欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • W9864G6KH-6I
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • W9864G6KH-6I图
  • 集好芯城

     该会员已使用本站13年以上
  • W9864G6KH-6I 现货库存
  • 数量15324 
  • 厂家 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • W9864G6KH-6I图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • W9864G6KH-6I
  • 数量5300 
  • 厂家WINBOND(华邦) 
  • 封装TSOP-54 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • W9864G6KH-6I图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • W9864G6KH-6I
  • 数量85000 
  • 厂家WINBOND/华邦 
  • 封装4MX16SDRAM 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • W9864G6KH-6I图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • W9864G6KH-6I
  • 数量30000 
  • 厂家WINBOND 
  • 封装TSSOP-54 
  • 批号23+ 
  • 代理全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • W9864G6KH-6I图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • W9864G6KH-6I
  • 数量3275 
  • 厂家WINBOND/华邦 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • W9864G6KH-6I图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • W9864G6KH-6I
  • 数量660000 
  • 厂家Winbond Electronics 
  • 封装原厂原装 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • W9864G6KH-6I图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • W9864G6KH-6I
  • 数量10000 
  • 厂家Winbond 
  • 封装原厂原封装 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • W9864G6KH-6I图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • W9864G6KH-6I
  • 数量4845 
  • 厂家Winbond 
  • 封装54-TSOP(0.400,10.16mm 宽) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • W9864G6KH-6I/TRAY图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • W9864G6KH-6I/TRAY
  • 数量43788 
  • 厂家WINBOND 
  • 封装TSOP-4 
  • 批号▉▉:2年内 
  • ▉▉¥14一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • W9864G6KH-6I图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • W9864G6KH-6I
  • 数量865000 
  • 厂家WINBOND/华邦 
  • 封装4MX16SDRAM 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • W9864G6KH-6I图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • W9864G6KH-6I
  • 数量9328 
  • 厂家WINBOND 
  • 封装TSOP-54 
  • 批号▉▉:2年内 
  • ▉▉¥11.5元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • W9864G6KH-6I图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • W9864G6KH-6I
  • 数量3850 
  • 厂家WINBOND(华邦) 
  • 封装TSOP-54 
  • 批号23+ 
  • ▉原装现货▉可含税可订货
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • W9864G6KH-6I图
  • 深圳市斌腾达科技有限公司

     该会员已使用本站9年以上
  • W9864G6KH-6I
  • 数量5688 
  • 厂家Winbond Electronics 
  • 封装54-TSOP II 
  • 批号18+ 
  • 进口原装!长期供应!绝对优势价格(诚信经营
  • QQ:2881704051QQ:2881704051 复制
    QQ:2881704535QQ:2881704535 复制
  • 0755-82815082 QQ:2881704051QQ:2881704535
  • W9864G6KH-6I图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • W9864G6KH-6I
  • 数量72282 
  • 厂家WINBOND/华邦 
  • 封装N/A 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • W9864G6KH-6I图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • W9864G6KH-6I
  • 数量85211 
  • 厂家WINBOND/华邦 
  • 封装TSOP-54 
  • 批号2023+ 
  • 原装/报价当天为准
  • QQ:2885134398QQ:2885134398 复制
    QQ:2885134554QQ:2885134554 复制
  • 0755-22669259 QQ:2885134398QQ:2885134554
  • W9864G6KH-6I图
  • 深圳市凯信扬科技有限公司

     该会员已使用本站7年以上
  • W9864G6KH-6I
  • 数量5680 
  • 厂家WINBOND/华邦 
  • 封装TSOP-54 
  • 批号20+ 
  • 原装现货,优势库存
  • QQ:872328909QQ:872328909 复制
  • 0755-82518059 QQ:872328909
  • W9864G6KH-6I图
  • 深圳市中利达电子科技有限公司

     该会员已使用本站11年以上
  • W9864G6KH-6I
  • 数量10000 
  • 厂家WINBOND 
  • 封装TSOP54 
  • 批号24+ 
  • 原装进口现货 假一罚十
  • QQ:1902134819QQ:1902134819 复制
    QQ:2881689472QQ:2881689472 复制
  • 0755-13686833545 QQ:1902134819QQ:2881689472
  • W9864G6KH-6I图
  • 深圳市珩瑞科技有限公司

     该会员已使用本站2年以上
  • W9864G6KH-6I
  • 数量3000 
  • 厂家WINBOND 
  • 封装TSOP54 
  • 批号21+ 
  • 只做原装正品,支持实单
  • QQ:2938238007QQ:2938238007 复制
    QQ:1840507767QQ:1840507767 复制
  • -0755-82578309 QQ:2938238007QQ:1840507767
  • W9864G6KH-6I图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • W9864G6KH-6I
  • 数量12660 
  • 厂家WINBOND/全系列 
  • 封装54-TSOP 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305
  • W9864G6KH-6I图
  • 深圳市特拉特科技有限公司

     该会员已使用本站2年以上
  • W9864G6KH-6I
  • 数量15000 
  • 厂家WINBOND 
  • 封装TSOP-54 
  • 批号22+ 
  • 一级代理,公司优势产品,可开增值票
  • QQ:709809857QQ:709809857 复制
  • 0755-82531732 QQ:709809857
  • W9864G6KH-6I TR图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • W9864G6KH-6I TR
  • 数量6500000 
  • 厂家华邦 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • W9864G6KH-6I图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • W9864G6KH-6I
  • 数量20000 
  • 厂家Winbond 
  • 封装TSOP-54 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • W9864G6KH-6I图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • W9864G6KH-6I
  • 数量8580 
  • 厂家WINBOND/华邦 
  • 封装TSOP54 
  • 批号2021+ 
  • 全新原装挺实单欢迎来撩/可开票
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • W9864G6KH-6I图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • W9864G6KH-6I
  • 数量7557 
  • 厂家Winbond Electronics 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • W9864G6KH-6I TR图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • W9864G6KH-6I TR
  • 数量6636 
  • 厂家Winbond Electronics 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • W9864G6KH-6I图
  • 深圳市中福国际管理有限公司

     该会员已使用本站1年以上
  • W9864G6KH-6I
  • 数量21000 
  • 厂家Winbond Electronics 
  • 封装54-TSOP(0.400,10.16mm 宽) 
  • 批号22+ 
  • 大量现货库存,2小时内发货
  • QQ:1664127491QQ:1664127491 复制
    QQ:2115067904QQ:2115067904 复制
  • 0755-82571134 QQ:1664127491QQ:2115067904
  • W9864G6KH-6I TR图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • W9864G6KH-6I TR
  • 数量1000 
  • 厂家WINBOND 
  • 封装TSOP-54 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:31元
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • W9864G6KH-6I图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • W9864G6KH-6I
  • 数量108 
  • 厂家WINBOND 
  • 封装TSOP-54 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:32元
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805

产品型号W9864G6KH-6I的概述

芯片W9864G6KH-6I的概述 W9864G6KH-6I是一款广泛应用于电子设备中的动态随机存取存储器(DRAM)。作为一种现代存储解决方案,它能够有效地满足高速数据存取的需求。该芯片以其高性能和可靠性,在数码产品、电脑内存和其他高科技设备中占有重要地位。 W9864G6KH-6I的主要设计理念是提高数据处理速度的同时,降低功耗。这使得其在需要大量数据交换的应用领域表现出色,特别是在移动设备和个人电脑中。随着技术的不断进步和更新换代,W9864G6KH-6I被广泛视为一个具有竞争力的产品,适用于多种不同的市场需求。 芯片W9864G6KH-6I的详细参数 W9864G6KH-6I芯片是一种64Mb的DDR(Double Data Rate)SDRAM,采用的是0.15微米的工艺制造。这种工艺使芯片在高速度下同时具备低功耗的特性,能够有效提升整体性能。以下是W9864G6KH-6I的...

产品型号W9864G6KH-6I的Datasheet PDF文件预览

W9864G6KH  
1M 4 BANKS 16 BITS SDRAM  
Table of Contents-  
1. GENERAL DESCRIPTION.............................................................................................................. 3  
2. FEATURES...................................................................................................................................... 3  
3. ORDER INFORMATION.................................................................................................................. 3  
4. PIN CONFIGURATION.................................................................................................................... 4  
5. PIN DESCRIPTION ......................................................................................................................... 5  
6. BLOCK DIAGRAM........................................................................................................................... 6  
7. FUNCTIONAL DESCRIPTION........................................................................................................ 7  
7.1  
Power Up and Initialization ................................................................................................. 7  
Programming Mode Register.............................................................................................. 7  
Bank Activate Command .................................................................................................... 7  
Read and Write Access Modes .......................................................................................... 7  
Burst Read Command ........................................................................................................ 8  
Burst Write Command......................................................................................................... 8  
Read Interrupted by a Read................................................................................................ 8  
Read Interrupted by a Write................................................................................................ 8  
Write Interrupted by a Write................................................................................................ 8  
Write Interrupted by a Read................................................................................................ 8  
Burst Stop Command.......................................................................................................... 8  
Addressing Sequence of Sequential Mode......................................................................... 9  
Addressing Sequence of Interleave Mode.......................................................................... 9  
Auto-precharge Command................................................................................................ 10  
Precharge Command........................................................................................................ 10  
Self Refresh Command..................................................................................................... 10  
Power Down Mode............................................................................................................ 11  
No Operation Command................................................................................................... 11  
Deselect Command .......................................................................................................... 11  
Clock Suspend Mode........................................................................................................ 11  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
7.15  
7.16  
7.17  
7.18  
7.19  
7.20  
8. OPERATION MODE...................................................................................................................... 12  
9. ELECTRICAL CHARACTERISTICS ............................................................................................. 13  
9.1  
9.2  
9.3  
9.4  
9.5  
Absolute Maximum Ratings .............................................................................................. 13  
Recommended DC Operating Conditions ........................................................................ 13  
Capacitance ...................................................................................................................... 13  
DC Characteristics............................................................................................................ 14  
AC Characteristics and Operating Condition.................................................................... 15  
10. TIMING WAVEFORMS.................................................................................................................. 17  
10.1  
10.2  
10.3  
10.4  
Command Input Timing..................................................................................................... 17  
Read Timing...................................................................................................................... 18  
Control Timing of Input/Output Data................................................................................. 19  
Mode Register Set Cycle .................................................................................................. 20  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 1 -  
W9864G6KH  
11. OPERATING TIMING EXAMPLE.................................................................................................. 21  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
11.8  
11.9  
Interleaved Bank Read (Burst Length = 4, CAS Latency = 3).......................................... 21  
Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto-precharge)............... 22  
Interleaved Bank Read (Burst Length = 8, CAS Latency = 3).......................................... 23  
Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto-precharge)............... 24  
Interleaved Bank Write (Burst Length = 8) ....................................................................... 25  
Interleaved Bank Write (Burst Length = 8, Auto-precharge) ............................................ 26  
Page Mode Read (Burst Length = 4, CAS Latency = 3)................................................... 27  
Page Mode Read / Write (Burst Length = 8, CAS Latency = 3) ....................................... 28  
Auto Precharge Read (Burst Length = 4, CAS Latency = 3)............................................ 29  
11.10 Auto Precharge Write (Burst Length = 4) ......................................................................... 30  
11.11 Auto Refresh Cycle........................................................................................................... 31  
11.12 Self Refresh Cycle ............................................................................................................ 32  
11.13 Burst Read and Single Write (Burst Length = 4, CAS Latency = 3) ................................. 33  
11.14 Power Down Mode............................................................................................................ 34  
11.15 Auto-precharge Timing (Write Cycle) ............................................................................... 35  
11.16 Auto-precharge Timing (Read Cycle) ............................................................................... 36  
11.17 Timing Chart of Read to Write Cycle ................................................................................ 37  
11.18 Timing Chart of Write to Read Cycle ................................................................................ 37  
11.19 Timing Chart of Burst Stop Cycle (Burst Stop Command) ............................................... 38  
11.20 Timing Chart of Burst Stop Cycle (Precharge Command)................................................ 38  
11.21 CKE/DQM Input Timing (Write Cycle) .............................................................................. 39  
11.22 CKE/DQM Input Timing (Read Cycle) .............................................................................. 40  
12. PACKAGE SPECIFICATION......................................................................................................... 41  
13. REVISION HISTORY..................................................................................................................... 42  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 2 -  
W9864G6KH  
1. GENERAL DESCRIPTION  
W9864G6KH is a high-speed synchronous dynamic random access memory (SDRAM), organized as  
1M words 4 banks 16 bits. W9864G6KH delivers a data bandwidth of up to 200M words per  
second. For different application, W9864G6KH is sorted into the following speed grades: -5, -6, -6I  
and -7. The -5 grade parts can run up to 200MHz/CL3. The -6 and -6I grade parts can run up to  
166MHz/CL3 (the -6I industrial grade which is guaranteed to support -40°C ~ 85°C). The -7 grade  
parts can run up to 143MHz/CL3 and with tRP = 18nS.  
Accesses to the SDRAM are burst oriented. Consecutive memory location in one page can be  
accessed at a burst length of 1, 2, 4, 8 or full page when a bank and row is selected by an ACTIVE  
command. Column addresses are automatically generated by the SDRAM internal counter in burst  
operation. Random column read is also possible by providing its address at each clock cycle.  
The multiple bank nature enables interleaving among internal banks to hide the precharging time.By  
having a programmable Mode Register, the system can change burst length, latency cycle, interleave  
or sequential burst to maximize its performance. W9864G6KH is ideal for main memory in high  
performance applications.  
2. FEATURES  
3.3V ± 0.3V for -5, -6 and -6I speed grades power supply  
2.7V~3.6V for -7 speed grades power supply  
Up to 200 MHz Clock Frequency  
1,048,576 words 4 banks 16 bits organization  
Self Refresh Current: Standard and Low Power  
CAS Latency: 2 and 3  
Burst Length: 1, 2, 4, 8 and full page  
Sequential and Interleave Burst  
Byte Data Controlled by LDQM, UDQM  
Auto-precharge and Controlled Precharg  
Burst Read, Single Writes Mode  
4K Refresh Cycles/64 mS  
Interface: LVTTL  
Packaged in TSOP II 54-pin, 400 mil using Lead free materials with RoHS compliant  
3. ORDER INFORMATION  
SELF REFRESH  
CURRENT (MAX)  
OPERATING  
TEMPERATURE  
PART NUMBER  
SPEED GRADE  
W9864G6KH-5  
W9864G6KH-6  
W9864G6KH-6I  
W9864G6KH-7  
200MHz/CL3  
166MHz/CL3  
166MHz/CL3  
143MHz/CL3  
2mA  
2mA  
2mA  
2mA  
0°C ~ 70°C  
0°C ~ 70°C  
-40°C ~ 85°C  
0°C ~ 70°C  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 3 -  
W9864G6KH  
4. PIN CONFIGURATION  
VDD  
DQ0  
VSS  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
1
2
DQ15  
VSSQ  
DQ14  
DQ13  
VDDQ  
3
VDDQ  
DQ1  
4
DQ2  
5
VSSQ  
6
DQ12  
DQ11  
VSSQ  
DQ3  
7
DQ4  
8
VDDQ  
9
DQ10  
DQ9  
DQ5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
DQ6  
VSSQ  
VDDQ  
DQ8  
DQ7  
VDD  
VSS  
NC  
LDQM  
WE  
UDQM  
CLK  
CKE  
NC  
CAS  
RAS  
CS  
A11  
A9  
BS0  
BS1  
A10/AP  
A0  
A8  
A7  
A6  
A1  
A5  
A2  
A4  
A3  
VDD  
VSS  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 4 -  
W9864G6KH  
5. PIN DESCRIPTION  
PIN NUMBER PIN NAME  
FUNCTION  
DESCRIPTION  
Multiplexed pins for row and column address.  
Row address: A0A11. Column address: A0A7.  
2326, 22,  
A0A11  
2935  
Address  
A10 is sampled during a precharge command to  
determine if all banks are to be precharged or bank  
selected by BS0, BS1.  
Select bank to activate during row address latch time,  
or bank to read/write during address latch time.  
20, 21  
BS0, BS1  
Bank Select  
2, 4, 5, 7, 8,  
10, 11, 13, 42,  
44, 45, 47, 48,  
50, 51, 53  
Data  
Multiplexed pins for data output and input.  
DQ0DQ15  
Input/ Output  
Disable or enable the command decoder. When  
command decoder is disabled, new command is  
ignored and previous operation continues.  
19  
18  
Chip Select  
CS  
Command input. When sampled at the rising edge of  
Row Address  
Strobe  
RAS  
the clock, RAS ,  
CAS and WE define the  
operation to be executed.  
Column Address  
Strobe  
17  
16  
CAS  
WE  
Referred to RAS  
Write Enable  
Referred to RAS  
The output buffer is placed at Hi-Z (with latency of 2)  
when DQM is sampled high in read cycle. In write  
cycle, sampling DQM high will block the write  
operation with zero latency.  
LDQM,  
UDQM  
Input/Output  
Mask  
39, 15  
System clock used to sample inputs on the rising edge  
of clock.  
38  
37  
CLK  
CKE  
Clock Inputs  
CKE controls the clock activation and deactivation.  
Clock Enable When CKE is low, Power Down mode, Suspend mode  
or Self Refresh mode is entered.  
1, 14, 27  
VDD  
VSS  
Power  
Power for input buffers and logic circuit inside DRAM.  
Ground for input buffers and logic circuit inside DRAM.  
28, 41, 54  
Ground  
Power for I/O Separated power from VDD, to improve DQ noise  
Buffer immunity.  
3, 9, 43, 49  
VDDQ  
Ground for I/O Separated ground from VSS, to improve DQ noise  
Buffer immunity.  
6, 12, 46, 52  
36, 40  
VSSQ  
NC  
No Connection No connection.  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 5 -  
W9864G6KH  
6. BLOCK DIAGRAM  
CLK  
CLOCK  
BUFFER  
CKE  
CONTROL  
CS  
SIGNAL  
GENERATOR  
RAS  
COMMAND  
CAS  
DECODER  
COLUMN DECODER  
COLUMN DECODER  
WE  
A10  
CELL ARRAY  
BANK #0  
CELL ARRAY  
BANK #1  
MODE  
REGISTER  
A0  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
ADDRESS  
BUFFER  
A9  
A11  
BS0  
BS1  
DQ0  
DATA CONTROL  
CIRCUIT  
DQ  
BUFFER  
DQ15  
COLUMN  
REFRESH  
COUNTER  
UDQM  
LDQM  
COUNTER  
COLUMN DECODER  
COLUMN DECODER  
CELL ARRAY  
BANK #2  
CELL ARRAY  
BANK #3  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
NOTE:  
The cell array configuration is 4096 * 256 * 16  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 6 -  
W9864G6KH  
7. FUNCTIONAL DESCRIPTION  
7.1 Power Up and Initialization  
The default power up state of the mode register is unspecified. The following power up and  
initialization sequence need to be followed to guarantee the device being preconditioned to each user  
specific needs.  
During power up, all VDD and VDDQ pins must be ramp up simultaneously to the specified voltage  
when the input signals are held in the “NOP” state. The power up voltage must not exceed VDD +0.3V  
on any of the input pins or VDD supplies. After power up, an initial pause of 200 µS is required followed  
by a precharge of all banks using the precharge command. To prevent data contention on the DQ bus  
during power up, it is required that the DQM and CKE pins be held high during the initial pause period.  
Once all banks have been precharged, the Mode Register Set Command must be issued to initialize  
the Mode Register. An additional eight Auto Refresh cycles (CBR) are also required before or after  
programming the Mode Register to ensure proper subsequent operation.  
7.2 Programming Mode Register  
After initial power up, the Mode Register Set Command must be issued for proper device operation.  
All banks must be in a precharged state and CKE must be high at least one cycle before the Mode  
Register Set Command can be issued. The Mode Register Set Command is activated by the low  
signals of RAS  
CAS CS and WE at the positive edge of the clock. The address input data  
, ,  
during this cycle defines the parameters to be set as shown in the Mode Register Operation table. A  
new command may be issued following the mode register set command once a delay equal to tRSC  
has elapsed. Please refer to the next page for Mode Register Set Cycle and Operation Table.  
7.3 Bank Activate Command  
The Bank Activate command must be applied before any Read or Write operation can be executed.  
The operation is similar to RAS activate in EDO DRAM. The delay from when the Bank Activate  
command is applied to when the first read or write operation can begin must not be less than the RAS  
to CAS delay time (tRCD). Once a bank has been activated it must be precharged before another Bank  
Activate command can be issued to the same bank. The minimum time interval between successive  
Bank Activate commands to the same bank is determined by the RAS cycle time of the device (tRC).  
The minimum time interval between interleaved Bank Activate commands (Bank A to Bank B and vice  
versa) is the Bank to Bank delay time (tRRD). The maximum time that each bank can be held active is  
specified as tRAS (max).  
7.4 Read and Write Access Modes  
After a bank has been activated, a read or write cycle can be followed. This is accomplished by setting  
RAS high and CAS low at the clock rising edge after minimum of tRCD delay. WE pin voltage level  
defines whether the access cycle is a read operation ( WE high), or a write operation ( WE low). The  
address inputs determine the starting column address.  
Reading or writing to a different row within an activated bank requires the bank be precharged and a  
new Bank Activate command be issued. When more than one bank is activated, interleaved bank  
Read or Write operations are possible. By using the programmed burst length and alternating the  
access and precharge operations between multiple banks, seamless data access operation among  
many different pages can be realized. Read or Write Commands can also be issued to the same bank  
or between active banks on every clock cycle.  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 7 -  
W9864G6KH  
7.5 Burst Read Command  
The Burst Read command is initiated by applying logic low level to CS and CAS while holding  
RAS and WE high at the rising edge of the clock. The address inputs determine the starting column  
address for the burst. The Mode Register sets type of burst (sequential or interleave) and the burst  
length (1, 2, 4, 8, full page) during the Mode Register Set Up cycle. Table 2 and 3 in the next page  
explain the address sequence of interleave mode and sequential mode.  
7.6 Burst Write Command  
The Burst Write command is initiated by applying logic low level to CS  
,
CAS and WE while  
holding RAS high at the rising edge of the clock. The address inputs determine the starting column  
address. Data for the first burst write cycle must be applied on the DQ pins on the same clock cycle  
that the Write Command is issued. The remaining data inputs must be supplied on each subsequent  
rising clock edge until the burst length is completed. Data supplied to the DQ pins after burst finishes  
will be ignored.  
7.7 Read Interrupted by a Read  
A Burst Read may be interrupted by another Read Command. When the previous burst is interrupted,  
the remaining addresses are overridden by the new read address with the full burst length. The data  
from the first Read Command continues to appear on the outputs until the CAS Latency from the  
interrupting Read Command the is satisfied.  
7.8 Read Interrupted by a Write  
To interrupt a burst read with a Write Command, DQM may be needed to place the DQs (output  
drivers) in a high impedance state to avoid data contention on the DQ bus. If a Read Command will  
issue data on the first and second clocks cycles of the write operation, DQM is needed to insure the  
DQs are tri-stated. After that point the Write Command will have control of the DQ bus and DQM  
masking is no longer needed.  
7.9 Write Interrupted by a Write  
A burst write may be interrupted before completion of the burst by another Write Command. When the  
previous burst is interrupted, the remaining addresses are overridden by the new address and data  
will be written into the device until the programmed burst length is satisfied.  
7.10 Write Interrupted by a Read  
A Read Command will interrupt a burst write operation on the same clock cycle that the Read  
Command is activated. The DQs must be in the high impedance state at least one cycle before the  
new read data appears on the outputs to avoid data contention. When the Read Command is  
activated, any residual data from the burst write cycle will be ignored.  
7.11 Burst Stop Command  
A Burst Stop Command may be used to terminate the existing burst operation but leave the bank open  
for future Read or Write Commands to the same page of the active bank, if the burst length is full page.  
Use of the Burst Stop Command during other burst length operations is illegal. The Burst Stop  
Command is defined by having RAS and CAS high with CS and WE low at the rising edge of  
the clock. The data DQs go to a high impedance state after a delay which is equal to the CAS Latency  
in a burst read cycle interrupted by Burst Stop.  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 8 -  
W9864G6KH  
7.12 Addressing Sequence of Sequential Mode  
A column access is performed by increasing the address from the column address which is input to  
the device. The disturb address is varied by the Burst Length as shown in Table 2.  
Table 2 Address Sequence of Sequential Mode  
DATA  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
ACCESS ADDRESS  
BURST LENGTH  
n
BL = 2 (disturb address is A0)  
No address carry from A0 to A1  
BL = 4 (disturb addresses are A0 and A1)  
No address carry from A1 to A2  
n + 1  
n + 2  
n + 3  
n + 4  
n + 5  
n + 6  
n + 7  
BL = 8 (disturb addresses are A0, A1 and A2)  
No address carry from A2 to A3  
7.13 Addressing Sequence of Interleave Mode  
A column access is started in the input column address and is performed by inverting the address bit  
in the sequence shown in Table 3.  
Table 3 Address Sequence of Interleave Mode  
DATA  
Data 0  
Data 1  
ACCESS ADDRESS  
BURST LENGTH  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
BL = 2  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
BL = 4  
BL = 8  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 9 -  
W9864G6KH  
7.14 Auto-precharge Command  
If A10 is set to high when the Read or Write Command is issued, then the Auto-precharge function is  
entered. During Auto-precharge, a Read Command will execute as normal with the exception that the  
active bank will begin to precharge automatically before all burst read cycles have been completed.  
Regardless of burst length, it will begin a certain number of clocks prior to the end of the scheduled  
burst cycle. The number of clocks is determined by CAS Latency.  
A Read or Write Command with auto-precharge can not be interrupted before the entire burst  
operation is completed for the same bank. Therefore, use of a Read, Write, or Precharge Command is  
prohibited during a read or write cycle with auto-precharge. Once the precharge operation has started,  
the bank cannot be reactivated until the Precharge time (tRP) has been satisfied. Issue of Auto-  
Precharge command is illegal if the burst is set to full page length. If A10 is high when a Write  
Command is issued, the Write with Auto-Precharge function is initiated. The SDRAM automatically  
enters the precharge operation two clocks delay from the last burst write cycle. This delay is referred  
to as write tWR. The bank undergoing auto-precharge cannot be reactivated until tWR and tRP are  
satisfied. This is referred to as tDAL, Data-in to Active delay (tDAL = tWR + tRP). When using the Auto-  
precharge Command, the interval between the Bank Activate Command and the beginning of the  
internal precharge operation must satisfy tRAS (min).  
7.15 Precharge Command  
The Precharge Command is used to precharge or close a bank that has been activated. The  
Precharge Command is entered when CS  
,
RAS and WE are low and CAS is high at the rising  
edge of the clock. The Precharge Command can be used to precharge each bank separately or all  
banks simultaneously. Three address bits, A10, BS0, and BS1, are used to define which bank(s) is to  
be precharged when the command is issued. After the Precharge Command is issued, the precharged  
bank must be reactivated before a new read or write access can be executed. The delay between the  
Precharge Command and the Activate Command must be greater than or equal to the Precharge time  
(tRP).  
7.16 Self Refresh Command  
The Self Refresh Command is defined by having CS  
RAS CAS and CKE held low with WE  
, ,  
high at the rising edge of the clock. All banks must be idle prior to issuing the Self Refresh Command.  
Once the command is registered, CKE must be held low to keep the device in Self Refresh mode.  
When the SDRAM has entered Self Refresh mode all of the external control signals, except CKE, are  
disabled. The clock is internally disabled during Self Refresh Operation to save power. The device will  
exit Self Refresh operation after CKE is returned high. Any subsequent commands can be issued after  
tXSR from the end of Self Refresh Command.  
If, during normal operation, AUTO REFRESH cycles are issued in bursts (as opposed to being evenly  
distributed), a burst of 4,096 AUTO REFRESH cycles should be completed just prior to entering and  
just after exiting the self refresh mode.  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 10 -  
W9864G6KH  
7.17 Power Down Mode  
The Power Down mode is initiated by holding CKE low. All of the receiver circuits except CKE are  
gated off to reduce the power. The Power Down mode does not perform any refresh operations,  
therefore the device can not remain in Power Down mode longer than the Refresh period (tREF) of the  
device.  
The Power Down mode is exited by bringing CKE high. When CKE goes high, a No Operation  
Command is required on the next rising clock edge, depending on tCK. The input buffers need to be  
enabled with CKE held high for a period equal to tCKS (min) + tCK (min).  
7.18 No Operation Command  
The No Operation Command should be used in cases when the SDRAM is in a idle or a wait state to  
prevent the SDRAM from registering any unwanted commands between operations. A No Operation  
Command is registered when CS is low with RAS  
,
CAS , and WE held high at the rising edge of  
the clock. A No Operation Command will not terminate a previous operation that is still executing, such  
as a burst read or write cycle.  
7.19 Deselect Command  
The Deselect Command performs the same function as a No Operation Command. Deselect  
Command occurs when CS is brought high, the RAS  
cares.  
,
CAS , and WE signals become don’t  
7.20 Clock Suspend Mode  
During normal access mode, CKE must be held high enabling the clock. When CKE is registered low  
while at least one of the banks is active, Clock Suspend Mode is entered. The Clock Suspend mode  
deactivates the internal clock and suspends any clocked operation that was currently being executed.  
There is a one clock delay between the registration of CKE low and the time at which the SDRAM  
operation suspends. While in Clock Suspend mode, the SDRAM ignores any new commands that are  
issued. The Clock Suspend mode is exited by bringing CKE high. There is a one clock cycle delay  
from when CKE returns high to when Clock Suspend mode is exited.  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 11 -  
W9864G6KH  
8. OPERATION MODE  
Fully synchronous operations are performed to latch the commands at the positive edges of CLK.  
Table 1 shows the truth table for the operation commands.  
Table 1 Truth Table (Note (1), (2))  
DEVICE  
STATE  
A0A9  
COMMAND  
Bank Active  
CKEn-1 CKEn DQM BS0, 1 A10  
CS RAS CAS  
WE  
A11  
Idle  
Any  
H
H
H
H
x
x
x
x
x
x
x
x
v
v
x
v
v
L
H
L
v
x
x
v
L
L
L
L
L
L
H
H
H
L
H
L
L
L
Bank Precharge  
Precharge All  
Write  
Any  
L
Active (3)  
H
Write with Auto-precharge  
Active (3)  
H
x
x
v
H
v
L
H
L
L
Read  
Active (3)  
Active (3)  
Idle  
H
H
H
H
H
H
H
H
x
x
x
x
x
x
H
L
x
x
x
x
x
x
x
x
v
v
v
x
x
x
x
x
L
H
v
x
x
x
x
x
v
v
v
x
x
x
x
x
L
L
L
L
L
H
L
L
H
H
L
L
L
L
H
H
x
H
H
L
Read with Auto-precharge  
Mode Register Set  
No Operation  
Burst Stop  
Any  
H
H
x
H
L
Active (4)  
Any  
Device Deselect  
Auto - Refresh  
Self - Refresh Entry  
x
Idle  
L
L
L
H
H
Idle  
L
idle  
L
L
H
H
x
x
x
x
x
x
x
x
H
L
x
x
x
x
Self Refresh Exit  
(S.R.)  
H
H
Clock suspend Mode Entry  
Power Down Mode Entry  
Active  
H
L
x
x
x
x
x
x
x
x
Idle  
Active (5)  
H
H
L
L
x
x
x
x
x
x
x
x
H
L
x
x
x
x
H
H
Clock Suspend Mode Exit  
Power Down Mode Exit  
Data write/Output Enable  
Active  
L
H
x
x
x
x
x
x
x
x
Any  
L
L
H
H
x
x
x
x
x
x
x
x
H
L
x
x
x
x
(power down)  
H
H
Active  
Active  
H
H
x
x
L
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Data Write/Output Disable  
H
Notes:  
(1) v = valid x = Don’t care L = Low Level H = High Level  
(2) CKEn signal is input level when commands are provided.  
CKEn-1 signal is the input level one clock cycle before the command is issued.  
(3) These are state of bank designated by BS0, BS1 signals.  
(4) Device state is full page burst operation.  
(5) Power Down Mode can not be entered in the burst cycle.  
When this command asserts in the burst cycle, device state is clock suspend mode.  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 12 -  
W9864G6KH  
9. ELECTRICAL CHARACTERISTICS  
9.1 Absolute Maximum Ratings  
PARAMETER  
Voltage on any pin relative to VSS  
Voltage on VDD/VDDQ supply relative to VSS  
Operating Temperature for -5/-6/-7  
Operating Temperature for -6I  
Storage Temperature  
SYMBOL  
RATING  
UNIT NOTES  
-1 ~ VDD + 0.5 (4.6V max.)  
V
V
1
1
1
1
1
1
1
1
VIN, VOUT  
VDD, VDDQ  
TOPR  
-1 ~ 4.6  
0 ~ 70  
-40 ~ 85  
-55 ~ 150  
260  
°C  
°C  
°C  
°C  
W
TOPR  
TSTG  
Soldering Temperature (10s)  
Power Dissipation  
TSOLDER  
PD  
1
Short Circuit Output Current  
50  
mA  
IOUT  
Note:  
1. Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of  
the device  
9.2 Recommended DC Operating Conditions  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT NOTES  
Power Supply Voltage for -5/-6/-6I  
Power Supply Voltage for -7  
VDD  
VDD  
VDDQ  
VDDQ  
VIH  
3.0  
2.7  
3.0  
2.7  
2.0  
-0.3  
3.3  
3.6  
3.6  
V
V
V
V
V
V
2
2
2
2
2
2
-
Power Supply Voltage for -5/-6/-6I (for I/O Buffer)  
Power Supply Voltage for -7 (for I/O Buffer)  
Input High Voltage  
3.3  
3.6  
-
-
-
3.6  
VDD + 0.3  
0.8  
Input Low Voltage  
VIL  
Note: VIH(max) = VDD/ VDDQ+1.5V for pulse width 5 nS.  
VIL(min) = VSS/ VSSQ-1.5V for pulse width 5 nS  
9.3 Capacitance  
(VDD = 3.3V ± 0.3V, TA = 25°C, f = 1 MHz)  
PARAMETER  
SYM.  
Ci1  
MIN.  
MAX.  
UNIT  
Input Capacitance  
2.5  
4
pf  
(A0 to A11, BS0, BS1, CS  
Input Capacitance (CLK)  
RAS CAS  
, , ,  
WE , CKE)  
pf  
pf  
pf  
2.5  
4
4
CCLK  
CO  
Input/Output capacitance (DQ0DQ15)  
6.5  
5.5  
Input Capacitance DQM  
3.0  
Ci2  
Note: These parameters are periodically sampled and not 100% tested.  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 13 -  
W9864G6KH  
9.4 DC Characteristics  
(VDD = 3.3V ± 0.3V for-5/-6 ,VDD = 2.7V~3.6V for -7 on TA = 0°C~70°C, VDD =3.3V ± 0.3V for -6I on TA = -40°C~85°C)  
MAX.  
PARAMETER  
SYM.  
UNIT  
NOTES  
-5  
-6/-6I  
-7  
Operating Current  
tCK = min., tRC = min.  
Active precharge command  
cycling without burst operation  
1 Bank operation  
CKE = VIH  
IDD1  
55  
50  
45  
3
Standby Current  
IDD2  
IDD2P  
IDD2S  
30  
2
25  
2
20  
2
3
3
tCK = min., CS = VIH  
VIH/L = VIH (min.)/VIL (max.)  
CKE = VIL  
Bank: Inactive state  
Standby Current  
(Power Down Mode)  
CKE = VIH  
12  
12  
12  
CLK = VIL, CS = VIH  
VIH/L=VIH (min.)/VIL (max.)  
CKE = VIL  
Bank: Inactive state  
IDD2PS  
IDD3  
2
2
2
(Power Down Mode)  
mA  
No Operating Current  
CKE = VIH  
40  
12  
35  
12  
30  
12  
tCK = min., CS = VIH(min)  
CKE = VIL  
Bank: Active state (4 Banks)  
IDD3P  
(Power Down Mode)  
Burst Operating Current  
IDD4  
80  
75  
70  
3, 4  
3
tCK = min.  
Read/ Write command cycling  
Auto Refresh Current  
IDD5  
IDD6  
65  
2
60  
2
55  
2
tCK = min.  
Auto refresh command cycling  
Self Refresh Current  
Self Refresh Mode  
CKE = 0.2V  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
NOTES  
Input Leakage Current  
II(L)  
-5  
5
5
µA  
(0V ≤ VIN ≤ VDD, all other pins not under test = 0V)  
Output Leakage Current  
lO(L)  
VOH  
VOL  
-5  
2.4  
-
µA  
V
(Output disable, 0V ≤ VOUT ≤ VDDQ)  
LVTTL Output HLevel Voltage  
-
(IOUT = -2 mA)  
LVTTL Output LLevel Voltage  
0.4  
V
(IOUT = 2 mA)  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 14 -  
W9864G6KH  
9.5 AC Characteristics and Operating Condition  
(VDD = 3.3V ± 0.3V for-5/-6, VDD = 2.7V-3.6V for -7 on TA = 0°C~70°C, VDD = 3.3V ± 0.3V for -6I on TA = -40°C~85°C)  
(Notes: 5, 6)  
-5  
-6/-6I  
MAX.  
-7  
PARAMETER  
SYM.  
UNIT NOTES  
MIN.  
MAX.  
MIN.  
MIN. MAX.  
Ref/Active to Ref/Active Command  
Period  
55  
60  
65  
tRC  
tRAS  
tRCD  
Active to precharge Command Period  
40 100000 42 100000 45 100000 nS  
Active to Read/Write Command Delay  
Time  
15  
1
15  
1
20  
1
Read/Write(a) to Read/Write(b)  
Command Period  
tCCD  
tCK  
Precharge to Active Command Period  
Active(a) to Active(b) Command Period  
15  
2
15  
2
20  
2
nS  
tCK  
tRP  
tRRD  
CL* = 2  
Write Recovery Time  
CL* = 3  
2
2
2
tWR  
tCK  
tCK  
2
2
2
CL* = 2  
CLK Cycle Time  
10  
5
1000  
1000  
7.5  
6
1000  
1000  
10  
7
1000  
1000  
CL* = 3  
2
2
2
8
8
CLK High Level width  
CLK Low Level width  
tCH  
tCL  
2
2
2
CL* = 2  
Access Time from CLK  
CL* = 3  
6
6
5
6
9
9
7
9
tAC  
tOH  
tHZ  
4.5  
5.5  
Output Data Hold Time  
3
3
3
CL* = 2  
CL* = 3  
6
6
5
6
Output Data High  
Impedance Time  
4.5  
5.5  
Output Data Low Impedance Time  
Power Down Mode Entry Time  
Transition Time of CLK (Rise and Fall)  
Data-in Set-up Time  
0
0
0
0
0
0
tLZ  
tSB  
nS  
5
1
6
1
7
1
tT  
1.5  
1
1.5  
1
1.5  
1
8
8
8
8
8
8
8
8
tDS  
Data-in Hold Time  
tDH  
Address Set-up Time  
1.5  
1
1.5  
1
1.5  
1
tAS  
Address Hold Time  
tAH  
CKE Set-up Time  
1.5  
1
1.5  
1
1.5  
1
tCKS  
tCKH  
tCMS  
tCMH  
tREF  
tRSC  
tXSR  
CKE Hold Time  
Command Set-up Time  
Command Hold Time  
1.5  
1
1.5  
1
1.5  
1
Refresh Time (4K Refresh Cycles)  
Mode register Set Cycle Time  
Exit self refresh to ACTIVE command  
* CL = CAS Latency  
64  
64  
64  
mS  
tCK  
nS  
2
2
2
70  
72  
75  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 15 -  
W9864G6KH  
Notes:  
1. Operation exceeds “Absolute Maximum Ratings” may cause permanent damage to the devices.  
2. All voltages are referenced to VSS.  
2.7V~3.6V power supply for -7 speed grades.  
3. These parameters depend on the cycle rate and listed values are measured at a cycle rate with the  
minimum values of tCK and tRC.  
4. These parameters depend on the output loading conditions. Specified values are obtained with  
output open.  
5. Power up sequence please refer to “Functional Description” section described before.  
6. AC test load diagram.  
1.4 V  
50 ohms  
output  
Z = 50 ohms  
30pF  
ACTEST LOAD  
7. tHZ defines the time at which the outputs achieve the open circuit condition and is not referenced to  
output level.  
8. Assumed input rise and fall time (tT) = 1nS.  
If tr & tf is longer than 1nS, transient time compensation should be considered,  
i.e., [(tr + tf)/2-1]nS should be added to the parameter  
9. If clock rising time (tT) is longer than 1nS, (tT/2-0.5)nS should be added to the parameter.  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 16 -  
W9864G6KH  
10. TIMING WAVEFORMS  
10.1 Command Input Timing  
tCK  
tCL  
tCH  
VIH  
CLK  
VIL  
tT  
tT  
tCMS  
tCMH  
tCMS  
tCMH  
tCMH  
CS  
tCMS  
RAS  
tCMS  
tCMH  
tCMH  
tAH  
CAS  
tCMS  
WE  
tAS  
A0-A11  
BS0,1  
tCKS  
tCKH  
tCKS  
tCKH  
tCKS  
tCKH  
CKE  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 17 -  
W9864G6KH  
10.2 Read Timing  
Read CAS Latency  
CLK  
CS  
RAS  
CAS  
WE  
A0-A11  
BS0,1  
tHZ  
tAC  
tAC  
tOH  
tLZ  
tOH  
Valid  
Data-Out  
Valid  
Data-Out  
DQ  
Read Command  
Burst Length  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 18 -  
W9864G6KH  
10.3 Control Timing of Input/Output Data  
Control Timing of Input Data  
(Word Mask)  
CLK  
tCMH  
tCMS  
tCMH  
tCMS  
tDS  
DQM  
tDS  
tDH  
tDH  
tDS  
tDH  
tDS  
tDH  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
DQ0~15  
(Clock Mask)  
CLK  
tCKH  
tCKS  
tDS  
tCKH  
tDH  
tCKS  
CKE  
tDH  
tDS  
tDH  
tDS  
tDH  
tDS  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
DQ0~15  
Control Timing of Output Data  
(Output Enable)  
CLK  
tCMS  
tCMH  
tCMS  
tCMH  
DQM  
tAC  
tOH  
tAC  
tAC  
tHZ  
tOH  
tAC  
tLZ  
tOH  
tOH  
Valid  
Data-Out  
Valid  
Data-Out  
Valid  
Data-Out  
DQ0~15  
OPEN  
(Clock Mask)  
CLK  
tCKS  
tCKH  
tCKS  
tCKH  
CKE  
tAC  
tAC  
tAC  
tAC  
tOH  
tOH  
tOH  
tOH  
Valid  
Data-Out  
Valid  
Data-Out  
Valid  
Data-Out  
DQ0~15  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 19 -  
W9864G6KH  
10.4 Mode Register Set Cycle  
tRSC  
CLK  
tCMS  
tCMS  
tCMH  
tCMH  
CS  
RAS  
CAS  
WE  
tCMS  
tCMS  
tAS  
tCMH  
tCMH  
tAH  
Register  
set data  
A0-A11  
BS0,1  
next  
command  
Burst Length  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
Sequential  
A2 A1A0  
Interleave  
Burst Length  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
4
8
1
2
4
8
Addressing Mode  
CAS Latency  
"0"  
(Test Mode)  
Reserved  
Full Page  
Reserved  
Addressing Mode  
A3  
0
1
Sequential  
Interleave  
A7  
A8  
"0"  
Reserved  
WriteMode  
CAS Latency  
Reserved  
Reserved  
2
A6 A5A4  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
A9  
A10  
A11  
BS0  
BS1  
"0"  
"0"  
3
Reserved  
Reserved  
"0"  
"0"  
Single Write Mode  
Burst read and Burst write  
Burst read and single write  
A9
0
1
* "Reserved" should stay "0" during MRS cycle.  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 20 -  
W9864G6KH  
11. OPERATING TIMING EXAMPLE  
11.1 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
0
CLK  
CS  
tRC  
tRC  
tRC  
tRC  
RAS  
CAS  
tRP  
tRAS  
tRP  
tRAS  
tRAS  
tRP  
tRAS  
WE  
BS0  
BS1  
A10  
tRCD  
tRCD  
tRCD  
tRCD  
RBb  
RAa  
RAa  
RAe  
RAe  
RAc  
RBd  
RBd  
A0-A9,  
A11  
CAw  
CBx  
RBb  
RAc  
CAy  
CBz  
DQM  
CKE  
tAC  
tAC  
tAC  
tAC  
bx3  
cy0 cy1  
cy2 cy3  
aw0 aw1 aw2 aw3  
bx1 bx2  
bx0  
DQ  
tRRD  
tRRD  
tRRD  
tRRD  
Precharge  
Read  
Active  
Active  
Read  
Bank #0  
Active  
Read  
Precharge  
Precharge  
Bank #1  
Bank #2  
Bank #3  
Active  
Read  
Active  
Idle  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 21 -  
W9864G6KH  
11.2 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto-precharge)  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
6
7
8
9
10  
0
CLK  
CS  
tRC  
tRC  
tRC  
tRC  
RAS  
CAS  
WE  
tRAS  
tRP  
tRAS  
tRP  
tRP  
tRAS  
BS0  
BS1  
tRCD  
tRCD  
tRCD  
tRCD  
RAa  
RBb  
RBd  
RAc  
RAe  
A10  
A0-A9,  
A11  
RAa  
CAw RBb  
CBx  
RAc  
CAy  
RBd  
CBz  
RAe  
DQM  
CKE  
tAC  
tAC  
tAC  
tAC  
aw2 aw3  
aw0 aw1  
bx0 bx1 bx2 bx3  
cy0 cy1 cy2 cy3  
dz0  
DQ  
tRRD  
tRRD  
tRRD  
tRRD  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
AP*  
Active  
Read  
AP*  
Active  
Read  
AP*  
Active  
Read  
Active  
Read  
Idle  
* AP is the internal precharge start timing  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 22 -  
W9864G6KH  
11.3 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)  
8
9
10 11 12 13 14 15 16 17 18  
1
2
3
4
5
6
7
19 20 21 22 23  
0
CLK  
CS  
tRC  
RAS  
CAS  
tRAS  
tRP  
tRP  
tRAS  
WE  
BS0  
BS1  
A10  
tRCD  
tRCD  
tRCD  
RAa  
RAa  
RBb  
RBb  
RAc  
RAc  
A0-A9,  
A11  
CAx  
CBy  
CAz  
DQM  
CKE  
tAC  
tAC  
ax6  
tAC  
by4  
by5  
by6  
by7  
CZ0  
ax0  
ax1  
ax2  
ax3  
ax4  
ax5  
by0  
by1  
DQ  
tRRD  
tRRD  
Bank #0  
Read  
Active  
Precharge  
Active  
Read  
Bank #1  
Bank #2  
Bank #3  
Precharge  
Active  
Read  
Precharge  
Idle  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 23 -  
W9864G6KH  
11.4 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto-precharge)  
6
7
8
9
10  
11  
12  
13  
14  
15 16  
17  
18  
19  
20  
1
2
3
4
5
21  
22 23  
0
CLK  
CS  
tRC  
RAS  
tRAS  
tRP  
tRAS  
tRAS  
tRP  
CAS  
WE  
BS0  
BS1  
tRCD  
tRCD  
tRCD  
RAc  
RAa  
RAa  
RBb  
RBb  
A10  
A0-A9,  
A11  
CAx  
CBy  
RAc  
CAz  
DQM  
CKE  
tAC  
tAC  
tAC  
ax3  
ax4  
ax5  
ax6  
ax7  
by0  
by1  
by4  
by5  
by6  
CZ0  
ax0  
ax1  
ax2  
DQ  
tRRD  
tRRD  
Bank #0 Active  
Bank #1  
Read  
AP*  
Active  
Read  
Active  
Read  
AP*  
Bank #2  
Idle  
Bank #3  
* AP is the internal precharge start timing  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 24 -  
W9864G6KH  
11.5 Interleaved Bank Write (Burst Length = 8)  
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
1
2
3
4
5
0
CLK  
CS  
tRC  
RAS  
CAS  
WE  
tRAS  
tRP  
tRAS  
tRCD  
tRCD  
tRCD  
BS0  
BS1  
RBb  
RAc  
RAa  
RAa  
A10  
A0-A9,  
A11  
CAx  
RBb  
CBy  
RAc  
CAz  
DQM  
CKE  
ax0  
ax1  
ax4  
ax5  
ax6  
ax7  
by0  
by1  
by2  
by3  
CZ2  
by4  
by5  
by6  
by7  
CZ0  
CZ1  
DQ  
tRRD  
tRRD  
Active  
Bank #0  
Precharge  
Write  
Active  
Write  
Write  
Bank #1  
Bank #2  
Bank #3  
Active  
Precharge  
Idle  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 25 -  
W9864G6KH  
11.6 Interleaved Bank Write (Burst Length = 8, Auto-precharge)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
tRC  
RAS  
CAS  
tRP  
tRAS  
tRAS  
WE  
BS0  
BS1  
A10  
tRCD  
tRCD  
tRCD  
RAa  
RAa  
RBb  
RBb  
RAb  
A0-A9,  
A11  
CAx  
CBy  
RAc  
CAz  
DQM  
CKE  
ax0  
ax1  
ax4  
ax5  
ax6  
ax7  
by0  
by1 by2 by3  
by4  
by5  
by6  
by7 CZ0  
CZ1  
CZ2  
DQ  
tRRD  
tRRD  
AP*  
Write  
Write  
AP*  
Active  
Active  
Idle  
Write  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
* AP is the internal precharge start timing  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 26 -  
W9864G6KH  
11.7 Page Mode Read (Burst Length = 4, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
tCCD  
tCCD  
tCCD  
tRAS  
tRAS  
RAS  
CAS  
WE  
BS0  
BS1  
A10  
tRCD  
tRCD  
RAa  
RAa  
RBb  
A0-A9,  
A11  
CAI RBb  
CBx  
CAy  
CAm  
CBz  
DQM  
CKE  
tAC  
tAC  
tAC  
tAC  
tAC  
a0  
a1  
a2  
a3  
bx0  
bx1  
Ay0  
Ay1 Ay2 am0 am1 am2  
bz0  
bz1  
bz2  
bz3  
DQ  
tRRD  
Read  
Bank #0 Active  
Bank #1  
Read  
Read  
Precharge  
AP*  
Active  
Read  
Read  
Bank #2  
Idle  
Bank #3  
* AP is the internal precharge start timing  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 27 -  
W9864G6KH  
11.8 Page Mode Read / Write (Burst Length = 8, CAS Latency = 3)  
6
7
8
11  
12  
13  
16  
17  
18  
1
2
3
5
9
10  
14  
15  
19  
21  
0
4
20  
22  
23  
CLK  
CS  
tRAS  
RAS  
CAS  
WE  
BS0  
BS1  
A10  
tRCD  
RAa  
RAa  
A0-A9,  
A11  
CAx  
CAy  
DQM  
CKE  
tAC  
tWR  
ay1  
ay0  
ay2  
ay3  
ay4  
ax0  
ax1  
ax2  
ax3  
ax4  
ax5  
DQ  
Q
Q
Q
Q
Q
Q
D
D
D
D
D
Precharge  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Read  
Write  
Idle  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 28 -  
W9864G6KH  
11.9 Auto Precharge Read (Burst Length = 4, CAS Latency = 3)  
6
7
8
11  
12  
13  
16  
17  
18  
1
2
3
5
9
10  
14  
15  
19  
21  
0
4
20  
22  
23  
CLK  
CS  
tRC  
RAS  
tRAS  
tRP  
tRAS  
CAS  
WE  
BS0  
BS1  
A10  
tRCD  
tRCD  
RAa  
RAb  
A0-A9,  
A11  
CAx  
RAa  
CAw  
RAb  
DQM  
CKE  
tAC  
tAC  
aw0  
aw1 aw2 aw3  
bx0  
bx1  
bx2  
bx3  
DQ  
AP*  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Read  
Active  
Read  
AP*  
Idle  
* AP is the internal precharge start timing  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 29 -  
W9864G6KH  
11.10 Auto Precharge Write (Burst Length = 4)  
6
7
8
11  
12  
13  
16  
17  
18  
1
2
3
5
9
10  
14  
15  
19  
21  
0
4
20  
22  
23  
CLK  
CS  
tRC  
tRC  
RAS  
CAS  
tRAS  
tRP  
tRAS  
tRP  
WE  
BS0  
BS1  
tRCD  
tRCD  
RAb  
RAc  
RAa  
RAa  
A10  
A0-A9,  
A11  
CAw  
RAb  
CAx  
RAc  
DQM  
CKE  
aw0 aw1 aw2 aw3  
bx0  
bx1 bx2  
bx3  
DQ  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Write  
AP*  
Active  
Write  
AP*  
Active  
Idle  
* AP is the internal precharge start timing  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 30 -  
W9864G6KH  
11.11 Auto Refresh Cycle  
6
7
8
11 12 13  
16 17 18  
1
2
3
5
9
10  
14 15  
19  
21  
0
4
20  
22 23  
CLK  
CS  
tRP  
tRC  
tRC  
RAS  
CAS  
WE  
BS0,1  
A10  
A0-A9,  
A11  
DQM  
CKE  
DQ  
All Banks  
Prechage  
Auto  
Refresh  
Auto Refresh (Arbitrary Cycle)  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 31 -  
W9864G6KH  
11.12 Self Refresh Cycle  
CLK  
CS  
tRP  
RAS  
CAS  
WE  
BS0,1  
A10  
A0-A9,  
A11  
DQM  
tCKS  
tSB  
CKE  
tCKS  
DQ  
tXSR  
Self Refresh Cycle  
No Operation / Command Inhibit  
All Banks  
Precharge  
Self Refresh  
Entry  
Self Refresh  
Exit  
Arbitrary Cycle  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 32 -  
W9864G6KH  
11.13 Burst Read and Single Write (Burst Length = 4, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
RAS  
CAS  
WE  
tRCD  
BS0  
BS1  
A10  
RBa  
A0-A9,  
A11  
RBa  
CBv  
CBw  
CBx CBy CBz  
DQM  
CKE  
tAC  
tAC  
av0  
av1  
av2  
av3  
aw0  
ax0  
ay0  
az0  
az1  
az2  
az3  
DQ  
Q
Q
Q
Q
D
D
D
Q
Q
Q
Q
Active  
Read  
Single Write Read  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Idle  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 33 -  
W9864G6KH  
11.14 Power Down Mode  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
RAS  
CAS  
WE  
BS  
RAa  
RAa  
RAa  
RAa  
A10  
A0-A9,  
A11  
CAa  
CAx  
DQM  
CKE  
tSB  
tSB  
tCKS  
tCKS  
tCKS  
tCKS  
ax0  
ax1  
ax2  
ax3  
DQ  
Active  
NOP Read  
Precharge  
NOP Active  
Precharge Standby  
Power Down mode  
Active Standby  
Power Down mode  
Note: The Power Down Mode is entered by asserting CKE "low".  
All Input/Output buffers (except CKE buffers) are turned off in the Power Down mode.  
When CKE goes high, command input must be No operation at next CLK rising edge.  
Violating refresh requirements during power-down may result in a loss of data.  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 34 -  
W9864G6KH  
11.15 Auto-precharge Timing (Write Cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
CLK  
(1) CAS Latency= 2  
(a) burst length = 1  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
(b) burst length = 2  
Command  
Write  
D0  
AP  
Act  
AP  
tWR  
tRP  
DQ  
D1  
D1  
(c) burst length = 4  
Command  
Act  
D7  
Write  
D0  
tRP  
tWR  
DQ  
D2  
D3  
D3  
(d) burst length = 8  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D1  
D2  
AP  
D4  
D5  
Act  
D6  
(2) CAS Latency= 3  
(a) burst length = 1  
Command  
Write  
D0  
tWR  
tRP  
DQ  
(b) burst length = 2  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D1  
D1  
D1  
(c) burst length = 4  
Command  
Write  
D0  
AP  
D5  
Act  
tWR  
tRP  
DQ  
D2  
D2  
D3  
D3  
(d) burst length = 8  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D4  
D6  
D7  
Note )  
represents the Write with Auto precharge command.  
represents the start of internal precharing.  
represents the BankActive command.  
Write  
AP  
Act  
When the /auto precharge command is asserted,the period from BankActivate  
command to the start of intermal precgarging must be at least tRAS (min).  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 35 -  
W9864G6KH  
11.16 Auto-precharge Timing (Read Cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) CAS Latency=2  
( a ) burst length = 1  
Command  
Read AP  
Read  
Act  
t
RP  
DQ  
Q0  
( b ) burst length = 2  
Command  
AP  
Q0  
Act  
t
RP  
DQ  
Q1  
( c ) burst length = 4  
Command  
Read  
AP  
Q2  
Act  
Q4  
t
RP  
DQ  
Q0  
Q0  
Q1  
Q1  
Q3  
( d ) burst length = 8  
Command  
Read  
AP  
Q6  
Act  
t
RP  
DQ  
Q2  
Act  
Q3  
Act  
Q5  
Q7  
(2) CAS Latency=3  
( a ) burst length = 1  
Command  
Read AP  
Read  
t
RP  
DQ  
Q0  
Q0  
Q0  
Q0  
( b ) burst length = 2  
Command  
AP  
t
RP  
DQ  
Q1  
AP  
Q1  
( c ) burst length = 4  
Command  
Read  
Act  
Q4  
t
RP  
DQ  
Q2  
Q2  
Q3  
Q3  
( d ) burst length = 8  
Command  
Read  
AP  
Q5  
Act  
t
RP  
DQ  
Q1  
Q6  
Q7  
Note )  
Read  
represents the Read with Auto precharge command.  
represents the start of internal precharging.  
represents the Bank Activate command.  
AP  
Act  
When the Auto precharge command is asserted, the period from Bank Activate command to  
the start of internal precgarging must be at leas (min).  
RtAtS  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 36 -  
W9864G6KH  
11.17 Timing Chart of Read to Write Cycle  
In the case of Burst Length = 4  
1
2
3
4
5
6
7
8
9
10  
11  
0
(1) CAS Latency=2  
(a)Command  
Read Write  
DQM  
DQ  
D0  
D1  
D2  
D1  
D3  
D2  
(b)Command  
DQM  
Read  
Write  
D0  
D3  
DQ  
(2) CAS Latency=3  
(a)Command  
DQM  
Read Write  
DQ  
D0  
D1  
D2  
D1  
D3  
D2  
(b)Command  
Read  
Write  
DQM  
DQ  
D0  
D3  
Note: The Output data must be masked by DQMto avoid I/O conflict  
11.18 Timing Chart of Write to Read Cycle  
In the case of Burst Length=4  
1
2
3
4
5
6
7
8
9
10  
11  
0
(1) CAS Latency=2  
Write Read  
(a)Command  
DQM  
DQ  
D0  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
(b)Command  
DQM  
Read  
Write  
DQ  
D0  
D1  
Q3  
(2) CAS Latency=3  
(a)Command  
DQM  
Write Read  
DQ  
D0  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
(b)Command  
DQM  
Write  
Read  
DQ  
Q3  
D0  
D1  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 37 -  
W9864G6KH  
11.19 Timing Chart of Burst Stop Cycle (Burst Stop Command)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) Read cycle  
( a ) CAS latency =2  
Command  
Read  
BST  
Q3  
DQ  
Q0  
Q1  
Q0  
Q2  
Q1  
Q4  
Q3  
( b )CAS latency = 3  
Command  
Read  
BST  
Q2  
DQ  
Q4  
(2) Write cycle  
Command  
Write  
Q0  
BST  
DQ  
Q1  
Q2  
Q3  
Q4  
Note: BST  
represents the Burst stop command  
11.20 Timing Chart of Burst Stop Cycle (Precharge Command)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) Read cycle  
(a) CAS latency =2  
Command  
Read  
Read  
PRCG  
Q3  
DQ  
Q0  
Q1  
Q0  
Q2  
Q1  
Q4  
Q3  
(b) CAS latency =3  
Command  
PRCG  
Q2  
DQ  
Q4  
(2) Write cycle  
Write  
Q0  
PRCG  
Command  
tWR  
DQM  
DQ  
Q1  
Q2  
Q3  
Q4  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 38 -  
W9864G6KH  
11.21 CKE/DQM Input Timing (Write Cycle)  
1
CLK cycle No.  
2
3
4
5
7
6
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D5  
D6  
DQM MASK  
CKE MASK  
( 1 )  
CLK cycle No.  
External  
2
3
4
5
7
1
6
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D6  
D5  
DQM MASK  
( 2 )  
CKE MASK  
1
2
3
4
5
6
7
CLK cycle No.  
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D4  
D5  
D6  
CKE MASK  
( 3 )  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 39 -  
W9864G6KH  
11.22 CKE/DQM Input Timing (Read Cycle)  
1
CLK cycle No.  
2
3
4
5
6
7
External  
CLK  
Internal  
CKE  
DQM  
DQ  
Q6  
Q1  
1
Q2  
Q3  
Q4  
Open  
Open  
( 1 )  
2
3
4
5
7
CLK cycle No.  
External  
6
CLK  
Internal  
CKE  
DQM  
DQ  
Q3  
Q4  
Q6  
Q1  
1
Q2  
Open  
( 2 )  
CLK cycle No.  
2
3
4
5
6
7
External  
CLK  
Internal  
CKE  
DQM  
DQ  
Q6  
Q3  
Q1  
Q5  
Q4  
Q2  
( 3 )  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 40 -  
W9864G6KH  
12. PACKAGE SPECIFICATION  
Package Outline TSOP (TYPE II) 54L 400 MIL (1:3)  
54  
28  
E1  
E
1
27  
DETAIL A”  
e
b
RAD. R1  
RAD. R  
D
ZD  
A2  
A1  
A
θ1  
θ
C
L
Y
SEATING PLANE  
L1  
DETAIL A”  
Controlling Dimension : Millimeters  
DIMENSION  
DIMENSION  
(INCH)  
(MM)  
SYMBOL  
MIN.  
NOM.  
MAX.  
MIN.  
NOM.  
MAX.  
A
A1  
A2  
b
0.047  
0.006  
0.041  
0.018  
0.008  
0.880  
0.471  
0.405  
1.20  
0.15  
---  
---  
---  
---  
---  
---  
0.05  
0.002  
0.95  
0.30  
1.00  
0.039  
1.05  
0.45  
0.037  
0.012  
0.005  
0.870  
0.455  
0.395  
---  
---  
0.875  
---  
---  
c
0.12  
0.21  
22.09  
D
22.22  
22.35  
11.96  
10.29  
0.463  
0.400  
E
11.56  
10.03  
11.76  
E1  
e
10.16  
0.80 BASIC  
0.50  
0.031 BASIC  
0.020  
0.40  
0.60  
0.024  
L
0.016  
L1  
R
0.80 BASIC  
0.031 BASIC  
---  
0.12  
0.12  
0.25  
0.005  
0.005  
0.010  
---  
---  
R1  
---  
---  
---  
0.71 REF  
0.028 REF  
ZD  
θ
θ1  
Y
0°  
8°  
0°  
8°  
20°  
---  
15°  
---  
15°  
10°  
10°  
---  
20°  
0.10  
0.004  
---  
---  
---  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 41 -  
W9864G6KH  
13.  
REVISION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
Initial formally datasheet  
A01  
A02  
Aug. 07, 2013  
All  
Revise section 12 package outline drawing dimension  
table symbol H1 to E1  
Nov. 12, 2013  
41  
Update section 9.1 Absolute Maximum Ratings  
Voltage on any pin relative to VSS (VIN, VOUT) and  
Voltage on VDD/VDDQ supply relative to VSS (VDD,  
VDDQ) minimum voltage from -0.5V to -1V  
Jun. 01, 2016  
Mar. 26, 2017  
13  
42  
A03  
Remove ”important notice”  
Publication Release Date: Mar. 26, 2017  
Revision: A03  
- 42 -  
配单直通车
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!