欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • ACPL-332J-500E图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • ACPL-332J-500E 现货库存
  • 数量8503 
  • 厂家Avago 
  • 封装SO-16 
  • 批号24+ 
  • 只做原装正品现货销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • ACPL-332J-500E图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • ACPL-332J-500E 现货库存
  • 数量50600 
  • 厂家AVAGO/安华高 
  • 封装SOP16 
  • 批号2103+ 
  • 原装价格当天为准可含票
  • QQ:2885134398QQ:2885134398 复制
    QQ:2885134554QQ:2885134554 复制
  • 0755- QQ:2885134398QQ:2885134554
  • ACPL-332J-500E图
  • 集好芯城

     该会员已使用本站13年以上
  • ACPL-332J-500E 现货库存
  • 数量21098 
  • 厂家Avago(安华高) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • ACPL-332J-500E图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • ACPL-332J-500E 现货库存
  • 数量8000 
  • 厂家Avago(安华高) 
  • 封装SO-16 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • ACPL-332J-500E图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • ACPL-332J-500E 现货库存
  • 数量69850 
  • 厂家BROADCOM 
  • 封装
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • ACPL-332J图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • ACPL-332J 现货库存
  • 数量5120 
  • 厂家AVAGO 
  • 封装SOP-16 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • ACPL-332J-500E图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • ACPL-332J-500E 现货库存
  • 数量6851 
  • 厂家AVAGP 
  • 封装SOP16 
  • 批号24+ 
  • 全新原装现货,可开增值税发票,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • ACPL-332J-500E图
  • 深圳市楷兴电子科技有限公司

     该会员已使用本站7年以上
  • ACPL-332J-500E 现货库存
  • 数量89700 
  • 厂家AVAGO 
  • 封装SOP16 
  • 批号21+ 
  • 全新进口原装现货,代理渠道假一赔十
  • QQ:2881475151QQ:2881475151 复制
  • 0755-83016042 QQ:2881475151
  • ACPL-332J图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • ACPL-332J 现货库存
  • 数量3923 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • ACPL-332J-500E图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • ACPL-332J-500E 优势库存
  • 数量8500 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号23+ 
  • 一级代理原装现货
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • ACPL-332J-500E图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • ACPL-332J-500E 优势库存
  • 数量850 
  • 厂家ADI 
  • 封装N/A 
  • 批号22+ 
  • 只做原装,现货库存,价格优势
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • ACPL-332J-500E图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • ACPL-332J-500E 优势库存
  • 数量4268 
  • 厂家AVAGO 
  • 封装SIP 
  • 批号2120+ 
  • 只做原装,深圳现货
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • ACPL-332J-500E图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • ACPL-332J-500E 热卖库存
  • 数量8184 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号1827+ 
  • ?专注AVAGO!实单可谈!
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • ACPL-332J-500E图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • ACPL-332J-500E
  • 数量6340 
  • 厂家AVAGO/安华高 
  • 封装SOIC-16 
  • 批号22+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • ACPL-332J图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • ACPL-332J
  • 数量65000 
  • 厂家AVAGO 
  • 封装SOP16 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • ACPL-332J-500E图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • ACPL-332J-500E
  • 数量13880 
  • 厂家AVAGO/安华高 
  • 封装SOP16 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • ACPL-332J-500E图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • ACPL-332J-500E
  • 数量14993 
  • 厂家AVAGO/安华高 
  • 封装SOP-16 
  • 批号24+ 
  • 原装原厂 现货现卖
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • ACPL-332J-500E图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • ACPL-332J-500E
  • 数量30617 
  • 厂家AVAGO 
  • 封装sop 
  • 批号2018+ 
  • 主打AVAGO品牌价格绝对优势
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • ACPL-332J-000E图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • ACPL-332J-000E
  • 数量3200 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • ACPL-332J-000E图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • ACPL-332J-000E
  • 数量3200 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号23+ 
  • 全新原装公司现货销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • ACPL-332J图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • ACPL-332J
  • 数量1256 
  • 厂家AVAGO/安华高 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • ACPL-332J-500E图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • ACPL-332J-500E
  • 数量26800 
  • 厂家AVAGO/安华高 
  • 封装SOP16 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • ACPL-332J-000E图
  • 集好芯城

     该会员已使用本站13年以上
  • ACPL-332J-000E
  • 数量18837 
  • 厂家AVAGO/安华高 
  • 封装SOP16 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • ACPL-332J-500E图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • ACPL-332J-500E
  • 数量30000 
  • 厂家AVAGO/安华高 
  • 封装SOP 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • ACPL-332J-500E图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • ACPL-332J-500E
  • 数量21498 
  • 厂家AVAGO/安华高 
  • 封装SOP16 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • ACPL-332J-500E IC图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • ACPL-332J-500E IC
  • 数量15500 
  • 厂家AVAGP 
  • 封装SOP16 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • ACPL-332J-000E图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • ACPL-332J-000E
  • 数量69000 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号2024+ 
  • 中航军工集团-只做原装
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • ACPL-332J-000E图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • ACPL-332J-000E
  • 数量5000 
  • 厂家Avago Technologies 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104791 QQ:857273081QQ:1594462451
  • ACPL-332J-500E图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • ACPL-332J-500E
  • 数量12245 
  • 厂家AVAGO/安华高 
  • 封装SOP 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • ACPL-332J-000E图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • ACPL-332J-000E
  • 数量3000 
  • 厂家AVAGO 
  • 封装SOP16 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • ACPL-332J-000E图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • ACPL-332J-000E
  • 数量6328 
  • 厂家BROADCOM-博通 
  • 封装SOP-16 
  • 批号▉▉:2年内 
  • ▉▉¥49.5元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • ACPL-332J图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • ACPL-332J
  • 数量11663 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • ACPL-332J图
  • 深圳市雅维特电子有限公司

     该会员已使用本站15年以上
  • ACPL-332J
  • 数量
  • 厂家AVAGO 
  • 封装雅维特电子全新正品 
  • 批号83000 
  • QQ:767621813QQ:767621813 复制
    QQ:541766577QQ:541766577 复制
  • 0755-83975781 QQ:767621813QQ:541766577
  • ACPL-332J图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • ACPL-332J
  • 数量3850 
  • 厂家Avago(安华高) 
  • 封装原装原封REEL 
  • 批号23+ 
  • ▉原装现货▉可含税可订货
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • ACPL-332J-500E图
  • 深圳市三得电子有限公司

     该会员已使用本站15年以上
  • ACPL-332J-500E
  • 数量32440 
  • 厂家AVAGO/安华高 
  • 封装SOP-16 
  • 批号2024 
  • 深圳原装现货库存,欢迎咨询合作
  • QQ:414322027QQ:414322027 复制
    QQ:565106636QQ:565106636 复制
  • 15026993318 QQ:414322027QQ:565106636
  • ACPL-332J-500E图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • ACPL-332J-500E
  • 数量880 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号24+ 
  • 原装假一赔十!可提供正规渠道证明!
  • QQ:3007947169QQ:3007947169 复制
    QQ:3007947210QQ:3007947210 复制
  • 755-83950895 QQ:3007947169QQ:3007947210

产品型号ACPL-332J的概述

芯片ACPL-332J的概述 ACPL-332J是一款由Avago Technologies(现为Broadcom的一部分)生产的高性能光耦合器,广泛应用于电子设备中。光耦合器的主要功能是通过光信号来实现不同电路之间的电气隔离,以防止高电压的影响。这款芯片适用于各种工业、消费和通信应用,以提供信号的隔离和速率的提高。 ACPL-332J主要采用光电每有元件(LED)与光电接收器的组合,能够在维持较高传输速率的同时,确保良好的信号完整性。其高数据传输速率使其在诸如数字电路、数据通信和控制系统中非常有价值。由于其良好的隔离特性和低功耗,它受到了广泛的关注。 芯片ACPL-332J的详细参数 ACPL-332J的关键参数包括: - 输入电压范围:通常为1.2V至6V,使其在多种工作环境下都能正常运行。 - 输出电压:最大可达15V,能够适应多样的输出需求。 - 传输速率:支持高达1 Mbps...

产品型号ACPL-332J的Datasheet PDF文件预览

ACPL-332J  
2.5 Amp Output Current IGBT Gate Driver Optocoupler  
with Integrated (V ) Desaturation Detection, UVLO  
CE  
Fault Status Feedback and Active Miller Clamping  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
The ACPL-332J is an advanced 2.5 A output current, easy-  
Under Voltage Lock-Out Protection (UVLO) with  
to-use, intelligent gate driver which makes IGBT V fault  
Hysteresis  
CE  
protection compact, affordable, and easy-to implement.  
Desaturation Detection  
Miller Clamping  
Features such as integrated  
V
detection, under  
CE  
voltage lockout (UVLO), “soft” IGBT turn-off, isolated  
open collector fault feedback and active Miller clamping  
provide maximum design flexibility and circuit protec-  
tion.  
Open Collector Isolated fault feedback  
“SoftIGBT Turn-off  
Fault Reset by next LED turn-on (low to high) after  
The ACPL-332J contains a GaAsP LED. The LED is optically  
coupled to an integrated circuit with a power output  
stage. ACPL-332J is ideally suited for driving power IGBTs  
and MOSFETs used in motor control inverter applications.  
The voltage and current supplied by these optocouplers  
make them ideally suited for directly driving IGBTs with  
ratings up to 1200 V and 150 A. For IGBTs with higher  
ratings, the ACPL-332J can be used to drive a discrete  
power stage which drives the IGBT gate. The ACPL-332J  
fault mute period  
Available in SO-16 package  
Safety approvals: UL approved, 5000 V  
for 1  
RMS  
minute, CSA approved, IEC/EN/DIN-EN 60747-5-2  
approved V  
= 1230 V  
IORM  
PEAK  
Specifications  
2.5 A maximum peak output current  
2.0 A minimum peak output current  
has an insulation voltage of V  
= 1230 V  
.
IORM  
PEAK  
250 ns maximum propagation delay over temperature  
Block Diagram  
range  
13  
VCC2  
100 ns maximum pulse width distortion (PWD)  
UVLO  
6, 7  
5, 8  
D
R
I
V
E
R
15 kV/μs minimum common mode rejection (CMR) at  
ANODE  
11  
V
= 1500 V  
CM  
VOUT  
DESAT  
CATHODE  
LED1  
I  
< 5 mA maximum supply current  
CC(max)  
14  
DESAT  
Wide V operating range: 15 V to 30 V over  
CC  
9, 12  
temperature range  
VEE  
SHIELD  
LED2  
1.7 A Miller Clamp. Clamp pin short to V if not used  
EE  
VCLAMP  
2
3
Wide operating temperature range: –40°C to 105°C  
10  
16  
VCC1  
VCLAMP  
VE  
Applications  
FAULT  
Isolated IGBT/Power MOSFET gate drive  
AC and brushless DC motor drives  
1, 4  
15  
VS  
VLED  
SHIELD  
Industrial inverters and Uninterruptible Power Supply  
(UPS)  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Pin Description  
Pin  
1
Symbol  
VS  
Description  
Input Ground  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
2
VCC1  
FAULT  
Positive input supply voltage. (3.3 V to 5.5 V)  
3
Fault output. FAULT changes from a high impedance state  
to a logic low output within 5 μs of the voltage on the  
DESAT pin exceeding an internal reference voltage of 7 V.  
FAULT output is an open collector which allows the FAULT  
outputs from all ACPL-332J in a circuit to be connected  
together in a “wired OR” forming a single fault bus for inter-  
facing directly to the micro-controller.  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
4
VS  
Input Ground  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
5
CATHODE Cathode  
6
ANODE  
ANODE  
Anode  
Anode  
VOUT 11  
VCLAMP 10  
7
8
CATHODE Cathode  
9
VEE  
Output supply voltage.  
VEE  
9
10  
11  
12  
13  
14  
VCLAMP  
VOUT  
VEE  
Miller clamp  
Gate drive voltage output  
Output supply voltage.  
Positive output supply voltage  
VCC2  
DESAT  
Desaturation voltage input. When the voltage on DESAT  
exceeds an internal reference voltage of 6.5 V while the  
IGBT is on, FAULT output is changed from a high impedance  
state to a logic low state within 5 μs.  
15  
16  
VLED  
LED anode. This pin must be left unconnected for guaran-  
teed data sheet performance. (For optical coupling testing  
only)  
VE  
Common (IGBT emitter) output supply voltage.  
Ordering Information  
ACPL-332J is UL Recognized with 5000 Vrms for 1 minute per UL1577.  
Option  
Surface  
Mount  
IEC/EN/DIN EN  
60747-5-2  
Part number  
RoHS Compliant  
-000E  
Package  
Tape& Reel  
Quantity  
ACPL-332J  
SO-16  
X
X
X
X
45 per tube  
850 per reel  
-500E  
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
ACPL-332J-500E to order product of SO-16 Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN  
60747-5-2 Safety Approval in RoHS compliant.  
Example 2:  
ACPL-332J-000E to order product of SO-16 Surface Mount package in tube packaging with IEC/EN/DIN EN 60747-5-  
2 Safety Approval and RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since 15th July 2001 and  
RoHS compliant option will use ‘-XXXE.  
2
Package Outline Drawings  
ACPL-332J 16-Lead Surface Mount Package  
0.018  
0.050  
LAND PATTERN RECOMMENDATION  
(0.457ꢀ  
(1.270ꢀ  
16 15 14 13 12 11 10  
9
TYPE NUMBER  
DATE CODE  
A 332J  
YYWW  
0.458 (11.63ꢀ  
0.295 0.010  
(7.493 0.254ꢀ  
0.085 (2.16ꢀ  
1
2
3
4
5
6
7
8
0.406 0.10  
0.025 (0.64ꢀ  
(10.312 0.254ꢀ  
0.345 0.010  
ALL LEADS  
9°  
(8.763 0.254ꢀ  
TO BE  
COPLANAR  
0.002  
0.138 0.005  
0.018  
0- 8°  
0.025 MIN.  
0.008 0.003  
(3.505 0.127ꢀ  
(0.457ꢀ  
(0.203 0.076ꢀ  
STANDOFF  
0.408 0.010  
(10.363 0.254ꢀ  
Dimensions in inches (millimeters)  
Notes: Initial and continued variation in the color of the ACPL-332J’s white mold compound is normal and does note affect device performance or  
reliability.  
Floating Lead Protrusion is 0.25 mm (10 mils) max.  
Recommended Pb-Free IR Profile  
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.  
3
Regulatory Information  
The ACPL-332J is approved by the following organizations:  
IEC/EN/DIN EN 60747-5-2  
UL  
Approval under:  
Approval under UL 1577, component recognition  
IEC 60747-5-5 :1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01  
program up to V = 5000 V . File E55361.  
ISO  
RMS  
CSA  
Approval under CSA Component Acceptance Notice #5,  
File CA 88324.  
Table 1. IEC/EN/DIN EN 60747-5-2 Insulation Characteristics*  
Description  
Symbol  
Characteristic  
Unit  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤ 150 Vrms  
for rated mains voltage ≤ 300 Vrms  
for rated mains voltage ≤ 600 Vrms  
for rated mains voltage ≤ 1000Vrms  
I – IV  
I – IV  
I – IV  
I – III  
Climatic Classification  
55/100/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
VIORM  
VPR  
1230  
2306  
Vpeak  
Vpeak  
Input to Output Test Voltage, Method b**,  
VIORM x 1.875=VPR, 100% Production Test with tm=1 sec, Partial discharge < 5 pC  
Input to Output Test Voltage, Method a**,  
VPR  
1968  
8000  
Vpeak  
Vpeak  
V
IORM x 1.6=VPR, Type and Sample Test, tm=10 sec, Partial discharge < 5 pC  
Highest Allowable Overvoltage (Transient Overvoltage tini = 60 sec)  
VIOTM  
Safety-limiting values – maximum values allowed in the event of a failure.  
Case Temperature  
TS  
175  
C  
Input Current  
IS, INPUT  
PS, OUTPUT  
RS  
400  
mA  
mW  
Output Power  
1200  
>109  
Insulation Resistance at TS, VIO = 500 V  
*
Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.  
Surface mount classification is class A in accordance with CECCOO802.  
** Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section IEC/EN/  
DIN EN 60747-5-2, for a detailed description of Method a and Method b partial discharge test profiles.  
Dependence of Safety Limiting Values on Temperature. (take from DS AV01-0579EN Pg.7)  
4
Table 2. Insulation and Safety Related Specifications  
Parameter  
Symbol  
ACPL-332J Units  
Conditions  
Minimum External Air Gap  
(Clearance)  
L(101)  
8.3  
8.3  
0.5  
Mm  
Mm  
Mm  
Measured from input terminals to output terminals,  
shortest distance through air.  
Minimum External Tracking  
(Creepage)  
L(102)  
CTI  
Measured from input terminals to output terminals,  
shortest distance path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
Through insulation distance conductor to conductor,  
usually the straight line distance thickness between  
the emitter and detector.  
Tracking Resistance  
(Comparative Tracking Index)  
>175  
IIIa  
V
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Table 3. Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
Max.  
125  
105  
Units  
°C  
Note  
Storage Temperature  
Operating Temperature  
TS  
TA  
-55  
-40  
°C  
2
Output IC Junction Temperature  
Average Input Current  
TJ  
125  
25  
°C  
mA  
A
2
1
IF(AVG)  
IF(TRAN)  
Peak Transient Input Current,  
(<1 μs pulse width, 300pps)  
1.0  
Reverse Input Voltage  
VR  
5
V
“HighPeak Output Current  
“LowPeak Output Current  
Positive Input Supply Voltage  
FAULT Output Current  
IOH(PEAK)  
IOL(PEAK)  
VCC1  
2.5  
A
3
3
2.5  
A
-0.5  
5.5  
V
IFAULT  
8.0  
mA  
V
FAULT Pin Voltage  
VFAULT  
(VCC2 - VEE)  
(VE - VEE)  
(VCC2 - VE)  
VO(PEAK)  
IClamp  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
VCC1  
33  
Total Output Supply Voltage  
Negative Output Supply Voltage  
Positive Output Supply Voltage  
Gate Drive Output Voltage  
Peak Clamping Sinking Current  
Miller Clamping Pin Voltage  
DESAT Voltage  
V
15  
V
6
33 - (VE - VEE)  
VCC2  
1.7  
V
V
A
VClamp  
VDESAT  
PO  
-0.5  
VE  
VCC2  
VE + 10  
600  
V
V
Output IC Power Dissipation  
Input IC Power Dissipation  
Solder Reflow Temperature Profile  
mW  
mW  
2
2
PI  
150  
See Package Outline Drawings section  
Table 4. Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
- 40  
15  
Max.  
Units  
°C  
V
Note  
Operating Temperature  
Total Output Supply Voltage  
Negative Output Supply Voltage  
Positive Output Supply Voltage  
Input Current (ON)  
TA  
105  
2
7
4
(VCC2 - VEE)  
(VE - VEE)  
(VCC2 - VE)  
IF(ON)  
30  
0
15  
V
15  
30 - (VE - VEE)  
V
8
12  
mA  
V
Input Voltage (OFF)  
VF(OFF)  
- 3.6  
0.8  
5
Table 5. Electrical Specifications (DC)  
Unless otherwise noted, all typical values at T = 25°C, V  
- V = 30 V, V - V = 0 V;  
EE E EE  
A
CC2  
all Minimum/Maximum specifications are at Recommended Operating Conditions. Positive Supply Voltage used.  
Parameter  
FAULT Logic Low  
Output Voltage  
Symbol  
VFAULTL  
Min.  
Typ.  
0.1  
Max.  
0.4  
Units  
V
Test Conditions  
Fig.  
Note  
IFAULT = 1.1 mA, VCC1 = 5.5V  
IFAULT = 1.1 mA, VCC1 = 3.3V  
VFAULT = 5.5 V, VCC1 = 5.5V  
0.1  
0.4  
V
FAULT Logic High  
Output Current  
IFAULTH  
0.02  
0.002  
-1.5  
0.5  
μA  
μA  
A
VFAULT = 3.3 V, VCC1 = 3.3V  
0.3  
High Level  
Output Current  
IOH  
-0.5  
-2.0  
0.5  
2.0  
90  
VO = VCC2 - 4  
2, 4,  
21  
5
3
5
3
6
A
VO = VCC2 – 15  
VO = VEE + 2.5  
VO = VEE + 15  
VOUT - VEE = 14 V  
Low Level  
Output Current  
IOL  
1.5  
A
3, 5,  
22  
A
Low Level Output Current  
During Fault Condition  
IOLF  
140  
230  
0.5  
mA  
High Level  
Output Voltage  
VOH  
VCC-2.9 VCC-2.0  
V
IO = -650 μA  
IO = 100 mA  
4, 6,  
23  
7, 8, 9  
23  
Low Level  
Output Voltage  
VOL  
0.17  
2.0  
V
5, 7,  
24  
Clamp Pin  
Threshold Voltage  
VtClamp  
ICL  
V
Clamp Low Level  
Sinking Current  
0.35  
1.1  
2.5  
2.5  
-0.24  
30  
A
VO = VEE + 2.5  
IO = 0 mA  
8
High Level  
Supply Current  
ICC2H  
ICC2L  
ICHG  
IDSCHG  
5
mA  
mA  
mA  
mA  
9, 10,  
25,  
26  
9
Low Level  
Supply Current  
5
IO = 0 mA  
Blanking Capacitor  
Charging Current  
-0.13  
10  
-0.33  
VDESAT = 2 V  
VDESAT = 7.0 V  
11, 27 9, 10  
28  
Blanking Capacitor  
Discharge Current  
DESAT Threshold  
UVLO Threshold  
VDESAT  
VUVLO+  
6
6.5  
7.5  
V
V
VCC2 -VE >VUVLO-  
VO > 5 V  
12  
9
10.5  
11.6  
12.5  
7, 9,  
11  
VUVLO-  
9.2  
0.4  
10.3  
1.3  
11.1  
8
V
VO < 5 V  
7, 9,  
12  
UVLO Hysteresis  
(VUVLO+  
- VUVLO-  
V
)
Threshold Input Current  
Low to High  
IFLH  
2.0  
mA  
V
IO = 0 mA, VO > 5 V  
Threshold Input Voltage  
High to Low  
VFHL  
0.8  
1.2  
Input Forward Voltage  
VF  
1.6  
1.95  
V
IF = 10 mA  
Temperature Coefficient  
of Input Forward Voltage  
VF/TA  
-1.3  
mV/°C  
Input Reverse  
Breakdown Voltage  
BVR  
CIN  
5
V
IR = 10 A  
Input Capacitance  
70  
pF  
f = 1 MHz, VF = 0 V  
6
Table 6. Switching Specifications (AC)  
Unless otherwise noted, all typical values at T = 25°C, V  
- V = 30 V, V - V = 0 V;  
EE E EE  
A
CC2  
all Minimum/Maximum specifications are at Recommended Operating Conditions. Only Positive Supply Voltage used.  
Parameter  
Symbol  
Min. Typ.  
Max. Units  
Test Conditions  
Fig.  
Note  
Propagation Delay Time  
to High Output Level  
tPLH  
100  
180  
250  
ns  
Rg = 10 ,  
1, 13,  
14, 15,  
16, 29  
13, 15  
Cg = 10 nF,  
f = 10 kHz,  
Duty Cycle = 50%,  
IF = 10 mA,  
Propagation Delay Time  
to Low Output Level  
tPHL  
100  
180  
250  
ns  
1, 13,  
14, 15,  
16, 29  
V
CC2 = 30 V  
Pulse Width Distortion  
PWD  
-100 20  
-350  
100  
350  
ns  
ns  
14, 17  
17, 16  
Propagation Delay  
(tPHL - tPLH  
)
Difference Between  
Any Two Parts or Channels  
PDD  
Rise Time  
Fall Time  
tR  
tF  
50  
50  
ns  
ns  
μs  
DESAT Sense to  
90%VO Delay  
tDESAT(90%)  
0.15  
0.5  
3
CDESAT = 100pF, Rg = 10 ,  
Cg = 10 nF, VCC2 = 30 V  
17, 30, 19  
37  
DESAT Sense to  
10% VO Delay  
tDESAT(10%)  
2
μs  
μs  
μs  
CDESAT = 100pF, Rg = 10 ,  
Cg = 10 nF, VCC2 = 30 V  
18, 19,  
20, 30,  
37  
DESAT Sense to Low Level  
FAULT Signal Delay  
tDESAT(FAULT)  
tDESAT(LOW)  
tDESAT(MUTE)  
0.25  
0.25  
0.5  
CDESAT = 100pF, RF = 2.1 k,  
Rg = 10 , Cg = 10 nF,  
VCC2 = 30 V  
30, 37 18  
DESAT Sense to DESAT  
Low Propagation Delay  
CDESAT = 100pF, RF = 2.1 k,  
Rg = 10 , Cg = 10 nF,  
VCC2 = 30 V  
30, 37 19  
DESAT Input Mute  
5
μs  
μs  
37  
20  
RESET to High Level  
FAULT Signal Delay  
tRESET(FAULT) 0.3  
1
2.0  
2.5  
CDESAT = 100pF, RF = 2.1 k,  
Rg = 10 , Cg = 10 nF,  
VCC1 = 5.5V, VCC2 = 30 V  
0.8  
1.5  
μs  
CDESAT = 100pF, RF = 2.1 k,  
Rg = 10 , Cg = 10 nF,  
VCC1 = 3.3V, VCC2 = 30 V  
Output High Level Common  
Mode Transient Immunity  
|CMH|  
|CML|  
15  
15  
25  
25  
kV/μs  
kV/μs  
TA = 25°C, IF = 10 mA  
VCM = 1500 V, VCC2 = 30 V  
31, 32, 21  
33, 34  
Output Low Level Common  
Mode Transient Immunity  
TA = 25°C, VF = 0 V  
VCM = 1500 V, VCC2 = 30 V  
31, 32, 22  
33, 34  
7
Table 7. Package Characteristics  
Parameter  
Symbol  
Min.  
Typ.  
Max. Units  
Test Conditions  
Fig.  
Note  
Input-Output Momentary  
Withstand Voltage  
VISO  
5000  
Vrms  
RH < 50%, t = 1 min.,  
TA = 25°C  
24, 25  
Input-Output Resistance  
Input-Output Capacitance  
RI-O  
> 109  
1.3  
V
I-O = 500 V  
25  
CI-O  
pF  
freq=1 MHz  
TA = 25°C  
Output IC-to-Pins 9 &10  
Thermal Resistance  
09-10  
30  
°C/W  
Notes:  
1. Derate linearly above 70°C free air temperature at a rate of 0.3 mA/°C.  
2. In order to achieve the absolute maximum power dissipation specified, pins 4, 9, and 10 require ground plane connections and may require  
airflow. See the Thermal Model section in the application notes at the end of this data sheet for details on how to estimate junction temperature  
and power dissipation. In most cases the absolute maximum output IC junction temperature is the limiting factor. The actual power dissipation  
achievable will depend on the application environment (PCB Layout, air flow, part placement, etc.). See the Recommended PCB Layout section  
in the application notes for layout considerations. Output IC power dissipation is derated linearly at 10 mW/°C above 90°C. Input IC power  
dissipation does not require derating.  
3. Maximum pulse width = 10 μs. This value is intended to allow for component tolerances for designs with I peak minimum = 2.0 A. Derate  
O
linearly from 3.0 A at +25°C to 2.5 A at +105°C. This compensates for increased I  
due to changes in V over temperature.  
OPEAK  
OL  
4. This supply is optional. Required only when negative gate drive is implemented.  
5. Maximum pulse width = 50 μs.  
6. See the Slow IGBT Gate Discharge During Fault Condition section in the applications notes at the end of this data sheet for further details.  
7. 15 V is the recommended minimum operating positive supply voltage (V - V ) to ensure adequate margin in excess of the maximum V  
UVLO+  
CC2  
E
threshold of 12.5V. For High Level Output Voltage testing, V is measured with a dc load current. When driving capacitive loads, V will  
OH  
OH  
approach V as I approaches zero units.  
CC  
OH  
8. Maximum pulse width = 1.0 ms.  
9. Once V of the ACPL-332J is allowed to go high (V  
- V > V  
E
), the DESAT detection feature of the ACPL-332J will be the primary source of  
O
CC2  
UVLO+  
IGBT protection. UVLO is needed to ensure DESAT is functional. Once V  
is increased from 0V to above V , DESAT will remain functional  
UVLO+  
CC2  
until V  
is decreased below V  
. Thus, the DESAT detection and UVLO features of the ACPL-332J work in conjunction to ensure constant  
UVLO-  
CC2  
IGBT protection.  
10. See the DESAT fault detection blanking time section in the applications notes at the end of this data sheet for further details.  
11. This is the “increasing(i.e. turn-on or “positive goingdirection) of V - V  
CC2  
E
12. This is the “decreasing(i.e. turn-off or “negative goingdirection) of V  
- V  
CC2  
E
13. This load condition approximates the gate load of a 1200 V/150A IGBT.  
14. Pulse Width Distortion (PWD) is defined as |t - t | for any given unit.  
PHL PLH  
15. As measured from I to V .  
F
O
16. The difference between t  
and t  
between any two ACPL-332J parts under the same test conditions.  
PLH  
PHL  
17. As measured from ANODE, CATHODE of LED to V  
OUT  
18. This is the amount of time from when the DESAT threshold is exceeded, until the FAULT output goes low.  
19. This is the amount of time the DESAT threshold must be exceeded before V  
voltage dependent.  
begins to go low, and the FAULT output to go low. This is supply  
OUT  
20. Auto Reset: This is the amount of time when V  
will be asserted low after DESAT threshold is exceeded. See the Description of Operation (Auto  
OUT  
Reset) topic in the application information section.  
21. Common mode transient immunity in the high state is the maximum tolerable dV /dt of the common mode pulse, V , to assure that the  
CM  
CM  
output will remain in the high state (i.e., V > 15 V or FAULT > 2 V). A 100 pF and a 2.1 kΩ pull-up resistor is needed in fault detection mode.  
O
22. Common mode transient immunity in the low state is the maximum tolerable dV /dt of the common mode pulse, V , to assure that the  
CM  
CM  
output will remain in a low state (i.e., V < 1.0 V or FAULT < 0.8 V).  
O
23. To clamp the output voltage at V - 3 V , a pull-down resistor between the output and V is recommended to sink a static current of 650 μA  
CC  
BE  
EE  
while the output is high. See the Output Pull-Down Resistor section in the application notes at the end of this data sheet if an output pull-down  
resistor is not used.  
24. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 Vrms for 1 second. This test is  
performed before the 100% production test for partial discharge (method b) shown in IEC/EN/DIN EN 60747-5-2 Insulation Characteristic Table.  
25. This is a two-terminal measurement: pins 1-8 are shorted together and pins 9-16 are shorted together.  
8
I
F
t
t
f
r
90%  
50%  
10%  
V
OUT  
t
t
PHL  
PLH  
Figure 1. VOUT propagation delay waveforms  
3.0  
2.5  
2.0  
1.5  
1.0  
5
4
3
2
1
0
-----V  
___V  
=VEE +15V  
=VEE +2.5V  
OUT  
OUT  
-40  
-20  
0
20  
40  
60  
80  
105  
-40  
-20  
0
20  
40  
60  
80  
105  
T A - TEMPERATURE - oC  
TA - TEMPERATURE - o C  
Figure 2. IOH vs. temperature  
0
Figure 3. IOL vs. temperature  
0.25  
0.2  
0.15  
0.1  
0.05  
0
____  
= -650uA  
I OUT  
-0.5  
-1  
-1.5  
-2  
-2.5  
-40  
-20  
0
20  
40  
60  
80  
105  
-40  
-20  
0
20  
40  
60  
80  
105  
TA - TEMPERATURE - o  
C
TA - TEMPERATURE - o C  
Figure 4. VOH vs. temperature  
Figure 5. VOL vs. temperature  
9
8
7
6
5
4
3
2
1
0
30  
29  
28  
27  
26  
25  
_ _ _ _ 105 oC  
______ 25 o C  
--------- -40 o C  
o
_ _ _ _ 105  
C
______ 25 o C  
o
--------- -40  
C
0
0.5  
1
1.5  
2
2.5  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
IOH - OUTPUT HIGH CURRENT - A  
I
oL - OUTPUT LOW CURRENT - A  
Figure 6. VOH vs. IOH  
Figure 7. VOL vs. IOL  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
4
3
2
1
0
- ---- ----I  
CC2  
H
ICC2  
________  
L
-40  
-20  
0
20  
40  
60  
80  
105  
-40  
-20  
0
20  
40  
60  
80  
105  
TA - TEMPERATURE - oC  
T A -TEMPERATURE-  
o C  
Figure 8. ICL vs. temperature  
2.65  
Figure 9. ICC2 vs. temperature  
-0.20  
---------I  
Cc 2  
H
ICC  
________  
_
2
L
2.55  
2.45  
-0.25  
-0.30  
-0.35  
2.35  
2.25  
15  
20  
25  
30  
-40  
-20  
0
20  
40  
60  
o C  
80  
105  
V
CC2 - OUTPUR SUPPLY VOLTAGE - V  
T A - TEMPERATURE -  
Figure 11. ICHG vs. temperature  
Figure 10. ICC2 vs. VCC2  
10  
7.5  
7.0  
6.5  
6.0  
300  
250  
200  
150  
100  
---------- tPLH  
_______t PHL  
-40  
-20  
0
20  
40  
60  
o C  
80  
105  
-40  
-20  
0
20  
40  
60  
o C  
80  
105  
T A - TEMPERATURE -  
T A - TEMPERATURE -  
Figure 13. Propagation delay vs. temperature  
Figure 12. DESAT threshold vs. temperature  
300  
300  
250  
200  
150  
100  
---------- tPLH  
---------- tPLH  
_______tPHL  
_______tPHL  
250  
200  
150  
100  
0
10  
20  
30  
40  
50  
15  
20  
25  
30  
LOAD RESISTANCE - ohm  
Vcc - SUPPLY VOLTAGE - V  
Figure 14. Propagation delay vs. supply voltage  
Figure 15. Propagation delay vs. load resistance  
300  
---------- t  
PLH  
_______tPHL  
200  
100  
0
0
10  
20  
30  
40  
50  
LOAD CAPACITANCE - nF  
Figure 16. Propagation delay vs. load capacitance  
11  
3.0  
2.5  
2.0  
1.5  
1.0  
300  
250  
200  
150  
100  
------- Vcc2 =15V  
_____V =30V  
cc2  
-40  
-20  
0
20  
40  
60  
80  
105  
-40  
-20  
0
20  
40  
60  
80  
105  
T A - TEMPERATURE - o C  
T
- TEMPERATURE - o C  
A
Figure 17. DESAT sense to 90% VOUT delay vs. temperature  
Figure 18. DESAT sense to 10% VOUT delay vs. temperature  
4.0  
0.012  
------- Vcc2 =15V  
------- V =15V  
_____Vcc2 =30V  
cc2  
_____Vcc2 =30V  
3.0  
0.008  
0.004  
0.000  
2.0  
1.0  
0.0  
0
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
LOAD CAPACITANCE - nF  
LOAD RESISTANCE - ohm  
Figure 20. DESAT sense to 10% VOUT delay vs. load capacitance  
Figure 19. DESAT sense to 10% VOUT delay vs. load resistance  
12  
FAULT  
                                                                                                                                                                                                           
                                                                                                                                                                                                             
                                                                                                                                                                                                              
                                                                                                                                                                                                                
                                                                                                                                                                                                                  
0.1μF  
0.1μF  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
VCC1  
DESAT 14  
VCC2 13  
VS  
15V Pulsed  
+
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
_
IOUT  
VOUT 11  
VCLAMP 10  
30V  
+
_
10mA  
VEE  
9
Figure 21. IOH Pulsed test circuit  
1
2
3
4
5
6
7
8
VS  
VE 16  
VCC1  
VLED 15  
DESAT 14  
VCC2 13  
FAULT  
VS  
0.1μF  
15V Pulsed  
CATHODE  
ANODE  
ANODE  
VEE 12  
IOUT  
VOUT 11  
30V  
0.1μF  
+
_
VCLAMP 10  
+
_
CATHODE  
VEE  
9
Figure 22. IOL Pulsed test circuit  
ꢎ  
ꢀꢅ  
ꢑꢑꢀ  
ꢌꢋꢍ ꢀꢄ  
ꢖꢏꢓꢌꢐ  
ꢎ  
ꢍꢋꢎꢏꢐ ꢀꢃ  
ꢑꢑꢁ ꢀꢂ  
ꢋꢋ ꢀꢁ  
ꢈꢛꢀꢜꢖ  
ꢑꢏꢐꢗꢒꢍꢋ  
ꢏꢘꢒꢍꢋ  
ꢏꢘꢒꢍꢋ  
ꢑꢏꢐꢗꢒꢍꢋ  
ꢒꢓꢐ  
ꢒꢓꢐ ꢀꢀ  
ꢑꢌꢏꢔꢕ ꢀꢈ  
ꢂꢈꢊ  
ꢈꢛꢀꢜꢖ  
ꢅꢄꢈꢜꢏꢝ  
ꢀꢈ!ꢏ  
ꢋꢋ  
Figure 23. VOH Pulsed test circuit  
13  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
100mA  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT  
VOUT 11  
VCLAMP 10  
30V  
0.1μF  
+
_
VEE  
9
Figure 24. VOL Pulsed test circuit  
1
2
3
4
5
6
7
8
VS  
VE 16  
VCC1  
VLED 15  
DESAT 14  
VCC2 13  
FAULT  
VS  
0.1μF  
ICC2  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT 11  
30V  
0.1μF  
+
_
VCLAMP 10  
10mA  
VEE  
9
Figure 25. ICC2H test circuit  
1
2
3
4
5
6
7
8
VS  
VE 16  
VCC1  
VLED 15  
FAULT  
VS  
DESAT 14  
VCC2 13  
VEE 12  
0.1μF  
I CC2  
CATHODE  
ANODE  
ANODE  
CATHODE  
VOUT 11  
VCLAMP 10  
30V  
0.1μF  
+
_
VEE  
9
Figure 26. ICC2L test circuit  
14  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
ICHG  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT 11  
VCLAMP 10  
30V  
0.1μF  
+
_
10mA  
VEE  
9
Figure 27. ICHG Pulsed test circuit  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
_
+
7V  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
IDSCHG  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT 11  
VCLAMP 10  
30V  
0.1μF  
+
_
VEE  
9
Figure 28. IDSCHG test circuit  
1
2
3
4
5
6
7
8
VS  
VE 16  
VCC1  
VLED 15  
DESAT 14  
VCC2 13  
FAULT  
VS  
0.1μF  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT  
VOUT 11  
30V  
0.1μF  
10Ω  
10nF  
+
_
VCLAMP 10  
VEE  
9
10mA, 10kHz,  
50% Duty Cycle  
Figure 29. tPLH, tPHL, tf, tr, test circuit  
15  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
VIN  
VCC1  
2.1kΩ  
VFAULT  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
+
5V  
_
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT  
VOUT 11  
VCLAMP 10  
30V  
0.1μF  
10Ω  
+
_
10mA  
10nF  
VEE  
9
Figure 30. tDESAT fault test circuit  
1
VS  
VE 16  
5V  
2
VCC1  
VLED 15  
2.1kΩ  
3
FAULT  
VS  
DESAT 14  
VCC2 13  
VEE 12  
15pF  
30V  
4
SCOPE  
0.1μF  
5
6
CATHODE  
ANODE  
ANODE  
CATHODE  
10Ω  
VOUT 11  
VCLAMP 10  
0.1μF  
430Ω  
7
10nF  
8
VEE  
9
VCM  
Figure 31. CMR Test circuit LED2 off  
1
VS  
VE 16  
VLED 15  
5V  
2
VCC1  
2.1kΩ  
3
FAULT  
VS  
DESAT 14  
VCC2 13  
15pF  
30V  
4
SCOPE  
0.1μF  
5
6
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
10Ω  
VOUT 11  
VCLAMP 10  
0.1μF  
430Ω  
7
10nF  
8
VEE  
9
VCM  
Figure 32. CMR Test Circuit LED2 on  
16  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
5V  
VCC1  
2.1kΩ  
DESAT 14  
VCC2 13  
FAULT  
15pF  
30V  
VS  
0.1μF  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
SCOPE  
10Ω  
VOUT 11  
VCLAMP 10  
0.1μF  
430Ω  
10nF  
VEE  
9
VCM  
Figure 33. CMR Test circuit LED1 off  
1
VS  
VE 16  
5V  
2
VCC1  
VLED 15  
DESAT 14  
VCC2 13  
2.1kΩ  
3
FAULT  
VS  
15pF  
30V  
4
0.1μF  
5
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
SCOPE  
10Ω  
6
VOUT 11  
0.1μF  
Ω
430  
7
8
VCLAMP 10  
10nF  
VEE  
9
VCM  
Figure 34. CMR Test Circuit LED1 on  
17  
Application Information  
Product Overview Description  
13  
The ACPL-332J is a highly integrated power control  
device that incorporates all the necessary components  
for a complete, isolated IGBT / MOSFET gate drive circuit  
with fault protection and feedback into one SO-16  
package. Active Miller clamp function eliminates the  
need of negative gate drive in most application and  
allows the use of simple bootstrap supply for high side  
driver. An optically isolated power output stage drives  
IGBTs with power ratings of up to 150 A and 1200 V. A  
high speed internal optical link minimizes the propaga-  
tion delays between the microcontroller and the IGBT  
while allowing the two systems to operate at very large  
common mode voltage differences that are common  
in industrial motor drives and other power switching  
applications. An output IC provides local protection  
for the IGBT to prevent damage during over current,  
and a second optical link provides a fully isolated fault  
status feedback signal for the microcontroller. A built  
in “watchdog” circuit, UVLO monitors the power stage  
supply voltage to prevent IGBT caused by insufficient  
gate drive voltages. This integrated IGBT gate driver is  
designed to increase the performance and reliability of  
a motor drive without the cost, size, and complexity of a  
discrete design.  
VCC2  
UVLO  
6, 7  
5, 8  
D
R
I
V
E
R
ANODE  
11  
VOUT  
DESAT  
CATHODE  
LED1  
14  
DESAT  
9, 12  
VEE  
SHIELD  
LED2  
VCLAMP  
2
3
10  
16  
VCC1  
VCLAMP  
VE  
FAULT  
1, 4  
15  
VS  
VLED  
SHIELD  
Figure 35. Block Diagram of ACPL-332J  
Recommended Application Circuit  
The ACPL-332J has an LED input gate control, and an  
open collector fault output suitable for wired ‘OR’ ap-  
plications. The recommended application circuit shown  
in Figure 36 illustrates a typical gate drive implementa-  
tion using the ACPL-332J. The following describes about  
driving IGBT. However, it is also applicable to MOSFET.  
Depending upon the MOSFET or IGBT gate threshold  
requirements, designers may want to adjust the VCC  
Two light emitting diodes and two integrated circuits  
housed in the same SO-16 package provide the input  
control circuitry, the output power stage, and two optical  
channels. The output Detector IC is designed manufac-  
tured on a high voltage BiCMOS/Power DMOS process.  
The forward optical signal path, as indicated by LED1,  
transmits the gate control signal. The return optical signal  
path, as indicated by LED2, transmits the fault status  
feedback signal.  
supply voltage (Recommended V = 17.5V for IGBT and  
CC  
12.5V for MOSFET).  
The two supply bypass capacitors (0.1 μF) provide the  
large transient currents necessary during a switching  
transition. Because of the transient nature of the charging  
currents, a low current (5mA) power supply suffices. The  
Under normal operation, the LED1 directly controls the  
IGBT gate through the isolated output detector IC, and  
LED2 remains off. When an IGBT fault is detected, the  
output detector IC immediately begins a “soft” shutdown  
sequence, reducing the IGBT current to zero in a con-  
trolled manner to avoid potential IGBT damage from  
inductive over voltages. Simultaneously, this fault status  
is transmitted back to the input via LED2, where the fault  
latch disables the gate control input and the active low  
fault output alerts the microcontroller.  
desaturation diode D  
DESAT  
t
below 75ns (e.g. ERA34-10) and capacitor C  
rr  
necessary external components for the fault detection  
circuitry. The gate resistor R serves to limit gate charge  
current and controls the IGBT collector voltage rise  
and fall times. The open collector fault output has a  
passive pull-up resistor R (2.1 k) and a 330 pF filtering  
F
capacitor, C . A 47 kpull down resistor R  
F
V
OUT  
provides a predictable high level output voltage  
(V ). In this application, the IGBT gate driver will shut  
OH  
down when a fault is detected and fault reset by next  
cycle of IGBT turn on. Application notes are mentioned at  
the end of this datasheet.  
During power-up, the Under Voltage Lockout (UVLO)  
feature prevents the application of insufficient gate  
voltage to the IGBT, by forcing the ACPL-332J’s output  
low. Once the output is in the high state, the DESAT (VCE)  
detection feature of the ACPL-332J provides IGBT pro-  
tection. Thus, UVLO and DESAT work in conjunction to  
provide constant IGBT protection.  
18  
ꢑ  
ꢃꢈ  
ꢏꢎꢐ ꢃꢇ  
ꢋ'ꢟꢙ  
ꢔꢔꢃ  
!ꢏꢒꢛ"  
ꢃꢋꢋꢞΩ  
ꢙ  
ꢙ  
ꢐꢎꢑꢒꢓ  
ꢋ'ꢟꢙ  
ꢙꢒꢖꢏꢓ  
ꢑ  
ꢐꢎꢑꢒꢓ ꢃꢆ  
ꢔꢔꢄ ꢃꢅ  
ꢔꢒꢓꢚꢕꢐꢎ  
ꢒꢛꢕꢐꢎ  
ꢒꢛꢕꢐꢎ  
ꢔꢒꢓꢚꢕꢐꢎ  
ꢎꢎ ꢃꢄ  
ꢁꢞꢚꢍꢐꢔ  
ꢝ  
ꢔꢎ  
$
ꢕꢖꢓ ꢃꢃ  
ꢔꢏꢒꢗꢘ ꢃꢋ  
#ꢃ  
#ꢄ  
ꢅ$ꢘꢚꢒꢑꢎ  
ꢒꢔ  
ꢘꢖꢏ$ꢐꢕ&ꢛ  
ꢔꢎ  
$
ꢎꢎ  
$ ꢚꢍꢐꢔ  
Figure 36. Recommended application circuit (Single Supply) with desaturation detection and active Miller Clamp  
Description of Operation  
Normal Operation  
During normal operation, V  
of the ACPL-332J is con-  
activated is an internal feedback channel which brings  
the FAULT output low for the purpose of notifying the  
micro-controller of the fault condition.  
OUT  
trolled by input LED current IF (pins 5, 6, 7 and 8), with  
the IGBT collector-to-emitter voltage being monitored  
through DDESAT. The FAULT output is high. See Figure 37.  
Fault Reset  
Fault Condition  
Once fault is detected, the output will be muted for 5 μs  
(minimum). All input LED signals will be ignored during  
the mute period to allow the driver to completely soft  
shut-down the IGBT. The fault mechanism can be reset by  
the next LED turn-on after the 5us (minimum) mute time.  
See Figure 37.  
The DESAT pin monitors the IGBT V voltage. When the  
voltage on the DESAT pin exceeds 6.5 V while the IGBT is  
ce  
on, V  
is slowly brought low in order to “softly” turn-off  
OUT  
the IGBT and prevent large di/dt induced voltages. Also  
:
ꢐꢎꢑꢒꢓ;ꢏꢕ&<  
ꢀꢁꢂꢁꢃꢄꢅꢆꢇꢁꢄ  
ꢅꢈꢉꢊꢇꢋꢄꢃꢌꢁꢄ  
ꢇꢁꢍꢃꢄꢎꢏꢐꢄ  
ꢃꢈꢉꢇꢑꢆꢇ  
+
ꢈ'ꢇꢍ  
ꢇꢋ/  
ꢐꢎꢑꢒꢓ  
:
:
!ꢏꢒꢛ"  
ꢐꢎꢑꢒꢓ;ꢃꢋ/<  
ꢌꢋ/  
ꢕꢖꢓ  
ꢃꢋ/  
:
ꢜꢎꢑꢎꢓ;ꢙꢒꢖꢏꢓ<  
:
ꢐꢎꢑꢒꢓ;ꢌꢋ/<  
ꢇꢋ/  
ꢇꢋ/  
ꢙꢒꢖꢏꢓ  
:
ꢐꢎꢑꢒꢓ;ꢙꢒꢖꢏꢓ<  
:
ꢐꢎꢑꢒꢓ;ꢗꢖꢓꢎ<<  
Figure 37. Fault Timing diagram  
19  
Output Control  
Slow IGBT Gate Discharge during Fault Condition  
The outputs (V  
trolled by the combination of I , UVLO and a detected  
IGBT Desat condition. Once UVLO is not active (V  
and FAULT) of the ACPL-332J are con-  
When a desaturation fault is detected, a weak pull-down  
device in the ACPL-332J output drive stage will turn on  
to ‘softly’ turn off the IGBT. This device slowly discharges  
the IGBT gate to prevent fast changes in drain current  
that could cause damaging voltage spikes due to lead  
and wire inductance. During the slow turn off, the large  
output pull-down device remains off until the output  
OUT  
F
-
CC2  
V > V  
), VOUT is allowed to go high, and the DESAT  
UVLO  
E
(pin 14) detection feature of the ACPL-332J will be the  
primary source of IGBT protection. Once V is increased  
from 0V to above V  
CC2  
, DESAT will remain functional  
UVLO+  
until V  
is decreased below V  
.
Thus, the DESAT  
voltage falls below V + 2 Volts, at which time the large  
pull down device clamps the IGBT gate to V .  
EE  
CC2  
UVLO-  
EE  
detection and UVLO features of the ACPL-332J work in  
conjunction to ensure constant IGBT protection.  
DESAT Fault Detection Blanking Time  
Desaturation Detection and High Current Protection  
The DESAT fault detection circuitry must remain disabled  
for a short time period following the turn-on of the IGBT  
to allow the collector voltage to fall below the DESAT  
threshold. This time period, called the DESAT blanking  
time is controlled by the internal DESAT charge current,  
the DESAT voltage threshold, and the external DESAT  
capacitor.  
The ACPL-332J satisfies these criteria by combining a  
high speed, high output current driver, high voltage  
optical isolation between the input and output, local  
IGBT desaturation detection and shut down, and an  
optically isolated fault status feedback signal into a single  
16-pin surface mount package.  
The fault detection method, which is adopted in the  
ACPL-332J, is to monitor the saturation (collector)  
voltage of the IGBT and to trigger a local fault shutdown  
sequence if the collector voltage exceeds a predeter-  
mined threshold. A small gate discharge device slowly  
reduces the high short circuit IGBT current to prevent  
damaging voltage spikes. Before the dissipated energy  
can reach destructive levels, the IGBT is shut off. During  
the off state of the IGBT, the fault detect circuitry is simply  
disabled to prevent false ‘faultsignals.  
The nominal blanking time is calculated in terms of  
external capacitance (C  
), FAULT threshold voltage  
BLANK  
(V  
DESAT  
), and DESAT charge current (I  
) as t  
=
CHG  
BLANK  
C
BLANK  
x V  
/ I  
CHG  
. The nominal blanking time with  
DESAT  
the recommended 100pF capacitor is 100pF * 6.5 V / 240  
μA = 2.7 μsec.  
The capacitance value can be scaled slightly to adjust the  
blanking time, though a value smaller than 100 pF is not  
recommended. This nominal blanking time represents  
the longest time it will take for the ACPL-332J to respond  
to a DESAT fault condition. If the IGBT is turned on while  
the collector and emitter are shorted to the supply rails  
(switching into a short), the soft shut-down sequence  
will begin after approximately 3 μsec. If the IGBT collector  
and emitter are shorted to the supply rails after the IGBT  
is already on, the response time will be much quicker due  
to the parasitic parallel capacitance of the DESAT diode.  
The recommended 100pF capacitor should provide  
adequate blanking as well as fault response times for  
most applications.  
The alternative protection scheme of measuring IGBT  
current to prevent desaturation is effective if the short  
circuit capability of the power device is known, but  
this method will fail if the gate drive voltage decreases  
enough to only partially turn on the IGBT. By directly  
measuring the collector voltage, the ACPL-332J limits the  
power dissipation in the IGBT even with insufficient gate  
drive voltage. Another more subtle advantage of the de-  
saturation detection method is that power dissipation in  
the IGBT is monitored, while the current sense method  
relies on a preset current threshold to predict the safe  
limit of operation. Therefore, an overly conservative over  
current threshold is not needed to protect the IGBT.  
I
UVLO(V -V )  
DESAT Function  
Not Active  
Pin 3 (FAULT) Output  
High  
V
OUT  
F
CC2  
E
ON  
ON  
ON  
OFF  
OFF  
Active  
Low  
Low  
High  
Low  
Low  
Not Active  
Not Active  
Active  
Active (with DESAT fault)  
Active (no DESAT fault)  
Not Active  
Low (FAULT)  
High (or no fault)  
High  
Not Active  
Not Active  
High  
20  
Under Voltage Lockout  
1  
VS  
VE 16  
VLED 15  
The ACPL-332J Under Voltage Lockout (UVLO) feature is  
designed to prevent the application of insufficient gate  
voltage to the IGBT by forcing the ACPL-332J output  
low during power-up. IGBTs typically require gate  
voltages of 15 V to achieve their rated V  
At gate voltages below 13 V typically, the V  
increases dramatically, especially at higher currents.  
At very low gate voltages (below 10 V), the IGBT may  
operate in the linear region and quickly overheat.  
The UVLO function causes the output to be clamped  
2
3
4
5
6
7
8
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
VCC  
voltage.  
voltage  
CE(ON)  
CE(ON)  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
RG  
VOUT 11  
VCLAMP 10  
RPULL-DOWN  
whenever insufficient operating supply (V ) is applied.  
CC2  
Once V  
exceeds V  
(the positive-going UVLO  
CC2  
UVLO+  
VEE  
9
threshold), the UVLO clamp is released to allow the  
device output to turn on in response to input signals. As  
V
is increased from 0 V (at some level below V  
),  
CC2  
UVLO+  
Figure 38. Output pull-down resistor.  
first the DESAT protection circuitry becomes active. As  
is further increased (above V ), the UVLO clamp  
V
CC2  
UVLO+  
DESAT Pin Protection Resistor  
is released. Before the time the UVLO clamp is released,  
the DESAT protection is already active. Therefore, the  
UVLO and DESAT Fault detection feature work together  
to provide seamless protection regardless of supply  
The freewheeling of flyback diodes connected across  
the IGBTs can have large instantaneous forward voltage  
transients which greatly exceed the nominal forward  
voltage of the diode. This may result in a large negative  
voltage spike on the DESAT pin which will draw substan-  
tial current out of the driver if protection is not used. To  
limit this current to levels that will not damage the driver  
IC, a 100 ohm resistor should be inserted in series with  
the DESAT diode. The added resistance will not alter the  
DESAT threshold or the DESAT blanking time.  
voltage (V ).  
CC2  
Active Miller Clamp  
A Miller clamp allows the control of the Miller current  
during a high dV/dt situation and can eliminate the use  
of a negative supply voltage in most of the applications.  
During turn-off, the gate voltage is monitored and the  
clamp output is activated when gate voltage goes below  
2V (relative to V ). The clamp voltage is V +2.5V typ  
1  
VS  
VE  
16  
EE  
OL  
for a Miller current up to 1100mA. The clamp is disabled  
when the LED input is triggered again.  
100pF  
100 Ω  
2
3
4
5
6
7
8
VCC1  
VLED 15  
DESAT 14  
VCC2 13  
DDESAT  
FAULT  
VS  
Other Recommended Components  
VCC  
The application circuit in Figure 36 includes an output  
pull-down resistor, a DESAT pin protection resistor, a  
FAULT pin capacitor, and a FAULT pin pullup resistor and  
Active Miller Clamp connection.  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
RG  
VOUT 11  
Output Pull-Down Resistor  
VCLAMP 10  
During the output high transition, the output voltage  
VEE  
9
rapidly rises to within 3 diode drops of V . If the output  
CC2  
current then drops to zero due to a capacitive load, the  
output voltage will slowly rise from roughly V -3(V  
)
CC2  
BE  
to V  
within a period of several microseconds. To limit  
CC2  
Figure 39. DESAT pin protection.  
the output voltage to V -3(V ), a pull-down resistor,  
CC2  
BE  
Capacitor on FAULT Pin for High CMR  
R
between the output and V is recommend-  
PULL-DOWN  
EE  
ed to sink a static current of several 650 μA while the  
output is high. Pull-down resistor values are dependent  
on the amount of positive supply and can be adjusted  
Rapid common mode transients can affect the fault pin  
voltage while the fault output is in the high state. A 330  
pF capacitor should be connected between the fault pin  
and ground to achieve adequate CMOS noise margins at  
the specified CMR value of 15 kV/μs. The added capaci-  
tance does not increase the fault output delay when a  
desaturation condition is detected.  
according to the formula, R  
650 μA.  
= [V -3 * (V )] /  
pull-down  
CC2 BE  
21  
Pull-up Resistor on FAULT Pin  
The FAULT pin is an open collector output and therefore  
requires a pull-up resistor to provide a high-level signal.  
Also the FAULT output can be wire ‘OR’ed together with  
other types of protection (e.g. over-temperature, over-  
voltage, over-current ) to alert the microcontroller.  
Other Possible Application Circuit (Output Stage)  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
DESAT 14  
VCC2 13  
0.1μF 0.1μF  
VCC1  
FAULT  
VS  
Optional R2  
0.1μF  
Optional R1  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
HVDC  
_
RG  
VCE  
-
VOUT 11  
Q1  
Q2  
3-PHASE  
AC  
10  
VCLAMP  
*
_
RPULL-DOWN  
VCE  
-
VEE  
9
- HVDC  
Figure 40. IGBT drive with negative gate drive, external booster and desaturation detection (VCLAMP should be connected to VEE when it is not used)  
VCLAMP is used as secondary gate discharge path. * indicates component required for negative gate drive topology  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
DESAT 14  
VCC2 13  
0.1μF 0.1μF  
VCC1  
FAULT  
VS  
Optional R2  
0.1μF  
Optional R1  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
HVDC  
_
RG  
VCE  
-
VOUT 11  
Q1  
Q2  
3-PHASE  
AC  
10  
VCLAMP  
*
RPULL-DOWN  
VCE  
-
VEE  
9
- HVDC  
R3  
Figure 41. Large IGBT drive with negative gate drive, external booster. VCLAMP control secondary discharge path for higher power application.  
22  
Thermal Model  
where P = power into input IC and P = power into  
The ACPL-332J is designed to dissipate the majority of  
the heat through pins 1, 4, 5 & 8 for the input IC and pins  
i
o
output IC. Since θ and θ  
are dependent on PCB  
5A  
9,12A  
layout and airflow, their exact number may not be  
available. Therefore, a more accurate method of calcu-  
lating the junction temperature is with the following  
equations:  
9 & 12 for the output IC. (There are two V pins on the  
EE  
output side, pins 9 and 12, for this purpose.) Heat flow  
through other pins or through the package directly into  
ambient are considered negligible and not modeled  
here.  
T = P θ + T  
ji  
i
i5  
P5  
In order to achieve the power dissipation specified in  
the absolute maximum specification, it is imperative  
that pins 5, 9, and 12 have ground planes connected to  
them. As long as the maximum power specification is  
not exceeded, the only other limitation to the amount  
of power one can dissipate is the absolute maximum  
junction temperature specification of 125°C. The junction  
temperatures can be calculated with the following  
equations:  
T
= P θ  
+ T  
jo  
o
o9,12 P9,12  
These equations, however, require that the pin 5 and pins  
9, 12 temperatures be measured with a thermal couple  
on the pin at the ACPL-332J package edge.  
If the calculated junction temperatures for the thermal  
model in Figure 42 is higher than 125°C, the pin tem-  
perature for pins 9 and 12 should be measured (at the  
package edge) under worst case operating environment  
for a more accurate estimate of the junction tempera-  
tures.  
T = P (θ + θ ) + T  
ji  
i
i5  
5A  
A
T
jo  
= Po (θ  
+ θ  
) + T  
9,12A A  
o9,12  
Tji = junction temperature of input side IC  
Tjo = junction temperature of output side IC  
TP5 = pin 5 temperature at package edge  
TP9,12 = pin 9 and 12 temperature at package edge  
θI5 = input side IC to pin 5 thermal resistance  
θo9,12 = output side IC to pin 9 and 12 thermal resistance  
θ5A = pin 5 to ambient thermal resistance  
θ9,12A = pin 9 and 12 to ambient thermal resistance  
*The θ5A and θ9,12A values shown here are for PCB layouts with reasonable air flow.  
This value may increase or decrease by a factor of 2 depending on PCB layout and/or airflow.  
Figure 42. ACPL-332J Thermal Model  
Related Application Notes  
AN5314 – Active Miller Clamp  
AN5324 - Desaturation Fault Detection  
AN5315 – “Soft”Turn-off Feature  
AN1043 – Common-Mode Noise : Sources and Solutions  
AN02-0310EN - Plastics Optocoupler Product ESD and Moisture Sensitivity  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved.  
AV02-0120EN - March 24, 2011  
配单直通车
ACPL-332J产品参数
型号:ACPL-332J
生命周期:Active
IHS 制造商:BROADCOM INC
包装说明:SOP-16
Reach Compliance Code:compliant
HTS代码:8541.40.80.00
风险等级:5.8
其他特性:UL RECOGNIZED
配置:SINGLE
最大正向电流:0.025 A
标称滞后比:1.3
最大绝缘电压:3750 V
元件数量:1
最大通态电流:2.5 A
最高工作温度:105 °C
最低工作温度:-40 °C
光电设备类型:LOGIC IC OUTPUT OPTOCOUPLER
最小供电电压:15 V
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!