欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • HIP6007CB图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HIP6007CB
  • 数量65000 
  • 厂家INTERSIL 
  • 封装SOP14 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • HIP6007CB图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HIP6007CB
  • 数量3800 
  • 厂家Intersil 
  • 封装14-SOIC 
  • 批号24+ 
  • 授权分销 现货热卖
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • HIP6007CB图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • HIP6007CB
  • 数量13250 
  • 厂家INTERSIL 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • HIP6007CB图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • HIP6007CB
  • 数量26800 
  • 厂家HAR 
  • 封装SOP-14 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • HIP6007CB图
  • 集好芯城

     该会员已使用本站13年以上
  • HIP6007CB
  • 数量20004 
  • 厂家INTERSIL 
  • 封装SOP14 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • HIP6007CBH图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • HIP6007CBH
  • 数量30 
  • 厂家 
  • 封装SOP 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • HIP6007CB图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • HIP6007CB
  • 数量15000 
  • 厂家 
  • 封装SOP-14 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • HIP6007CBZ图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • HIP6007CBZ
  • 数量18000 
  • 厂家INTERSIL 
  • 封装14 LD SOIC 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • HIP6007CB图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • HIP6007CB
  • 数量26976 
  • 厂家INTERSIL 
  • 封装SOP14 
  • 批号2018+ 
  • ★★代理原装现货,特价热卖!★★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • HIP6007图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • HIP6007
  • 数量1500 
  • 厂家INTERSIL 
  • 封装 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • HIP6007CB图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • HIP6007CB
  • 数量3750 
  • 厂家INTERSIL 
  • 封装SOP14 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • HIP6007CB图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • HIP6007CB
  • 数量3000 
  • 厂家HAR 
  • 封装SOP 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • HIP6007CB图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • HIP6007CB
  • 数量19658 
  • 厂家INTERSIL【原装正品专卖★价格最低】 
  • 封装SOP14 
  • 批号▊ NEW ▊ 
  • ◆★█【专注原装正品现货】★价格最低★!量大可定!欢迎惠顾!(长期高价回收全新原装正品电子元器件)
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • HIP6007CB图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • HIP6007CB
  • 数量15000 
  • 厂家INTERSIL 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • HIP6007CB图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • HIP6007CB
  • 数量12850 
  • 厂家HAR 
  • 封装SOP 
  • 批号NEW 
  • 绝对进口原装现货,市场价格最低!!
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • HIP6007CB图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • HIP6007CB
  • 数量35600 
  • 厂家INTERSIL 
  • 封装SOP14 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579
  • HIP6007CB图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • HIP6007CB
  • 数量979 
  • 厂家HAR 
  • 封装SMD 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872561 QQ:1484215649QQ:729272152
  • HIP6007CB图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • HIP6007CB
  • 数量68000 
  • 厂家INTERSIL 
  • 封装SOP14 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • HIP6007CB图
  • 深圳市顺鑫诚电子科技有限公司

     该会员已使用本站14年以上
  • HIP6007CB
  • 数量5000 
  • 厂家INTELRSIL 
  • 封装SOIC 
  • 批号18+ 
  • 保证原装正品,欢迎来电咨询
  • QQ:1533095505QQ:1533095505 复制
    QQ:449551876QQ:449551876 复制
  • 0755-29486608 QQ:1533095505QQ:449551876
  • HIP6007CB图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • HIP6007CB
  • 数量6500000 
  • 厂家哈里斯 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008961396QQ:3008961396 复制
  • 0755-21008751 QQ:3008961396
  • HIP6007CB图
  • 深圳市特拉特科技有限公司

     该会员已使用本站2年以上
  • HIP6007CB
  • 数量6000 
  • 厂家HAR 
  • 封装SOP 
  • 批号22+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装
  • QQ:709809857QQ:709809857 复制
  • 0755-82531732 QQ:709809857
  • HIP6007CB图
  • 北京睿科新创电子中心

     该会员已使用本站9年以上
  • HIP6007CB
  • 数量10081 
  • 厂家INTERSIL 
  • 封装SOP14 
  • 批号2021+ 
  • 全新原装进口
  • QQ:765972029QQ:765972029 复制
    QQ:744742559QQ:744742559 复制
  • 010-62556580 QQ:765972029QQ:744742559
  • HIP6007CB-T图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • HIP6007CB-T
  • 数量1001 
  • 厂家INTERSIL 
  • 封装SOP-14 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • HIP6007CB图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • HIP6007CB
  • 数量9800 
  • 厂家Harris 
  • 封装SOP-14L 
  • 批号24+ 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807
  • HIP6007CB图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • HIP6007CB
  • 数量7800 
  • 厂家HAR 
  • 封装SOP 
  • 批号20+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • HIP6007CB-T图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • HIP6007CB-T
  • 数量24500 
  • 厂家Renesas Electronics America Inc 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • HIP6007B图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • HIP6007B
  • 数量24500 
  • 厂家 
  • 封装TQFP 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • HIP6007CB图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • HIP6007CB
  • 数量24500 
  • 厂家Renesas Electronics America Inc 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • HIP6007CBH图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • HIP6007CBH
  • 数量24500 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • HIP6007CBZ图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • HIP6007CBZ
  • 数量24500 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • HIP6007图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • HIP6007
  • 数量24500 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号HIP6007的Datasheet PDF文件预览

HIP6007  
Data Sheet  
September 1997  
File Number 4307.1  
Buck Pulse-Width Modulator (PWM)  
Controller  
Features  
• Drives N-Channel MOSFET  
The HIP6007 provides complete control and protection for  
a DC-DC converter optimized for high-performance  
microprocessor applications. It is designed to drive an  
N-Channel MOSFET in a standard buck topology. The  
HIP6007 integrates all of the control, output adjustment,  
monitoring and protection functions into a single package.  
• Operates From +5V or +12V Input  
• Simple Single-Loop Control Design  
- Voltage-Mode PWM Control  
• Fast Transient Response  
- High-Bandwidth Error Amplifier  
- Full 0% to 100% Duty Ratio  
The output voltage of the converter can be precisely  
regulated to as low as 1.27V, with a maximum tolerance of  
±1% over temperature and line voltage variations.  
• Excellent Output Voltage Regulation  
- 1.27V Internal Reference  
The HIP6007 provides simple, single feedback loop, voltage-  
mode control with fast transient response. It includes a  
200kHz free-running triangle-wave oscillator that is  
adjustable from below 50kHz to over 1MHz. The error  
amplifier features a 15MHz gain-bandwidth product and  
6V/µs slew rate which enables high converter bandwidth for  
fast transient performance. The resulting PWM duty ratio  
ranges from 0% to 100%.  
- ±1% Over Line Voltage and Temperature  
• Over-Current Fault Monitor  
- Does Not Require Extra Current Sensing Element  
- Uses MOSFET’s r  
DS(on)  
• Small Converter Size  
- Constant Frequency Operation  
- 200kHz Free-Running Oscillator Programmable from  
50kHz to Over 1MHz  
The HIP6007 protects against over-current conditions by  
inhibiting PWM operation. The HIP6007 monitors the current  
• 14 Pin, SOIC Package  
by using the r  
of the upper MOSFET which eliminates  
DS(ON)  
the need for a current sensing resistor.  
Applications  
• Power Supply for Pentium®, Pentium Pro, PowerPC™ and  
Alpha™ Microprocessors  
Pinout  
HIP6007  
(SOIC)  
TOP VIEW  
• High-Power 5V to 3.xV DC-DC Regulators  
• Low-Voltage Distributed Power Supplies  
14  
13  
12  
11  
10  
9
RT  
OCSET  
SS  
1
2
3
4
5
6
7
VCC  
NC  
Ordering Information  
NC  
TEMP. RANGE  
PKG.  
NO.  
o
PART NUMBER  
( C)  
PACKAGE  
COMP  
FB  
NC  
BOOT  
UGATE  
PHASE  
HIP6007CB  
0 to 70  
14 Ld SOIC  
M14.15  
EN  
8
GND  
PowerPC™ is a trademark of IBM.  
Alpha™ is a trademark of Digital Equipment Corporation.  
Pentium® is a registered trademark of Intel Corporation.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
2-131  
HIP6007  
Typical Application  
+12V  
+5V OR +12V  
VCC  
OCSET  
EN  
SS  
RT  
MONITOR AND  
PROTECTION  
BOOT  
OSC  
UGATE  
PHASE  
+V  
HIP6007  
O
REF  
-
+
+
-
FB  
COMP  
Block Diagram  
VCC  
POWER-ON  
RESET (POR)  
EN  
SS  
10µA  
SOFT-  
START  
+
-
OCSET  
OVER-  
CURRENT  
BOOT  
UGATE  
200µA  
4V  
PHASE  
PWM  
COMPARATOR  
1.27 VREF  
GATE  
CONTROL  
LOGIC  
REFERENCE  
INHIBIT  
PWM  
+
-
+
-
ERROR  
AMP  
FB  
COMP  
RT  
GND  
OSCILLATOR  
2-132  
HIP6007  
Absolute Maximum Ratings  
Thermal Information  
o
Supply Voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +15.0V  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
CC  
JA  
Boot Voltage, V  
- V  
. . . . . . . . . . . . . . . . . . . . . . . +15.0V  
BOOT  
PHASE  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . 150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
150  
o
Input, Output or I/O Voltage . . . . . . . . . . . GND -0.3V to VCC +0.3V  
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Class 2  
o
o
o
(Lead Tips Only)  
Operating Conditions  
Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . +12V ±10%  
o
o
Ambient Temperature Range. . . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
o
o
Junction Temperature Range. . . . . . . . . . . . . . . . . . . . 0 C to 125 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications Recommended Operating Conditions, Unless Otherwise Noted  
PARAMETER  
VCC SUPPLY CURRENT  
Nominal Supply  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
EN = VCC; UGATE and LGATE Open  
EN = 0V  
-
-
5
-
mA  
CC  
Shutdown Supply  
50  
100  
µA  
POWER-ON RESET  
Rising VCC Threshold  
Falling VCC Threshold  
Enable - Input threshold Voltage  
V
V
V
= 4.5VDC  
= 4.5VDC  
= 4.5VDC  
-
-
10.4  
V
V
V
V
OCSET  
OCSET  
OCSET  
8.2  
0.8  
-
-
-
-
2.0  
-
Rising V  
OCSET  
Threshold  
1.27  
OSCILLATOR  
Free Running Frequency  
Total Variation  
RT = OPEN, V  
CC  
= 12  
185  
-15  
-
200  
-
215  
+15  
-
kHz  
%
6k< RT to GND < 200kΩ  
Ramp Amplitude  
REFERENCE  
V  
RT = OPEN  
1.9  
V
OSC  
P-P  
Reference Voltage  
ERROR AMPLIFIER  
DC Gain  
1.258  
1.270  
1.282  
V
-
-
-
88  
15  
6
-
-
-
dB  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
MHz  
V/µs  
COMP = 10pF  
GATE DRIVERS  
Upper Gate Source  
Upper Gate Sink  
PROTECTION  
I
V
- V  
= 12V, V  
UGATE  
= 6V  
350  
-
500  
5.5  
-
mA  
UGATE  
BOOT  
PHASE  
R
I
= 0.3A  
10  
UGATE  
LGATE  
OCSET Current Source  
Soft Start Current  
I
V
= 4.5VDC  
170  
-
200  
10  
230  
-
µA  
µA  
OCSET  
OCSET  
I
SS  
2-133  
HIP6007  
Typical Performance Curves  
40  
35  
30  
25  
20  
15  
10  
5
R
PULLUP  
TO +12V  
T
C
= 3300pF  
GATE  
1000  
100  
10  
R
PULLDOWN  
T
C
= 1000pF  
GATE  
TO V  
SS  
C
= 10pF  
GATE  
0
10  
100  
SWITCHING FREQUENCY (kHz)  
1000  
100 200 300 400 500 600 700 800 900 1000  
SWITCHING FREQUENCY (kHz)  
FIGURE 1. R RESISTANCE vs FREQUENCY  
T
FIGURE 2. BIAS SUPPLY CURRENT vs FREQUENCY  
SS (Pin 3)  
Functional Pin Description  
Connect a capacitor from this pin to ground. This capacitor,  
along with an internal 10µA current source, sets the soft-  
start interval of the converter.  
14  
13  
12  
11  
10  
9
RT  
OCSET  
SS  
1
2
3
4
5
6
7
VCC  
NC  
NC  
COMP (Pin 4) and FB (Pin 5)  
COMP  
FB  
NC  
COMP and FB are the available external pins of the error  
amplifier. The FB pin is the inverting input of the error  
amplifier and the COMP pin is the error amplifier output.  
These pins are used to compensate the voltage-control  
feedback loop of the converter.  
BOOT  
UGATE  
PHASE  
EN  
8
GND  
RT (Pin 1)  
EN (Pin 6)  
This pin provides oscillator switching frequency adjustment.  
This pin is the open-collector enable pin. Pull this pin below  
1V to disable the converter. In shutdown, the soft start pin is  
discharged and the UGATE and LGATE pins are held low.  
By placing a resistor (R ) from this pin to GND, the nominal  
200kHz switching frequency is increased according to the  
following equation:  
T
GND (Pin 7)  
6
5 10  
Fs 200kHz + --------------------  
(R to GND)  
Signal ground for the IC. All voltage levels are measured with  
respect to this pin.  
T
R (kΩ)  
T
Conversely, connecting a pull-up resistor (R ) from this pin  
T
to VCC reduces the switching frequency according to the  
PHASE (Pin 8)  
Connect the PHASE pin to the upper MOSFET source. This  
pin is used to monitor the voltage drop across the MOSFET  
for over-current protection. This pin also provides the return  
path for the upper gate drive.  
following equation.:  
7
4 10  
Fs 200kHz --------------------  
(R to 12V)  
T
R (kΩ)  
T
UGATE (Pin 9)  
OCSET (Pin 2)  
Connect UGATE to the upper MOSFET gate. This pin  
provides the gate drive for the upper MOSFET.  
Connect a resistor (R  
) from this pin to the drain of the  
OCSET  
, an internal 200µA current source  
upper MOSFET. R  
(I  
OCSET  
), and the upper MOSFET on-resistance (r  
) set  
OCS DS(ON)  
BOOT (Pin 10)  
the converter over-current (OC) trip point according to the  
following equation:  
This pin provides bias voltage to the upper MOSFET driver.  
A bootstrap circuit may be used to create a BOOT voltage  
suitable to drive a standard N-Channel MOSFET.  
I
R  
OCSET  
OCS  
I
= -------------------------------------------  
PEAK  
r
DS(ON)  
VCC (Pin 14)  
Provide a 12V bias supply for the chip to this pin.  
An over-current trip cycles the soft-start function.  
2-134  
HIP6007  
Functional Description  
Initialization  
The HIP6007 automatically initializes upon receipt of power.  
Special sequencing of the input supplies is not necessary.  
The Power-On Reset (POR) function continually monitors  
the input supply voltages and the enable (EN) pin. The POR  
monitors the bias voltage at the VCC pin and the input  
SOFT-START  
(1V/DIV)  
voltage (V ) on the OCSET pin. The level on OCSET is  
IN  
OUTPUT  
VOLTAGE  
(1V/DIV)  
equal to V less a fixed voltage drop (see over-current  
IN  
protection). With the EN pin held to VCC, the POR function  
initiates soft start operation after both input supply voltages  
exceed their POR thresholds. For operation with a single  
0V  
0V  
t1  
t2  
TIME (5ms/DIV)  
t3  
+12V power source, V and V  
+12V power source must exceed the rising V  
before POR initiates operation.  
are equivalent and the  
IN  
CC  
threshold  
CC  
FIGURE 3. SOFT-START INTERVAL  
The Power-On Reset (POR) function inhibits operation with  
the chip disabled (EN pin low). With both input supplies  
above their POR thresholds, transitioning the EN pin high  
initiates a soft start interval.  
Over-Current Protection  
The over-current function protects the converter from a  
shorted output by using the upper MOSFET’s on-resistance,  
Soft Start  
r
to monitor the current. This method enhances the  
DS(ON)  
converter’s efficiency and reduces cost by eliminating a  
current sensing resistor.  
The POR function initiates the soft start sequence. An internal  
10µA current source charges an external capacitor (C ) on  
SS  
the SS pin to 4V. Soft start clamps the error amplifier output  
(COMP pin) and reference input (+ terminal of error amp) to  
the SS pin voltage. Figure 3 shows the soft start interval with  
The over-current function cycles the soft-start function in a  
hiccup mode to provide fault protection. A resistor (R  
)
OCSET  
programs the over-current trip level. An internal 200µA  
(typical) current sink develops a voltage across R  
C
= 0.1µF. Initially the clamp on the error amplifier (COMP  
SS  
that  
OCSET  
pin) controls the converter’s output voltage. At t1 in Figure 3,  
the SS voltage reaches the valley of the oscillator’s triangle  
wave. The oscillator’s triangular waveform is compared to the  
ramping error amplifier voltage. This generates PHASE  
pulses of increasing width that charge the output capacitor(s).  
This interval of increasing pulse width continues to t2. With  
sufficient output voltage, the clamp on the reference input  
controls the output voltage. This is the interval between t2 and  
t3 in Figure 3. At t3 the SS voltage exceeds the reference  
voltage and the output voltage is in regulation. This method  
provides a rapid and controlled output voltage rise.  
is reference to V . When the voltage across the upper  
IN  
MOSFET (also referenced to V ) exceeds the voltage  
IN  
, the over-current function initiates a soft-  
across R  
OCSET  
start sequence. The soft-start function discharges C with  
SS  
a 10µA current sink and inhibits PWM operation. The soft-  
start function recharges C , and PWM operation resumes  
SS  
with the error amplifier clamped to the SS voltage. Should an  
overload occur while recharging C , the soft start function  
SS  
inhibits PWM operation while fully charging C to 4V to  
SS  
complete its cycle. Figure 4 shows this operation with an  
overload condition. Note that the inductor current increases  
to over 15A during the C charging interval and causes an  
SS  
over-current trip. The converter dissipates very little power  
with this method. The measured input power for the  
conditions of Figure 4 is 2.5W.  
2-135  
HIP6007  
V
IN  
4V  
2V  
HIP6007  
0V  
UGATE  
PHASE  
Q1  
L
O
V
OUT  
15A  
10A  
5A  
C
IN  
C
O
D2  
0A  
RETURN  
TIME (20ms/DIV)  
FIGURE 5. PRINTED CIRCUIT BOARD  
POWER AND GROUND PLANES OR ISLANDS  
FIGURE 4. OVER-CURRENT OPERATION  
part of ground or power plane in a printed circuit board. The  
components shown in Figure 6 should be located as close  
The over-current function will trip at a peak inductor current  
(I  
) determined by:  
PEAK  
together as possible. Please note that the capacitors C  
IN  
I
R  
OCSET  
OCSET  
and C each represent numerous physical capacitors.  
O
I
= ---------------------------------------------------  
PEAK  
r
Locate the HIP6007 within 3 inches of the MOSFETs, Q1.  
The circuit traces for the MOSFETs’ gate and source  
connections from the HIP6007 must be sized to handle up to  
1A peak current.  
DS(ON)  
where I  
is the internal OCSET current source (200µA  
OCSET  
- typical). The OC trip point varies mainly due to the  
MOSFET’s r variations. To avoid over-current tripping  
DS(ON)  
Figure 6 shows the circuit traces that require additional  
layout consideration. Use single point and ground plane  
construction for the circuits shown. Minimize any leakage  
in the normal operating load range, find the R  
resistor  
OCSET  
from the equation above with:  
current paths on the SS PIN and locate the capacitor, C  
close to the SS pin because the internal current source is  
1. The maximum r  
ture.  
at the highest junction tempera-  
ss  
DS(ON)  
only 10µA. Provide local V  
GND pins. Locate the capacitor, C  
to the BOOT and PHASE pins.  
decoupling between VCC and  
2. The minimum I  
from the specification table.  
CC  
OCSET  
for I  
as close as practical  
BOOT  
3. Determine I  
> I  
PEAK  
+ (∆I) ⁄ 2,  
OUT(MAX)  
PEAK  
where I is the output inductor ripple current.  
For an equation for the ripple current see the section under  
component guidelines titled ‘Output Inductor Selection’.  
+V  
IN  
BOOT  
D1  
Q1  
L
C
O
BOOT  
A small ceramic capacitor should be placed in parallel with  
V
OUT  
HIP6007  
R
to smooth the voltage across R in the  
OCSET  
OCSET  
PHASE  
SS  
presence of switching noise on the input voltage.  
V
CC  
+12V  
C
D2  
O
Application Guidelines  
C
VCC  
Layout Considerations  
C
SS  
As in any high frequency switching converter, layout is very  
important. Switching current from one power device to  
another can generate voltage transients across the  
impedances of the interconnecting bond wires and circuit  
traces. These interconnecting impedances should be  
minimized by using wide, short printed circuit traces. The  
critical components should be located as close together as  
possible using ground plane construction or single point  
grounding.  
GND  
FIGURE 6. PRINTED CIRCUIT BOARD  
SMALL SIGNAL LAYOUT GUIDELINES  
Figure 5 shows the critical power components of the  
converter. To minimize the voltage overshoot the  
interconnecting wires indicated by heavy lines should be  
2-136  
HIP6007  
o
180 . The equations below relate the compensation  
network’s poles, zeros and gain to the components (R1, R2,  
R3, C1, C2, and C3) in Figure 8. Use these guidelines for  
locating the poles and zeros of the compensation network:  
Feedback Compensation  
Figure 7 highlights the voltage-mode control loop for a  
synchronous-rectified buck converter. The output voltage  
(Vout) is regulated to the Reference voltage level. The error  
amplifier (Error Amp) output (V ) is compared with the  
Compensation Break Frequency Equations  
E/A  
oscillator (OSC) triangular wave to provide a pulse-width  
modulated (PWM) wave with an amplitude of Vin at the  
PHASE node. The PWM wave is smoothed by the output  
filter (Lo and Co).  
1
1
---------------------------------  
2π • R2 C1  
-----------------------------------------------------  
F
=
F
=
Z1  
P1  
C1 C2  
---------------------  
2π • R2 •  
C1 + C2  
1
1
----------------------------------------------------  
2π • (R1 + R3) • C3  
---------------------------------  
F
=
F
=
Z2  
P2  
2π • R3 C3  
V
IN  
OSC  
DRIVER  
DRIVER  
PWM  
COMPARATOR  
1. Pick Gain (R2/R1) for desired converter bandwidth  
L
O
V
ST  
OUT  
2. Place 1 Zero Below Filter’s Double Pole  
-
(~75% F  
)
PHASE  
LC  
+
V  
OSC  
C
O
ND  
ST  
3. Place 2  
Zero at Filter’s Double Pole  
ESR  
(PARASITIC)  
4. Place 1 Pole at the ESR Zero  
ND  
Z
5. Place 2  
Pole at Half the Switching Frequency  
FB  
V
E/A  
6. Check Gain against Error Amplifier’s Open-Loop Gain  
7. Estimate Phase Margin - Repeat if Necessary  
Z
-
IN  
+
REFERENCE  
ERROR  
AMP  
Figure 8 shows an asymptotic plot of the DC-DC converter’s  
gain vs frequency. The actual Modulator Gain has a high gain  
peak do to the high Q factor of the output filter and is not  
shown in Figure 8. Using the above guidelines should give a  
Compensation Gain similar to the curve plotted. The open  
loop error amplifier gain bounds the compensation gain.  
DETAILED COMPENSATION COMPONENTS  
Z
FB  
V
OUT  
C2  
R2  
Z
IN  
Check the compensation gain at F with the capabilities of  
P2  
C1  
C3  
R3  
the error amplifier. The Closed Loop Gain is constructed on  
the log-log graph of Figure 8 by adding the Modulator Gain (in  
dB) to the Compensation Gain (in dB). This is equivalent to  
multiplying the modulator transfer function to the  
R1  
COMP  
FB  
-
+
compensation transfer function and plotting the gain.  
HIP6007  
The compensation gain uses external impedance networks  
REF  
Z
and Z to provide a stable, high bandwidth (BW) overall  
IN  
FB  
loop. A stable control loop has a gain crossing with  
o
-20dB/decade slope and a phase margin greater than 45 .  
Include worst case component variations when determining  
phase margin.  
FIGURE 7. VOLTAGE - MODE BUCK CONVERTER  
COMPENSATION DESIGN  
The modulator transfer function is the small-signal transfer  
function of Vout/V . This function is dominated by a DC  
Gain and the output filter (Lo and Co), with a double pole  
E/A  
100  
F
F
P1  
F
F
Z2  
Z1  
P2  
break frequency at F and a zero at F  
. The DC Gain of  
80  
60  
40  
20  
0
LC ESR  
the modulator is simply the input voltage (Vin) divided by the  
peak-to-peak oscillator voltage V  
OPEN LOOP  
ERROR AMP GAIN  
.
OSC  
20LOG  
(R2/R1)  
Modulator Break Frequency Equations  
20LOG  
1
1
--------------------------------------  
--------------------------------------------  
F
F
=
ESR  
(V /V  
)
IN  
OSC  
LC =  
2π • (ESR C  
)
2π •  
L C  
O O  
O
COMPENSATION  
GAIN  
MODULATOR  
GAIN  
-20  
-40  
-60  
The compensation network consists of the error amplifier  
(internal to the HIP6007) and the impedance networks Z  
CLOSED LOOP  
GAIN  
IN  
F
LC  
F
ESR  
and Z . The goal of the compensation network is to provide  
FB  
10  
100  
1K  
10K  
100K  
1M  
10M  
a closed loop transfer function with the highest 0dB crossing  
FREQUENCY (Hz)  
frequency (f  
) and adequate phase margin. Phase margin  
0dB  
is the difference between the closed loop phase at f  
and  
0dB  
FIGURE 8. ASYMPTOTIC BODE PLOT OF CONVERTER GAIN  
2-137  
HIP6007  
One of the parameters limiting the converter’s response to a  
Component Selection Guidelines  
load transient is the time required to change the inductor  
current. Given a sufficiently fast control loop design, the  
HIP6007 will provide either 0% or 100% duty cycle in  
response to a load transient. The response time is the time  
required to slew the inductor current from an initial current  
value to the transient current level. During this interval the  
difference between the inductor current and the transient  
current level must be supplied by the output capacitor.  
Minimizing the response time can minimize the output  
capacitance required.  
Output Capacitor Selection  
An output capacitor is required to filter the output and supply  
the load transient current. The filtering requirements are a  
function of the switching frequency and the ripple current.  
The load transient requirements are a function of the slew  
rate (di/dt) and the magnitude of the transient load current.  
These requirements are generally met with a mix of  
capacitors and careful layout.  
Modern microprocessors produce transient load rates above  
1A/ns. High frequency capacitors initially supply the  
transient and slow the current load rate seen by the bulk  
capacitors. The bulk filter capacitor values are generally  
determined by the ESR (effective series resistance) and  
voltage rating requirements rather than actual capacitance  
requirements.  
The response time to a transient is different for the  
application of load and the removal of load. The following  
equations give the approximate response time interval for  
application and removal of a transient load:  
L
x I  
TRAN  
L x I  
O TRAN  
O
t
=
t
=
RISE  
FALL  
V
- V  
V
O
IN  
O
High frequency decoupling capacitors should be placed as  
close to the power pins of the load as physically possible. Be  
careful not to add inductance in the circuit board wiring that  
could cancel the usefulness of these low inductance  
components. Consult with the manufacturer of the load on  
specific decoupling requirements. For example, Intel  
recommends that the high frequency decoupling for the  
Pentium-Pro be composed of at least forty (40) 1.0µF  
ceramic capacitors in the 1206 surface-mount package.  
where: I  
TRAN  
response time to the application of load, and t  
is the transient load current step, t  
is the  
is the  
RISE  
FALL  
response time to the removal of load. With a +5V input  
source, the worst case response time can be either at the  
application or removal of load and dependent upon the  
output voltage setting. Be sure to check both of these  
equations at the minimum and maximum output levels for the  
worst case response time.  
Input Capacitor Selection  
Use only specialized low-ESR capacitors intended for  
switching-regulator applications for the bulk capacitors. The  
bulk capacitor’s ESR will determine the output ripple voltage  
and the initial voltage drop after a high slew-rate transient.  
An aluminum electrolytic capacitor's ESR value is related to  
the case size with lower ESR available in larger case sizes.  
However, the equivalent series inductance (ESL) of these  
capacitors increases with case size and can reduce the  
usefulness of the capacitor to high slew-rate transient  
loading. Unfortunately, ESL is not a specified parameter.  
Work with your capacitor supplier and measure the  
capacitor’s impedance with frequency to select a suitable  
component. In most cases, multiple electrolytic capacitors of  
small case size perform better than a single large case  
capacitor.  
Use a mix of input bypass capacitors to control the voltage  
overshoot across the MOSFETs. Use small ceramic  
capacitors for high frequency decoupling and bulk capacitors  
to supply the current needed each time Q1 turns on. Place  
the small ceramic capacitors physically close to the  
MOSFETs and between the drain of Q1 and the anode of  
Schottky diode D2.  
The important parameters for the bulk input capacitor are the  
voltage rating and the RMS current rating. For reliable  
operation, select the bulk capacitor with voltage and current  
ratings above the maximum input voltage and largest RMS  
current required by the circuit. The capacitor voltage rating  
should be at least 1.25 times greater than the maximum  
input voltage and a voltage rating of 1.5 times is a  
conservative guideline. The RMS current rating requirement  
for the input capacitor of a buck regulator is approximately  
1/2 the DC load current.  
Output Inductor Selection  
The output inductor is selected to meet the output voltage  
ripple requirements and minimize the converter’s response  
time to the load transient. The inductor value determines the  
converter’s ripple current and the ripple voltage is a function  
of the ripple current. The ripple voltage and current are  
approximated by the following equations:  
For a through hole design, several electrolytic capacitors  
(Panasonic HFQ series or Nichicon PL series or Sanyo MV-  
GX or equivalent) may be needed. For surface mount  
designs, solid tantalum capacitors can be used, but caution  
must be exercised with regard to the capacitor surge current  
rating. These capacitors must be capable of handling the  
surge-current at power-up. The TPS series available from  
AVX, and the 593D series from Sprague are both surge  
current tested.  
V
- V  
V
OUT  
V
IN  
IN  
OUT  
V  
= I x ESR  
OUT  
------------------------------- ---------------  
I =  
Fs × L  
O
Increasing the value of inductance reduces the ripple current  
and voltage. However, the large inductance values reduce  
the converter’s response time to a load transient.  
2-138  
HIP6007  
MOSFET Selection/Considerations  
+12V  
D
BOOT  
The HIP6007 requires an N-Channel power MOSFET. It  
+5V OR +12V  
+
should be selected based upon r  
requirements, and thermal management requirements.  
, gate supply  
-
DS(ON)  
V
D
VCC  
BOOT  
In high-current applications, the MOSFET power  
HIP6007  
C
BOOT  
dissipation, package selection and heatsink are the  
dominant design factors. The power dissipation includes  
two loss components; conduction loss and switching loss.  
Q1  
NOTE:  
G-S V - V  
UGATE  
PHASE  
V
CC  
D
The conduction losses are the largest component of power  
dissipation for the MOSFET. Switching losses also  
contribute to the overall MOSFET power loss (see the  
equations below). These equations assume linear voltage-  
current transitions and are approximations. The gate-  
charge losses are dissipated by the HIP6007 and don't  
heat the MOSFET. However, large gate-charge increases  
D2  
-
+
GND  
the switching interval, t , which increases the upper  
FIGURE 9. UPPER GATE DRIVE - BOOTSTRAP OPTION  
SW  
MOSFET switching losses. Ensure that the MOSFET is  
within its maximum junction temperature at high ambient  
temperature by calculating the temperature rise according  
to package thermal-resistance specifications. A separate  
heatsink may be necessary depending upon MOSFET  
power, package type, ambient temperature and air flow.  
2
+12V  
+5V OR LESS  
VCC  
BOOT  
HIP6007  
P
P
= I x r  
DS(ON)  
x D  
COND  
O
Q1  
UGATE  
1
NOTE:  
=
I
x V x t  
x Fs  
PHASE  
SW  
O IN SW  
2
V
G-S V - 5V  
CC  
Where: D is the duty cycle = V / V  
,
O
IN  
D2  
t
is the switching interval, and  
SW  
Fs is the switching frequency.  
-
+
Standard-gate MOSFETs are normally recommended for  
use with the HIP6007. However, logic-level gate MOSFETs  
can be used under special circumstances. The input voltage,  
upper gate drive level, and the MOSFET’s absolute gate-to-  
source voltage rating determine whether logic-level  
MOSFETs are appropriate.  
GND  
FIGURE 10. UPPER GATE DRIVE - DIRECT V  
DRIVE OPTION  
CC  
Schottky Selection  
Rectifier D2 conducts when the upper MOSFET Q1 is off.  
The diode should be a Schottky type for low power losses.  
The power dissipation in the schottky rectifier is  
approximated by:  
Figure 9 shows the upper gate drive (BOOT pin) supplied by  
a bootstrap circuit from V . The boot capacitor, C  
CC BOOT  
develops a floating supply voltage referenced to the PHASE  
P
= I x V x (1 - D)  
O f  
pin. This supply is refreshed each cycle to a voltage of V  
COND  
CC  
less the boot diode drop (V ) when the lower MOSFET, Q2  
D
turns on. A logic-level MOSFET can only be used for Q1 if  
the MOSFET’s absolute gate-to-source voltage rating  
Where: D is the duty cycle = V /V , and  
O
IN  
V is the schottky forward voltage drop  
f
In addition to power dissipation, package selection and  
heatsink requirements are the main design tradeoffs in  
choosing the schottky rectifier. Since the three factors are  
interrelated, the selection process is an iterative procedure.  
The maximum junction temperature of the rectifier must  
remain below the manufacturer’s specified value, typically  
exceeds the maximum voltage applied to V  
.
CC  
Figure 10 shows the upper gate drive supplied by a direct  
connection to VCC. This option should only be used in  
converter systems where the main input voltage is +5VDC  
or less. The peak upper gate-to-source voltage is  
approximately V  
less the input supply. For +5V main  
CC  
o
125 C. By using the package thermal resistance specification  
power and +12VDC for the bias, the gate-to-source voltage  
of Q1 is 7V. A logic-level MOSFET is a good choice for Q1  
and a logic-level MOSFET is a good choice for Q1 under  
these conditions.  
and the schottky power dissipation equation (shown above),  
the junction temperature of the rectifier can be estimated. Be  
sure to use the available airflow and ambient temperature to  
determine the junction temperature rise.  
2-139  
HIP6007  
HIP6007 DC-DC Converter Application Circuit  
The figure below shows an application circuit of a DC-DC  
Converter for a microprocessor application. Detailed  
information on the circuit, including a complete Bill-of-  
Materials and circuit board description, can be found in  
Application Note AN9722. See Intersil’s home page on the  
web: http://www.intersil.com or Intersil AnswerFAX (407-724-  
7800) document # 99722.  
12VCC  
VIN  
C17-18  
2x 1µF  
1206  
C1-5  
3x 680µF  
RTN  
C12  
1µF  
1206  
C19  
R7  
10k  
CR1  
VCC  
14  
1000pF  
4148  
R6  
OCSET  
6
3
2
ENABLE  
MONITOR AND  
PROTECTION  
SS  
RT  
3.01k  
Q1  
PHASE  
TP2  
10 BOOT  
1
C20  
0.1µF  
9
8
UGATE  
PHASE  
NC  
C13  
0.1µF  
OSC  
R1  
SPARE  
U1  
HIP6007  
L2  
REF  
V
OUT  
13  
12  
11  
C6-11  
CR3  
NC  
-
4x 1000µF  
+
+
FB  
5
-
NC  
RTN  
4
7
R2  
1k  
COMP  
GND  
C14  
JP1  
33pF  
C15  
R5  
COMP  
TP1  
0.01µF 15k  
C16  
SPARE  
R3  
1k  
R4  
SPARE  
Component Selection Notes  
C1-C3 -3 each 680µF 25W VDC, Sanyo MV-GX or equivalent  
C6-C9 -4 each 1000µF 6.3W VDC, Sanyo MV-GX or equivalent  
L1 -Core: Micrometals T60-52; Winding: 14 Turns of 17AWG  
CR1 -1N4148 or equivalent  
CR3 -15A, 35V Schottky, Motorola MBR1535CT or equivalent  
Q1 -Intersil MOSFET; RFP25N05  
FIGURE 11. DC-DC CONVERTER APPLICATION CIRCUIT  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
2-140  
配单直通车
HIP6007CB产品参数
型号:HIP6007CB
是否无铅: 含铅
是否Rohs认证: 不符合
生命周期:Obsolete
IHS 制造商:INTERSIL CORP
零件包装代码:SOIC
包装说明:SOP, SOP14,.25
针数:14
Reach Compliance Code:not_compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.79
其他特性:ALSO OPERATES AT 12 V INPUT
模拟集成电路 - 其他类型:SWITCHING CONTROLLER
控制模式:VOLTAGE-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:13.2 V
最小输入电压:10.8 V
标称输入电压:5 V
JESD-30 代码:R-PDSO-G14
JESD-609代码:e0
长度:8.65 mm
湿度敏感等级:1
功能数量:1
端子数量:14
最高工作温度:70 °C
最低工作温度:
最大输出电流:0.35 A
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOP14,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):240
认证状态:Not Qualified
座面最大高度:1.75 mm
子类别:Switching Regulator or Controllers
表面贴装:YES
切换器配置:SINGLE
最大切换频率:1000 kHz
技术:BIPOLAR
温度等级:COMMERCIAL
端子面层:Tin/Lead (Sn/Pb)
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!