欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • XC6132C10BER-G
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • XC6132C10BER-G图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • XC6132C10BER-G
  • 数量3229 
  • 厂家Torex Semiconductor Ltd 
  • 封装6-UFDFN 裸露焊盘 
  • 批号22+ 
  • 支持检测.现货.原装价优
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • XC6132C10BER-G图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • XC6132C10BER-G
  • 数量3587 
  • 厂家Torex 
  • 封装6-UFDFN 裸露焊盘 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • XC6132C10BER-G图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • XC6132C10BER-G
  • 数量660000 
  • 厂家Torex(特瑞仕) 
  • 封装原厂原装 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • XC6132C10BER-G图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • XC6132C10BER-G
  • 数量6500000 
  • 厂家特瑞仕 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • XC6132C10BER-G图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • XC6132C10BER-G
  • 数量7411 
  • 厂家Torex Semiconductor Ltd 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号XC6132N12FER-G的Datasheet PDF文件预览

XC6132 Series  
ETR02032-001  
Delay capacitor adjustable voltage detectors with sense pin isolation,  
surge voltage protection and HYS external adjustment  
GENERAL DESCRIPTION  
The XC6132 series are ultra-small delay capacitor adjustable type voltage detectors that have high accuracy and sense pin  
isolation. High accuracy and a low supply current are achieved by means of a CMOS process, a highly accurate reference  
power supply, and laser trimming technology.  
The sense pin is isolated from the power input pin to enable monitoring of the voltage of another power supply. Output can  
be maintained in the detection state even if the voltage of the power supply that is monitored drops to 0V. The sense pin is  
also suitable for detecting high voltages, and the detection and release voltage can be set as desired using external  
resistors. An internal surge voltage protection circuit and an internal delay circuit are also provided.  
By connecting a capacitor to the Cd/MRB pin, any release delay time and detect delay time can be set and the pin can also  
be used as a manual reset pin.  
The HYS external adjustment pin can be used to establish a sufficient hysteresis width.  
FEATURES  
Operating Ambient Temperature  
Operating voltage range  
Detect voltage range  
Detect voltage accuracy  
(Ta=25)  
APPLICATIONS  
Microcontroller reset and malfunction monitoring  
Battery voltage monitoring  
: -40+125℃  
: 1.6V6.0V  
: 0.8V2.0V  
: ±18mV(VDF1.5V)  
: ±1.2%(1.5VVDF2.0V)  
System power-on reset  
Power failure detection  
: ±36mV(VDF1.5V)  
: ±2.7%(1.5VVDF2.0V)  
Detect voltage accuracy  
(Ta=-40125)  
: ±50ppm/(TYP.)  
: VDF×0.1(TYP.)  
: Yes  
Temperature Characteristics  
Hysteresis width  
Adjustable Pin for Hysteresis Width  
Low supply current  
: 1.28μA(TYP.)  
VIN=1.6V(At detection)  
: 1.65μA(TYP.)  
VIN=6.0V(At release)  
: Yes (For details, refer to  
FUNCTION CHART)  
: CMOS or Nch open drain  
Manual reset function  
Output type  
: H level or L level at detection  
Output logic  
: Release delay / detection delay  
can be set in 5 time ratio options  
(For details, refer to Selection Guide).  
: Includes a surge voltage protection  
function  
Delay capacitance pin  
Sense pin  
: USP-6C,SOT-26  
Packages  
: EU RoHS compliant, Pb free  
Environment friendly  
TYPICAL APPLICATION CIRCUIT TYPICAL PERFORMANCE  
CHARACTERISTICS  
+B  
VDD  
VIN=3.3V  
VSEN=0V→10V→0V  
R2=100kΩ、R3=330kΩ  
XC6132C10E  
R3  
VIN  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
R1  
HYS  
VSEN  
Rpull(*1)  
RESET  
RESETB  
R2  
Cd/MRB  
RESET  
SW  
Cd  
VSS  
GND  
Battery (+B) voltage monitoring: Detects high voltage  
via R1/R2 resistance division.  
0
1
2
3
4
5
6
7
8
9
10  
Voltage Sense : VSEN(V)  
R1=330kΩ  
A hysteresis width can be added as desired by  
connecting R3 between the VSEN and HYS pins  
(For details, refer to OPERATIONAL DESCRIPTION).  
OPEN  
R1=560kΩ  
1/30  
XC6132 Series  
BLOCK DIAGRAMS  
(1)XC6132C Series A/B/C/D/L type (RESET OUTPUT: CMOS/Active High)  
VSEN HYS  
VIN  
M3  
M5  
RSEN=RA+RB+RC  
M7  
M6  
+
Rp  
Rn  
DELAY/  
MRB  
CONTROL  
BLOCK  
-
SURGE  
VOLTAGE  
PROTECT  
BLOCK  
RA  
RESET  
VREF  
M2  
M1  
M4  
RB  
RC  
Cd/MRB  
VSS  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
(2)XC6132C Series E/F/H/K/M type (RESETB OUTPUT: CMOS/Active Low)  
HYS  
VSEN  
VIN  
M3  
M5  
M4  
RSEN=RA+RB+RC  
M7  
M6  
+
Rp  
Rn  
DELAY/  
MRB  
CONTROL  
BLOCK  
-
SURGE  
VOLTAGE  
PROTECT  
BLOCK  
RA  
RB  
RESETB  
VREF  
M2  
M1  
Cd/MRB  
RC  
VSS  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
2/30  
XC6132  
Series  
BLOCK DIAGRAMS (Continued)  
(3)XC6132N Series A/B/C/D/L type (RESET OUTPUT: Nch open drain/Active High)  
VSEN HYS  
VIN  
M3  
M5  
RSEN=RA+RB+RC  
+
-
Rp  
Rn  
DELAY/  
MRB  
CONTROL  
BLOCK  
SURGE  
VOLTAGE  
PROTECT  
BLOCK  
RA  
RB  
RESET  
VREF  
M2  
M1  
M4  
M6  
Cd/MRB  
RC  
VSS  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
(4)XC6132N Series E/F/H/K/M type (RESETB OUTPUT: Nch open drain/Active Low)  
HYS  
VSEN  
VIN  
M3  
M5  
M4  
RSEN=RA+RB+RC  
+
-
Rp  
Rn  
DELAY/  
MRB  
CONTROL  
BLOCK  
SURGE  
VOLTAGE  
PROTECT  
BLOCK  
RA  
RB  
RESETB  
VREF  
M2  
M1  
M6  
Cd/MRB  
RC  
VSS  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
3/30  
XC6132 Series  
PRODUCT CLASSIFICATION  
Ordering Information  
XC6132①②③④⑤⑥-⑦  
(*1)  
DESIGNATOR  
ITEM  
SYMBOL  
C
DESCRIPTION  
CMOS output  
Output Configuration  
N
Nch open drain output  
e.g. 1.0V =1, =0  
Refer to Selection Guide  
SOT-26 (3,000pcs/Reel)  
USP-6C (3,000pcs/Reel)  
②③  
Detect Voltage  
TYPE  
0820  
AM  
MR-G  
ER-G  
(*1)  
⑤⑥-⑦  
Packages (Order Unit)  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
Selection Guide  
TYPE  
RESET/RESETB OUTPUT  
DELAY(Rp:Rn)  
HYSTERESIS  
A
B
C
D
L
Active High(*2)  
10  
144k0Ω  
144k18kΩ  
144k144kΩ  
288k144kΩ  
11k144kΩ  
144k0Ω  
0.1%(TYP)  
10.125  
11  
21  
0.0761  
10  
E
F
Active Low(*2)  
10.125  
11  
144k18kΩ  
144k144kΩ  
288k144kΩ  
11k144kΩ  
H
K
M
21  
0.0761  
(*2) ”Active High” is H level when detection occurs, and “Active Low” is L level when detection occurs.  
4/30  
XC6132  
Series  
PIN CONFIGURATION  
A/B/C/D/L type  
VSEN  
4
Cd/MRB VSS  
6
5
1 HYS  
6
5
VSEN  
VSS  
2 RESET  
3 VIN  
Cd/MRB 4  
1
2
3
VIN  
RESET HYS  
SOT-26  
(TOP VIEW)  
USP-6C  
(BOTTOM VIEW)  
E/F/H/K/M type  
VSEN  
4
Cd/MRB VSS  
6
5
1 HYS  
6
5
VSEN  
VSS  
2 RESETB  
3 VIN  
Cd/MRB 4  
1
2
3
VIN RESETB HYS  
SOT-26  
USP-6C  
(BOTTOM VIEW)  
(TOP VIEW)  
*The dissipation pad for the USP-6C package should be solder-plated in reference mount pattern and metal masking so as to  
enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to VSS (No.  
5) pin.  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
SOT-26 USP-6C  
1
3
VIN  
RESETB  
RESET  
HYS  
Power Input  
Reset Output (Active Low)(*1)  
Reset Output (Active High)(*1)  
Adjustable Pin for Hysteresis Width  
Voltage Sense  
2
2
3
4
5
1
6
5
VSEN  
VSS  
Ground  
Adjustable Pin for Delay Time/  
Manual Reset  
6
4
Cd/MRB  
(*1) Refer to the in Ordering Information table.  
5/30  
XC6132 Series  
FUNCTION CHART  
PIN  
SIGNAL  
NAME  
STATUS  
L
H
Forced Reset  
For details, refer to " Function Chart "  
Normal Operation  
Cd/MRB  
OPEN  
Function Chart  
1.6VVIN6.0V  
Transition of VRESETB Condition  
Transition of VRESET Condition  
VSEN  
VCd/MRB  
TYPE:A/B/C/D/L  
TYPE:E/F/H/K/M  
V
Cd/MRBVMRL  
Reset (High Level)(*2)  
Reset (Low Level)( *1)  
VSENVDF+VHYS  
V
Cd/MRBVMRH  
Cd/MRBVMRL  
Cd/MRBVMRH  
Release (Low Level)(*1)  
Reset (High Level)( *2)  
Undefined(*3)  
Release (High Level)(*2)  
Reset (Low Level)( *1)  
Undefined(*3)  
V
VSENVDF  
V
(*1) CMOS output: VIN × 0.1 or less, N-ch open drain output, pull-up voltage × 0.1 or less.  
(*2) CMOS output: VIN × 0.9 or higher, N-ch open drain output, pull-up voltage × 0.9 or higher.  
(*3) For details,refer to page 17Manual reset function.  
Note: If used with VINVSEN, the surge protection circuit will activate. Use with VINVSEN  
.
ABSOLUTE MAXIMUM RATINGS  
Ta=25℃  
PARAMETER  
SYMBOL  
RATINGS  
UNITS  
Input Voltage  
VSEN Pin Voltage  
HYS Pin Voltage  
Cd/MRB Pin Voltage  
VIN  
VSEN  
-0.3+7.0  
V
V
-0.3+VIN+0.3 or +7.0(*1)  
VHYS  
-0.3+7.0  
V
VCd/MRB  
-0.3+VIN+0.3 or +7.0(*1)  
V
XC6132C(*2)  
XC6132N(*3)  
-0.3+VIN+0.3 or +7.0(*1)  
V
Output Voltage  
VRESETB VRESET  
ICd/MRB  
IRBOUT IROUT  
-0.3+7.0  
±5.0  
V
Cd/MRB Pin Current  
mA  
mA  
mA  
mA  
mA  
mA  
V
XC6132C(*2)  
XC6132N(*3)  
±50  
Output Current  
+50  
HYS Pin Current  
IHYS  
+50  
VSEN Pin Surge Current(+)  
VSEN Pin Surge Current(-)  
VSEN Pin Surge Voltage(+)  
VSEN Pin Surge Voltage(-)  
ISENSURGE(+)  
ISENSURGE(-)  
VSENSURGE(+)  
VSENSURGE(-)  
+2.5(*4)  
-2.5(*5)  
+7.0(*4)  
-0.9 (*5)  
250  
V
SOT-26  
USP-6C  
mW  
mW  
Power Dissipation  
Pd  
100  
Operating Ambient Temperature  
Storage Temperature  
Topr  
Tstg  
-40+125  
-55+125  
* All voltages are described based on the VSS  
.
(*1) The maximum value should be either VIN+0.3 or +7.0 in the lowest.  
(*2) CMOS Output  
(*3) N-ch Open Drain Output  
(*4) Transient200ms.  
(*5) Transient20ms.  
6/30  
XC6132  
Series  
ELECTRICAL CHARACTERISTICS  
Ta=25℃  
-40℃≦Ta125(*7)  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS CIRCUIT  
MIN. TYP. MAX. MIN. TYP. MAX.  
Operating Voltage  
VSEN Input Voltage  
VIN  
1.6  
0
6.0  
6.0  
1.6  
0
6.0  
6.0  
V
V
VSEN  
VDF(T)  
-18mV  
VDF(T)  
VDF(T) VDF(T)  
+18mV -36mV  
VDF(T) VDF(T)  
×1.012 ×0.973  
VDF(T)  
+36mV  
VDF(T)  
VDF(T)(*1)=0.8V1.4V  
VDF(T)(*1)=1.5V2.0V  
VDF(T)  
VDF(T)  
VDF(T)  
VDF(T)  
V
V
Detect Voltage  
VDF  
×0.988  
×1.027  
Temperature  
VDF/  
-40℃≦Topr125℃  
-
-
-
±50  
VDF  
-
-
-
-
±50  
VDF  
-
ppm/℃  
Characteristics  
(ToprVDF)  
VDF  
VDF  
Hysteresis Width  
Supply Current 1  
VHYS  
V
×0.001 ×0.007  
×0.001 ×0.01  
VSEN=VDF×0.9V,  
VINRefer to V-1(*2)  
VSEN=VDF×0.9V,  
VIN=6.0V  
E-1(*3)  
E-2(*3)  
Iss1  
-
-
-
1.36 2.80  
E-3(*3)  
-
-
-
1.36 4.22  
E-4(*3)  
µA  
VSEN=VDF×1.1V,  
VINRefer to V-1(*2)  
VSEN=VDF×1.1V,  
VIN=6.0V  
Supply Current 2  
Iss2  
1.65 3.25  
1.65 4.97  
SENSE Resistance  
Release Delay  
Resistance  
RSEN  
VIN=6.0V,VSEN=6.0V  
E-5(*4)  
-
E-6(*4)  
-
MΩ  
VIN=6.0V,VSEN=6.0V,  
130  
259  
8.3  
144  
288  
11  
158  
122  
245  
7.6  
144  
288  
11  
166  
V
Cd/MRB=0V  
(TYPE:A/B/C/E/F/H)  
Release Delay  
Resistance  
VIN=6.0V,VSEN=6.0V,  
Cd/MRB=0V  
Rp  
317  
18.4  
158  
331  
20.0  
166  
V
(TYPE:D/K)  
Release Delay  
Resistance  
VIN=6.0V,VSEN=6.0V,  
Cd/MRB=0V  
kΩ  
V
(TYPE:L/M)  
Detect Delay  
Resistance  
VIN=6.0V,VSEN=0V,  
Cd/MRB=6.0V  
130  
16.8  
144  
18  
122  
144  
18  
V
(TYPE:C/D/H/K/L/M)  
Detect Delay  
Resistance  
Rn  
VIN=6.0V,VSEN=0V,  
Cd/MRB=6.0V  
19.1 16.2  
19.8  
V
(TYPE:B/F)  
Release Delay  
Time(*5)  
VIN=6.0V,  
tDR0  
-
-
20  
20  
102  
82  
-
-
20  
20  
136  
116  
VSEN=VDF×0.9VVDF×1.1V  
µs  
Detect Delay  
Time(*6)  
VIN=6.0V,  
tDF0  
VSEN=VDF×1.1VVDF×0.9V  
Unless otherwise specified in measurement conditions, Cd/MRB pin and HYS pin are open.  
(*1)  
V
: Nominal detect voltage  
DF(T)  
(*2) For VIN conditions, refer to SPEC TABLE (p.10).  
(*3) Refer to SPEC TABLE (p.10).  
(*4) Refer to SPEC TABLE (p.11).  
(*5) RESETB product: Time from when the VSEN pin voltage reaches the release voltage until the reset output pin reaches 5.4V  
(VIN×90%).  
RESET product: Time from when the VSEN pin voltage reaches the release voltage until the reset output pin reaches 0.6V(VIN×10%)  
Release voltage (VDR)=Detect voltage (VDF)+Hysteresis width (VHYS).  
(*6) RESETB product: Time from when the VSEN pin voltage reaches the detect voltage until the reset output pin reaches 0.6V(VIN×10%).  
RESET product: Time from when the VSEN pin voltage reaches the detect voltage until the reset output pin reaches 5.4V(VIN×90%).  
(*7) The ambient temperature range (-40℃≦Ta125) is a design Value.  
7/30  
XC6132 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
Ta=25℃  
-40℃≦Ta125(*12)  
TYP. MAX.  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
mA  
CIRCUIT  
MIN. TYP. MAX. MIN.  
Hysteresis Output  
Current  
VIN=1.6V,  
SEN=0V,VHYS=0.3V  
IHYSOUT  
1.9  
-
3.4  
-
0.7  
-
3.4  
-
V
Hysteresis Output  
Leakage Current  
VIN=6.0V,VSEN=6.0V,  
IHYSLEAK  
0.01  
0.1  
0.01  
1.0  
µA  
V
HYS=6.0V  
V
SEN=VDF×0.9V,  
Nch. VRESETB=0.3V  
VIN=1.6V(*9)  
VIN=2.0V  
1.9  
4.2  
3.4  
6.0  
-
-
-
-
-
-
0.7  
2.0  
4.3  
6.2  
7.3  
8.1  
3.4  
6.0  
-
-
-
-
-
-
IRBOUTN  
VIN=3.0V  
8.6  
10.5  
14.1  
17.0  
19.2  
10.5  
14.1  
17.0  
19.2  
VIN=4.0V  
12.7  
15.6  
17.8  
RESETB  
VIN=5.0V  
mA  
Output Current  
VIN=6.0V  
VSEN=VDF×1.1V,  
Pch.  
V
RESETB=VIN-0.3V  
IRBOUTP  
VIN=1.6V(*10)  
-
-
-
-1.2  
-3.0  
-4.9  
-0.7  
-2.5  
-4.4  
-
-
-
-1.2  
-3.0  
-4.9  
-0.48  
-1.1  
VIN=3.0V  
VIN=6.0V  
-2.5  
VSEN=VDF×1.1V,  
Nch. VRESET=0.3V  
VIN=1.6V(*10)  
VIN=2.0V(*11)  
VIN=3.0V  
1.9  
4.2  
3.4  
6.0  
-
-
-
-
-
-
0.7  
2.0  
4.3  
6.2  
7.3  
8.1  
3.4  
6.0  
-
-
-
-
-
-
IROUTN  
8.6  
10.5  
14.1  
17.0  
19.2  
10.5  
14.1  
17.0  
19.2  
VIN=4.0V  
12.7  
15.6  
17.8  
RESET  
VIN=5.0V  
mA  
Output Current  
VIN=6.0V  
VSEN=VDF×0.9V,  
Pch. VRESET=VIN-0.3V  
VIN=1.6V(*9)  
VIN=3.0V  
IROUTP  
-
-
-
-1.2  
-3.0  
-4.9  
-0.7  
-2.5  
-4.4  
-
-
-
-1.2  
-3.0  
-4.9  
-0.48  
-1.1  
VIN=6.0V  
-2.5  
VIN=6.0V,VSEN=6.0V,  
Nch. VRESETB=6.0V  
VIN=6.0V,VSEN=0V,  
Pch. VRESETB=0V  
(*8)  
ILEAKN  
-
-
-
-
0.01  
-0.01  
0.01  
0.1  
-
-
-
-
-
0.01  
-0.01  
0.01  
1.0  
-
RESETB Output  
Leakage Current  
ILEAKP  
µA  
VIN=6.0V,VSEN=0V,  
Nch. VRESET=6.0V  
VIN=6.0V,VSEN=6.0V,  
Pch. VRESET=0V  
(*8)  
ILEAKN  
0.1  
-
1.0  
-
RESET Output  
Leakage Current  
ILEAKP  
-0.01  
-0.01  
Unless otherwise specified in measurement conditions, Cd/MRB pin and HYS pin are open.  
(*8) Max. value is for XC6132N (Nch open drain).  
(*9) For 0.8VVDF(T)1.7V only.  
(*10) For 0.8VVDF(T)1.4V only.  
(*11) For 0.8VVDF(T)1.8V only.  
(*12) The ambient temperature range (-40℃≦Ta125) is a design Value.  
8/30  
XC6132  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
Ta=25℃  
-40℃≦Ta125(*16)  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS CIRCUIT  
MIN.  
0.92  
TYP.  
MAX.  
MIN.  
TYP.  
MAX.  
VIN=1.6V,  
Cd/MRB=0.5V,  
Cd Pin Sink Current  
(TYPE:A/E)  
ICd  
V
1.2  
0.66  
1.2  
mA  
V
VSEN=0V  
Cd Pin Threshold  
Voltage(Release)  
VIN:Refer to V-1(*13)  
,
VTCd1  
V
SEN=0VVDF×1.1V  
VIN:Refer to V-1(*13)  
SEN=VDF×1.1V0V  
VIN:1.6V6.0V,  
SEN= VDF×1.1V,  
VIN×0.46 VIN×0.5 VIN×0.54 VIN×0.46 VIN×0.5 VIN×0.54  
Cd Pin Threshold  
Voltage(Detect)  
,
VTCd2  
V
MRB High Level  
Voltage  
VMRH  
V
VIN×0.55  
VIN  
VIN×0.55  
VIN  
V
V
VIN>VSEN  
VIN:1.6V6.0V,  
MRB Low Level  
Voltage  
VMRL  
V
SEN= VDF×1.1V,  
0
VIN×0.18  
0
VIN×0.18  
VIN>VSEN  
VIN:Refer to V-1(*13)  
,
(*14)  
5.0  
-
-
-
-
5.0  
-
-
-
-
tMRIN  
V
SEN=VDF×1.1V,  
Apply pulse from  
DF×1.1V to 0V to the  
MRB pin.  
MRB Minimum  
Pulse Width  
µs  
(*15)  
V
32.0  
32.0  
tMRIN  
Unless otherwise specified in measurement conditions, Cd/MRB pin and HYS pin are open.  
(*13) For VIN conditions, refer to SPEC TABLE (p.10).  
(*14) Specification is guaranteed for types A/B/C/D/L/E/F/H/K/M of the CMOS output product and types E/F/H/K/M of the Nch open drain  
product.  
(*15) Specification is guaranteed for types A/B/C/D/L of the Nch open drain output product.  
(*16) The ambient temperature range (-40℃≦Ta125) is a design Value.  
9/30  
XC6132 Series  
ELECTRICAL CHARACTERISTICS (SPEC TABLE)  
Table of Characteristics by Voltage Setting  
NOMINAL  
DETECT  
E-1  
E-2  
E-3  
E-4  
V-1  
Ta=25℃  
-40Ta125℃  
Ta=25℃  
-40Ta125℃  
INPUT  
VOLTAGE  
(V)  
VOLTAGE(V)  
Supply Current 1(µA)  
MAX. TYP.  
Supply Current 2(µA)  
MAX. TYP.  
VDF(T)  
TYP.  
MAX.  
TYP.  
MAX.  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
1.6  
1.28  
2.65  
1.28  
3.92  
1.32  
2.75  
1.32  
4.26  
VDF×1.1  
1.30  
2.70  
1.30  
4.02  
1.43  
2.91  
1.43  
4.49  
10/30  
XC6132  
Series  
ELECTRICAL CHARACTERISTICS (SPEC TABLE) (Continued)  
Table of Characteristics by Voltage Setting  
NOMINAL  
E-5(Ta=25)  
E-6(-40Ta125)  
SENSE Resistance(M)  
DETECT  
VOLTAGE(V)  
VDF(T)  
SENSE Resistance(M)  
MIN.  
7.5  
TYP.  
20.7  
23.3  
26.1  
28.6  
31.3  
33.9  
36.6  
38.6  
39.2  
39.8  
40.4  
40.2  
39.9  
MIN.  
5.9  
TYP.  
20.7  
23.3  
26.1  
28.6  
31.3  
33.9  
36.6  
38.6  
39.2  
39.8  
40.4  
40.2  
39.9  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
8.6  
6.8  
10.0  
11.0  
12.2  
13.4  
14.5  
15.7  
16.9  
18.1  
19.3  
19.0  
18.6  
7.6  
8.5  
9.3  
10.2  
11.1  
11.9  
12.8  
13.6  
14.5  
14.3  
14.0  
11/30  
XC6132 Series  
TEST CIRCUITS  
CIRCUIT①  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
V
V
VSS  
CIRCUIT②  
A
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
VSS  
CIRCUIT③  
VIN  
A
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
VSS  
CIRCUIT④  
VIN  
VSEN  
RESET  
RESETB  
A
Cd/MRB  
HYS  
VSS  
*“RESET” is A/B/C/D/L type, and “RESETB” is E/F/H/K/M type.  
12/30  
XC6132  
Series  
TEST CIRCUITS (Continued)  
CIRCUIT⑤  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
Wave Form Measure Point  
VSS  
CIRCUIT⑥  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
A
HYS  
VSS  
CIRCUIT⑦  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
A
VSS  
CIRCUIT⑧  
VIN  
VSEN  
RESET  
RESETB  
A
Cd/MRB  
HYS  
VSS  
*“RESET” is A/B/C/D/L type, and “RESETB” is E/F/H/K/M type.  
13/30  
XC6132 Series  
TEST CIRCUITS (Continued)  
CIRCUIT⑨  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
V
V
V
VSS  
CIRCUIT⑩  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
V
V
VSS  
CIRCUIT⑪  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
Wave Form Measure Point  
V
VSS  
*“RESET” is A/B/C/D/L type, and “RESETB” is E/F/H/K/M type.  
14/30  
XC6132  
Series  
OPERATIONAL DESCRIPTION  
<Basic Operation>  
Fig. 1 shows a typical block diagram. Fig. 2 shows the timing chart of Fig. 1.  
R2  
VSEN  
HYS  
VIN  
M3  
M5  
M4  
RSEN=RA+RB+RC  
M7  
M6  
+B  
+
Rp  
Rn  
DELAY/  
MRB  
CONTROL  
BLOCK  
-
RA  
SURGE  
RESETB  
VOLTAGE  
PROTECT  
BLOCK  
VREF  
M2  
M1  
R1  
RB  
RC  
VDD  
Cd/MRB  
RESET  
SW  
Cd  
VSS  
* The XC6132N series (N-ch open drain output) requires a resistor to pull up the output.  
Fig. 1: Typical block diagram (Active Low product)  
VSEN pin voltage:VSEN(MIN.:0V,MAX.:6.0V)  
Release voltage:VDF+VHYS  
Detect voltage:VDF  
Cd/MRB pin voltage:VCd/MRB(MIN.:VSS,MAX.:VIN)  
Cd pin threshold voltage:VTCd1,VTCd2  
Output voltage:VRESETB(MIN.:VSS,MAX.:VIN)  
DF  
DR  
④ ⑤  
Fig. 2: Timing chart of Fig. 1(VIN=6.0VActive Low product)  
In the initial state, a voltage that is sufficiently high (MAX.:6.0V) with respect to the release voltage is applied to the VSEN pin,  
and the delay capacitance Cd is charged up to the power input pin voltage.  
The VSEN pin voltage starts to fall, and during the time until it reaches the detect voltage (VSENVDF),  
VRESETB is High level (=VIN).  
Note: If the pull-up resistor is connected to a power supply other than the power input pin VIN when using the Nch open drain  
output (XC6132N), High level will be the voltage of the power supply to which the pull-up resistor is connected.  
15/30  
XC6132 Series  
OPERATIONAL DESCRIPTION (Continued)  
The VSEN pin voltage continues to drop, and when it reaches the detect voltage (VSEN=VDF), the Nch transistor for delay  
capacitance discharge turns ON, and discharge of the delay capacitance Cd starts through the delay resistor Rn.  
The time from VSEN=VDF until VRESETB reaches Low level is the detect delay time tDF (the detect time when the capacitor is not  
connected to the Cd/MRB pin is tDF0). The delay capacitance Cd is discharged through the delay resistor Rn when it is above  
the threshold voltage of VTCD2. When it is below the threshold voltage of VTCD2, the delay capacitance Cd is discharged faster  
through the internal built-in low impedance switch.  
During the time that the VSEN pin voltage is below the detect voltage VDF, the delay capacitance Cd discharges to ground level.  
The VSEN pin starts rising again, and during the time until it reaches the release voltage (VSEN<VDF+VHYS), VRESETB holds Low  
level.  
The VSEN pin voltage continues to rise, and when it reaches the release voltage (VDF+VHYS), the Nch transistor for delay  
capacitance discharge turns OFF, and charging of the delay capacitance Cd through the delay resistor Rp starts.The delay  
capacitance Cd is discharged through the delay resistor Rp when it is below the threshold voltage of VTCD1. When it is above the  
threshold voltage of VTCD1, the delay capacitance Cd is discharged faster through the internal built-in low impedance switch.  
When the delay capacitance pin voltage reaches VTCd1, VRESETB changes to High level.  
The time from VSEN=VDF+VHYS until the VRESETB logic changes is the release delay time tDR(the release time when the capacitor  
is not connected to the Cd/MRB pin is tDR0).  
During the time that the VSEN pin voltage is higher than the detect voltage (VSEN>VDF), VRESETB holds High level.  
The above operation description is for an Active Low detection product.  
For an Active High product, reverse the logic of the reset pin.  
In the factory shipping state, internal hysteresis is not added (VHYS =VDFx0.001V(TYP.)), so please add a hysteresis of 1% or  
more with an external resistor. For the calculation method, refer to <Hysteresis external adjustment function> below. Also  
please refer to “Notes on use 56” on page 19.  
<Hysteresis external adjustment function>  
Hysteresis can be added as desired by inserting a resistor between the node to monitor and VSEN pin, and between the VSEN pin  
and HYS pin.  
The calculation method for adding hysteresis by increasing only the release voltage and leaving the detect voltage unchanged  
is given below.  
For the circuit schematic, refer to Fig. 3: Hysteresis Augmentation Circuit 1.  
VDR(H)=VDR(T)×{1+(RD/RE)}  
Hysteresis width=VDR(H)-VDF(T)  
Example 1: RD=200k, RE=200k, VDF(T)=1.000V, VDR(T)=1.001V.  
VDR(H)=2.002V  
Hysteresis width=2.002-1.000 =1.002V  
The calculation method for detecting high voltage and adding hysteresis is shown below.  
For the circuit schematic, refer to Fig. 4: Hysteresis Augmentation Circuit 2.  
VDF(H)=VDF(T)×{1+(R1/R2)}  
VDR(H)=VDR(T)×{1+(R1/R2)+(R1/R3)}  
Hysteresis width=VDR(H)-VDF(H)  
Example 2: R1=R3=500k, R2=200k, VDF(T)=2.000V, VDR(T)=2.002V.  
VDF(H)=7.0V  
VDR(H)=9.009V  
Hysteresis width=9.009-7.0=2.009V  
(Note 1) VDF(H) is the detect voltage after external adjustment.  
(Note 2) VDR(H) is the release voltage after external adjustment.  
(Note 3) VDR(T) is the release voltage.  
(Note 4) VDF(T) is the detect voltage.  
(Note 5) The R2 resistance is in parallel with the internal RSEN resistance, and thus to increase the accuracy of the detect  
voltage and release voltage after external adjustment, select an R2 resistance that is sufficiently small with respect to the RSEN  
resistance. For RSEN resistance values, refer to SPEC TABLE (p.11).  
(Note 6) If high voltage is to be detected, divide the voltage with resistors R1 and R2 so that VSEN pin6V. The battery voltage  
(+B) assumes up to 12V in this case.  
+B  
VDD  
+B  
VDD  
R3  
RE  
VIN  
VIN  
R1  
Rpull(*1)  
RD  
HYS  
VSEN  
HYS  
VSEN  
Rpull(*1)  
RESET  
RESETB  
RESET  
RESETB  
R2  
Cd/MRB  
Cd/MRB  
RESET  
SW  
Cd  
RESET  
SW  
Cd  
VSS  
VSS  
GND  
GND  
Fig. 3: Hysteresis Augmentation Circuit 1  
Fig. 4: Hysteresis Augmentation Circuit 2  
16/30  
XC6132  
Series  
OPERATIONAL DESCRIPTION (Continued)  
<Release delay time / detect delay time>  
The release delay time and detect delay time are determined by the delay resistors (Rp and Rn) and the delay capacitance Cd.  
The ratio of the delay resistances (Rp and Rn) is selectable from 5 options. The delay time is adjustable using the combination  
of delay resistance and delay capacitance value. (Refer to “Selection Guide”)  
The release delay time (tDR) is calculated using Equation (1).  
tDR=Rp×Cd×{-ln(1-VTCd1/VIN)}+tDR0 …(1)  
* ln is the natural logarithm.  
The delay capacitance pin threshold voltage is VTCd1=VIN/2(TYP.), and thus when  
tDR0 can be neglected, the release delay time can be calculated simply using Equation (2).  
t
DR=Rp×Cd×[-ln{1-(VIN/2)/VIN}]=Rp×Cd×0.693 …(2)  
The detect delay time (tDF) is calculated using Equation (3).  
DF=Rn×Cd×{-ln(VTCd2/VIN)}+tDF0 …(3) * ln is the natural logarithm.  
The delay capacitance pin threshold voltage is VTCd2=VIN/2 (TYP.), and thus when  
DF0 can be neglected, the detect delay can be calculated simply using Equation (4).  
t
t
tDF=Rn×Cd×{-ln(VIN/2)/VIN}=Rn×Cd×0.693 …(4)  
Example 3: When type A is selected (RpRn=144k0),the delay times are as follows:  
If Cd is set to 0.1uF,  
tDR=144×103×0.1×10-6×0.693=10ms  
t
DF is the detect delay time (tDFO) when the delay capacitance Cd is not connected.  
Example 4: When type B is selected (RpRn=144k18k),the delay times are as follows:  
If Cd is set to 0.1uF,  
tDR=144×103×0.1×10-6×0.693=10ms  
tDF =18×103×0.1×10-6×0.693=1.25ms  
(Note 7) The release delay times tDR in Examples 3 and 4 are the values calculated from Equation (2).  
(Note 8) The detect delay time tDF in Example 4 is the value calculated from Equation (4).  
(Note 9) Note that the delay times will vary depending on the actual capacitance value of the delay capacitance Cd.  
<Manual reset function>  
The Cd/MRB pin can also be used as a manual reset pin.  
When the Cd and RESET switch are connected to the Cd/MRB pin (refer to Fig.1), and under the release condition, if the  
RESET switch turns on, then the detect signal is generated at the RESET/RESETB pin forcibly.  
For Active Low type (RESETB), under the release condition, if the RESET switch turns on, then the voltage at the RESETB pin  
changes from H to L after the detect delay time.  
For Active High type (RESET), under the release condition, if the RESET switch turns on, then the voltage at the RESET pin  
changes from L to H after the detect delay time.  
Under the detect condition, the condition will be kept even if the RESET switch turns on and off.  
In the case that either H level or L level is fed to the Cd/MRB pin without the RESET switch, the behavior of the XC6132 follows  
the timing chart in Fig. 5.  
L level is fed to the MRB pin under the detect condition, the RESET switch will be kept.  
H level is fed to the MRB pin under the detect condition, the RESET switch will be undefined.  
Even though the voltage at the VSEN pin changes from a higher voltage than the detect voltage to a lower voltage, as long as H  
level is fed to the MRB pin, the release condition is kept.  
If H level or L level is fed to the Cd/MRB pin forcibly, then even though Cd is connected to the pin, the XC6132 can’t have any  
delay time.  
Release voltage:VDF+VHYS  
Detect voltage:VDF  
VSEN pin voltage:VSENMIN.:0V,MAX.:6.0V)  
MRB High level voltage:VMRH  
Cd pin threshold voltage:VTCd  
MRB Low level voltage:VMRL  
Cd/MRB pin voltage:VCd/MRB (MIN.:VSS,MAX.:VIN  
)
Release voltage:VDF+VHYS  
Detect voltage:VDF  
Undefined  
Output voltage:VRESETB  
(MIN.:VSS,MAX.:VIN(CMOS),Vpull(Nch open drain))  
Fig. 5: Manual reset operation using the Cd/MRB pin (VIN =6.0V, Active Low product)  
17/30  
XC6132 Series  
OPERATIONAL DESCRIPTION (Continued)  
<Surge voltage protection function>  
A surge voltage protection circuit is incorporated into the VSEN pin. A surge current of +2.5mA(200ms), -2.5mA(20ms) is  
possible.  
A positive surge current (ISENSURGE(+)) flows when M1 is turned ON by a SURGE VOLTAGE PROTECT BLOCK signal.  
A negative surge current (ISENSURGE(-)) is made to flow by the M1 parasitic diode.  
When a positive surge current flows and the surge voltage protection circuit activates, the VSEN pin voltage rises in proportion to  
the VIN voltage and surge current, so adjust the ISEN current with an external resistor so that the VSEN pin voltage does not  
exceed the operating voltage. Refer to Fig. 7.  
The VSEN voltage rise is most pronounced at high temperature.  
Example 5When VIN=3.3V and ISENSURGE(+)=2.5mA (MAX), the VSEN pin voltage from Fig. 7 is 5.6V. If the maximum battery  
voltage (+B) pin voltage is 100V, a voltage of (100-5.6)=94.4V will be applied to the R1 resistor. To keep the surge current from  
exceeding 2.5mA, use a resistance of R1=V/I=94.4/0.0025=37.8kor above.  
Example 6When VIN = 3.3V and ISENSURGE(-) = -2.5mA(MAX), Vf of the parasitic diode M1 is -0.9V (MAX).  
If the battery voltage (+B) maximum is -100V, the voltage applied to the R1 resistor will be {-100 - (-0.9)} = -99.1V.  
To limit the surge current to -2.5mA, set the R1 resistance to R1 = V/I= -99.1/-0.0025 = 39.6kor higher.  
If the surge voltage on the positive side is different from the negative side, calculate the R1 resistance value using the side  
where the voltage difference applied to the R1 resistor is greatest.  
+B  
R1  
Resistance for  
hysteresis external  
adjustment  
HYS  
R3  
R2  
VSEN  
M3  
RSEN=RA+RB+RC  
RA  
RB  
+
-
ISENSURGE(+)  
SURGE  
M1  
VREF  
M2  
VOLTAGE  
PROTECT  
BLOCK  
VIN  
RC  
ISENSURGE(-)  
Surge voltage protect circuit  
Fig. 6: Surge voltage protect circuit  
Fig. 7: Example of VIN-VSEN characteristics  
18/30  
XC6132  
Series  
NOTES ON USE  
1) Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is  
liable to malfunction should the ratings be exceeded.  
2) The power input pin voltage may fall due to the flow through current during IC operation and the resistance component  
between the power supply and the power input pin.  
In the case of CMOS output, a drop in the power input pin voltage may occur in the same way due to the output current. When  
this happens, if the power input pin voltage drops below the minimum operating voltage, a malfunction may occur.  
3) Note that large, sharp changes of the power input pin voltage may lead to malfunction.  
4) Power supply noise is sometimes a cause of malfunction. Sufficiently test using the actual device, such as inserting a  
capacitor between VIN and GND.  
5) Internal hysteresis is not initially included with the product. Connect external resistors to the VSEN pin and HYS pin to add a  
hysteresis of 1% or more. Note that if hysteresis is not added with external resistors, oscillation will occur when switching takes  
place at the detect voltage or the release voltage.  
6) There is a possibility that oscillation will occur if the resistances of the VSEN pin and HYS pin are high. Use a resistance of  
1Mor less between the node to monitor and VSEN pin, and between the VSEN pin and HYS pin.  
7) Exercise caution if VIN and VSEN are started in common, as the output will be undefined until VIN reaches the operating  
voltage.  
8) For a manual reset function, in case when the function is activated by feeding either MRB H level or MRB L level to Cd/MRB  
pin instead of using a reset switch, please note these phenomena below;  
The RESET output signal will be undefined when MRB H is fed to Cd/MRB pin under the detect condition.  
The RESET output signal will be undefined based on the voltage relationship between VSEN pin and Cd/MRB pin.  
9) When an N-ch open drain output is used, the VRESETB voltage at detection and release is determined by the pull-up resistance  
connected to the output pin. Refer to the following when selecting the resistance value.  
At detection:  
VRESETB=Vpull/(1+Rpull/RON)  
VpullVoltage after pull-up  
RON(*1)ON resistance of N-ch driver M6 (calculated from VRESETB/IRBOUTN based on electrical characteristics)  
Example: When VIN=2.0V(*2), RON=0.3/4.2×10-3=71.4(MAX.).  
If it is desired to make VRESETB at detection 0.1V or less when Vpull is 3.0V,  
Rpull={(Vpull/VRESETB)-1}×RON={(3/0.1)-1}×71.42.1kΩ  
Therefore, to make the output voltage at detection 0.1V or less under the above conditions, the pull-up resistance must be 2.1kor higher.  
(*1) Note that RON becomes larger as VIN becomes smaller.  
(*2) For VIN in the calculation, use the lowest value of the input voltage range you will use.  
At release:  
V
RESETB=Vpull/(1+Rpull/Roff)  
pull: Voltage after pull-up  
V
Roff: Resistance when N-ch driver M6 is OFF (calculated from VRESETB/ILEAKN based on electrical characteristics)  
Example: When Vpull is 6.0V, Roff=6/(0.1×10-6)=60M(MIN.). If it is desired to make VRESETB 5.99V or higher,  
Rpull={(Vpull/VRESETB)-1}×Roff={(6/5.99)-1}×60×106100kΩ  
Therefore, to make the output voltage at release 5.99V or higher under the above conditions, the pull-up resistance must be  
100kor less.  
10) If the discharge time of the delay capacitance Cd at detection is short and the delay capacitance Cd cannot be discharged to  
ground level, charging will take place at the next release operation with electric charge remaining in the delay capacitance Cd,  
and this may cause the release delay time to become noticeably short.  
11) If the charging time of the delay capacitance Cd at release is short and the delay capacitance Cd cannot be charged to the  
VIN level, the delay capacitance Cd will discharge from less than the VIN level at the next detection operation, and this may  
cause the detect delay time to become noticeably short.  
12) Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs  
and post-aging protection treatment when using Torex products in their systems.  
19/30  
XC6132 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Detect, Release Voltage vs. Ambient Temperature  
(2) Output Voltage vs Sense Voltage  
(3) Supply Current vs. Ambient Temperature  
(4) Supply Current vs. Input Voltage  
20/30  
XC6132  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(5) Sense Resistance vs Ambient Temperature  
(6) Delay Resistance vs Ambient Temperature  
21/30  
XC6132 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(7) Delay Time vs Ambient Temperature  
(8) Hysteresis Output Current vs Ambient Temperature  
(9) Hysteresis Output Current vs Input Voltage  
(10) Hysteresis Output Leakage Current vs Ambient Temperature  
(11) RESET Output Current vs Ambient Temperature  
22/30  
XC6132  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(11) RESET Output Current vs Ambient Temperature (Continued)  
(12) RESET Output Current vs Input Voltage  
(13) RESET Output Leakage Current vs Ambient Temperature  
(14) Cd Pin Sink Current vs Ambient Temperature  
(15) Cd Pin Sink Current vs Input Voltage  
23/30  
XC6132 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(16) Cd Pin Threshold Voltage vs Ambient Temperature  
(17) MRB High Level Threshold Voltage vs Ambient Temperature  
(18) MRB Low Level Threshold Voltage vs Ambient Temperature  
24/30  
XC6132  
Series  
PACKAGING INFORMATION  
SOT-26 (unit:mm)  
2.9±0.2  
+0.1  
0.4  
-0.05  
+0.1  
0.4  
-0.05  
6
5
4
0~0.1  
1234  
1
2
3
+0.1  
-0.05  
0.15  
(0.95)  
(0.95)  
SOT-26 Reference Pattern Layout (unit:mm)  
0.7  
0.95  
0.95  
25/30  
XC6132 Series  
PACKAGING INFORMATION (Continued)  
USP-6C (unit:mm)  
USP-6C Reference Pattern Layout (unit:mm)  
USP-6C Reference Metal Mask Design  
26/30  
XC6132  
Series  
PACKAGING INFORMATION (Continued)  
SOT-26 Power Dissipation (Toprmax+125)  
Power dissipation data for the SOT-26 is shown in this page.  
The value of power dissipation varies with the mount board conditions.  
Please use this data as the reference data taken in the following condition.  
40.0  
28.9  
1. Measurement Condition  
Condition: Mount on a board  
Ambient: Natural convection  
Soldering: Lead (Pb) free  
Board: Dimensions 40 x 40 mm (1600 mm2 in one side)  
Copper (Cu) traces occupy 50% of the board area  
In top and back faces  
(Board of SOT-26 is used)  
Material: Glass Epoxy (FR-4)  
Thickness: 1.6mm  
Through-hole 4 x 0.8 Diameter  
1.4  
2.54  
Evaluation Board (Unit: mm)  
2. Power Dissipation vs. Ambient Temperature  
Board Mount (Tjmax=125)  
Ambient Temperature ()  
Power Dissipation Pd (mW)  
Thermal Resistance (/W)  
25  
85  
600  
240  
166.67  
Pd vs Ta (Ta=125℃)  
700  
600  
500  
400  
300  
200  
100  
0
25  
45  
65  
85  
105  
125  
Ambient Temperature : Ta(℃)  
27/30  
XC6132 Series  
PACKAGING INFORMATION (Continued)  
USP-6C Power Dissipation (Toprmax+125)  
Power dissipation data for the USP-6C is shown in this page.  
The value of power dissipation varies with the mount board conditions.  
Please use this data as the reference data taken in the following condition.  
1. Measurement Condition  
Condition: Mount on a board  
Ambient: Natural convection  
Soldering: Lead (Pb) free  
Board: Dimensions 40 x 40 mm (1600 mm2 in one side)  
Copper (Cu) traces occupy 50% of the board  
area  
In top and back faces  
(Board of SOT-26 is used)  
Material: Glass Epoxy (FR-4)  
Thickness: 1.6mm  
Evaluation Board (Unit: mm)  
2. Power Dissipation vs. Ambient Temperature  
Board Mount (Tjmax=125)  
Ambient Temperature ()  
Power Dissipation Pd (mW)  
Thermal Resistance (/W)  
25  
85  
1000  
400  
100.00  
Pd vs Ta (Ta=125℃)  
1200  
1000  
800  
600  
400  
200  
0
25  
45  
65  
85  
105  
125  
Ambient Temperature : Ta(℃)  
28/30  
XC6132  
Series  
MARKING RULE  
SOT-26  
USP-6C  
6
5
4
1
2
3
6
5
4
1
2
3
represents products series  
MARK  
PRODUCT SERIES  
XC6132******-G  
X
②,③ represents internal sequential number  
01, ,09, 10, , 99, A0, , A9, B0, , B9, , Z9repeated.  
(G, I, J, O, Q, W excluded)  
④,⑤ represents production lot number  
0109, 0A0Z, 119Z, A1A9, AAAZ, B1ZZ in order.  
(G, I, J, O, Q, W excluded)  
* No character inversion used.  
29/30  
XC6132 Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
30/30  
配单直通车
XC6132N12FER-G产品参数
型号:XC6132N12FER-G
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:TOREX SEMICONDUCTOR LTD
包装说明:HVSON,
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.59
其他特性:DETECT VOLTAGE IS 1.2V
可调阈值:YES
模拟集成电路 - 其他类型:POWER SUPPLY SUPPORT CIRCUIT
JESD-30 代码:R-PDSO-N6
长度:2 mm
湿度敏感等级:1
信道数量:1
功能数量:1
端子数量:6
最高工作温度:125 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:HVSON
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, HEAT SINK/SLUG, VERY THIN PROFILE
峰值回流温度(摄氏度):260
座面最大高度:0.6 mm
最大供电电压 (Vsup):6 V
最小供电电压 (Vsup):1.6 V
标称供电电压 (Vsup):2 V
表面贴装:YES
技术:CMOS
温度等级:AUTOMOTIVE
端子面层:Nickel/Silver/Gold (Ni/Ag/Au)
端子形式:NO LEAD
端子节距:0.5 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:10
宽度:1.8 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!