S .010 (.25) M  
PI-2551-121504  
G
4/05  
20  
TNY263-268  
SMD-8B  
D S .004 (.10)  
Notes:  
.137 (3.48)  
MINIMUM  
1. Controlling dimensions are  
inches. Millimeter sizes are  
shown in parentheses.  
-E-  
2. Dimensions shown do not  
include mold flash or other  
protrusions. Mold flash or  
protrusions shall not exceed  
.006 (.15) on any side.  
3. Pin locations start with Pin 1,  
and continue counter-clock-  
wise to Pin 8 when viewed  
from the top. Pin 6 is omitted.  
4. Minimum metal to metal  
spacing at the package body  
for the omitted lead location  
is .137 inch (3.48 mm).  
.372 (9.45)  
.388 (9.86)  
.240 (6.10)  
.260 (6.60)  
.420  
.010 (.25)  
E S  
.046 .060 .060 .046  
.080  
Pin 1  
Pin 1  
-D-  
.086  
.186  
.100 (2.54) (BSC)  
5. Lead width measured at  
package body.  
6. D and E are referenced  
datums on the package  
body.  
.286  
.367 (9.32)  
.387 (9.83)  
Solder Pad Dimensions  
.057 (1.45)  
.068 (1.73)  
(NOTE 5)  
.125 (3.18)  
.145 (3.68)  
.004 (.10)  
.032 (.81)  
.037 (.94)  
.048 (1.22)  
.053 (1.35)  
°
°
.009 (.23)  
0 - 8  
.036 (0.91)  
.044 (1.12)  
.004 (.10)  
.012 (.30)  
G08B  
PI-2546-121504  
G
4/05  
21  
TNY263-268  
G
4/05  
22  
TNY263-268  
Revision Notes  
Date  
A
B
-
3/01  
7/01  
1) Corrected first page spacing and sentence in description describing innovative design.  
2) Corrected Frequency Jitter in Figure 4 and Frequency Jitter in Parameter Table.  
3) Added last sentence to Over Temperature Protection section.  
4) Clarified detecting when there is no external resistor connected to the EN/UV pin.  
5) Corrected Figure 6 and its description in the text.  
6) Corrected formatting, grammer and style errors in text and figures.  
7) Corrected and moved Worst Case EMI & Efficiency Measurement section.  
8) Added PC Board Cleaning section.  
9) Replaced Figure 21 and SMD-8B Package Drawing.  
C
D
1) Corrected θJA for P/G package.  
2) Updated Figures 15 and 16 and text description for Zener performance.  
3) Corrected DIP-8B and SMD-8B Package Drawings.  
4/03  
3/04  
1) Corrected EN/UV under-voltage threshold in text.  
2) Corrected 2 Mconnected between positive DC input to EN/UV pin in text and Figures 15 and 16.  
E
F
1) Added TNY263 and TNY265.  
4/04  
12/04  
4/05  
1) Added lead-free ordering information.  
G
1) Typographical correction in OFF-STATE Drain Leakage Current parameter condition.  
2) Removed IDS condition from BVDSS parameter and added new Note H.  
3) Added Note 4 to Absolute Maximum Ratings specifications.  
G
4/05  
23  
TNY263-268  
For the latest updates, visit our website: www.powerint.com  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume  
any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY  
DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.  
PATENT INFORMATION  
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S.  
and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrationsʼ patents  
may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.  
LIFE SUPPORT POLICY  
POWER INTEGRATIONSʼ PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:  
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform,  
when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, EcoSmart, PI Expert and PI FACTS are trademarks of  
Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2005, Power Integrations, Inc.  
Power Integrations Worldwide Sales Support Locations  
JAPAN  
WORLD HEADQUARTERS  
5245 Hellyer Avenue  
San Jose, CA 95138, USA.  
Main: +1-408-414-9200  
Customer Service:  
Phone: +1-408-414-9665  
Fax: +1-408-414-9765  
e-mail: usasales@powerint.com  
GERMANY  
Rueckertstrasse 3  
D-80336, Munich  
Germany  
Phone: +49-89-5527-3910  
Fax: +49-89-5527-3920  
e-mail: eurosales@powerint.com  
TAIWAN  
5F, No. 318, Nei Hu Rd., Sec. 1  
Nei Hu Dist.  
Taipei, Taiwan 114, R.O.C.  
Phone: +886-2-2659-4570  
Fax: +886-2-2659-4550  
e-mail: taiwansales@powerint.com  
Keihin Tatemono 1st Bldg 2-12-20  
Shin-Yokohama, Kohoku-ku,  
Yokohama-shi, Kanagawa ken,  
Japan 222-0033  
Phone: +81-45-471-1021  
Fax: +81-45-471-3717  
e-mail: japansales@powerint.com  
KOREA  
RM 602, 6FL  
CHINA (SHANGHAI)  
Rm 807-808A,  
Pacheer Commercial Centre,  
555 Nanjing Rd. West  
Shanghai, P.R.C. 200041  
Phone: +86-21-6215-5548  
Fax: +86-21-6215-2468  
e-mail: chinasales@powerint.com  
INDIA  
EUROPE HQ  
1st Floor, St. Jamesʼs House  
East Street, Farnham  
Surrey, GU9 7TJ  
United Kingdom  
Phone: +44 (0) 1252-730-140  
Fax: +44 (0) 1252-727-689  
e-mail: eurosales@powerint.com  
261/A, Ground Floor  
7th Main, 17th Cross,  
Sadashivanagar  
Bangalore, India 560080  
Phone: +91-80-5113-8020  
Fax: +91-80-5113-8023  
e-mail: indiasales@powerint.com  
Korea City Air Terminal B/D, 159-6  
Samsung-Dong, Kangnam-Gu,  
Seoul, 135-728, Korea  
Phone: +82-2-2016-6610  
Fax: +82-2-2016-6630  
e-mail: koreasales@powerint.com  
SINGAPORE  
CHINA (SHENZHEN)  
ITALY  
APPLICATIONS HOTLINE  
51 Newton Road,  
#15-08/10 Goldhill Plaza,  
Singapore, 308900  
Phone: +65-6358-2160  
Fax: +65-6358-2015  
e-mail: singaporesales@powerint.com  
Rm 2206-2207, Block A,  
Electronics Science & Technology Bldg.  
2070 Shennan Zhong Rd.  
Shenzhen, Guangdong,  
Via Vittorio Veneto 12  
20091 Bresso MI  
Italy  
Phone: +39-028-928-6000  
Fax: +39-028-928-6009  
e-mail: eurosales@powerint.com  
World Wide +1-408-414-9660  
APPLICATIONS FAX  
World Wide +1-408-414-9760  
China, 518031  
Phone: +86-755-8379-3243  
Fax: +86-755-8379-5828  
e-mail: chinasales@powerint.com  
G
4/05  
24  
配单直通车
TNY266PN产品参数
型号:TNY266PN
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Not Recommended
零件包装代码:DIP
包装说明:0.300 INCH, LEAD FREE, PLASTIC, MS-001-AB, DIP-8
针数:8
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:14 weeks
风险等级:7.07
其他特性:REQUIRES AN AC SUPPLY OF 85 TO 265 V
模拟集成电路 - 其他类型:SWITCHING REGULATOR
控制模式:CURRENT-MODE
控制技术:PULSE WIDTH MODULATION
JESD-30 代码:R-PDIP-T7
JESD-609代码:e3
长度:9.575 mm
功能数量:1
端子数量:7
最高工作温度:125 °C
最低工作温度:-40 °C
最大输出电流:0.56 A
封装主体材料:PLASTIC/EPOXY
封装代码:DIP
封装形状:RECTANGULAR
封装形式:IN-LINE
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified
表面贴装:NO
切换器配置:SINGLE
最大切换频率:140 kHz
温度等级:AUTOMOTIVE
端子面层:Matte Tin (Sn)
端子形式:THROUGH-HOLE
端子节距:2.54 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:7.62 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!