欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • JW150F1图
  • 北京力通科信电子有限公司

     该会员已使用本站10年以上
  • JW150F1
  • 数量40 
  • 厂家lucent 
  • 封装vpe: 1/Tray 
  • 批号dc98 
  • 7-10天原装特价*热卖
  • QQ:2355365902QQ:2355365902 复制
    QQ:2355365899QQ:2355365899 复制
  • 010-82625766 QQ:2355365902QQ:2355365899
  • JW150F1图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • JW150F1
  • 数量10000 
  • 厂家LUCENT 
  • 封装 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • JW150F1-33    99W图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • JW150F1-33 99W
  • 数量1683 
  • 厂家LUCENT 
  • 封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • JW150F1图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • JW150F1
  • 数量5000 
  • 厂家GE Energy (Lineage Power) 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104791 QQ:857273081QQ:1594462451
  • JW150F1-25T图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • JW150F1-25T
  • 数量6000 
  • 厂家Lucent 
  • 封装模块 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • JW150F1 99W图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • JW150F1 99W
  • 数量5000 
  • 厂家LUCENT 
  • 封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • JW150F1图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • JW150F1
  • 数量120 
  • 厂家ATT 
  • 封装MOUDLE 
  • 批号2023 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • JW150F1图
  • 首天国际(深圳)科技有限公司

     该会员已使用本站16年以上
  • JW150F1
  • 数量10000 
  • 厂家LUCENT 
  • 封装DC/DC: 48V-3.3V-99W 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807802 QQ:528164397QQ:1318502189
  • JW150F1 99W图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • JW150F1 99W
  • 数量65000 
  • 厂家LUCENT 
  • 封装模块 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • JW150F1图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • JW150F1
  • 数量1365 
  • 厂家LUCENT 
  • 封装 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • JW150F1 99W图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • JW150F1 99W
  • 数量6582 
  • 厂家LUCENT【模块专卖★价格最低】 
  • 封装【原厂原包装】 
  • 批号▊ NEW ▊ 
  • ◆★█【IGBT模块专卖】★价格最低★!量大可定!欢迎惠顾!(长期高价回收全新原装正品电子元器件)
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • JW150F1 99W图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • JW150F1 99W
  • 数量9800 
  • 厂家 
  • 封装 
  • 批号24+ 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807
  • JW150F1-33    100W图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • JW150F1-33 100W
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • JW150F1-25T-100W图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • JW150F1-25T-100W
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • jw150f1-25-100w图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • jw150f1-25-100w
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • JW150F1-25T图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • JW150F1-25T
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • JW150F1图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • JW150F1
  • 数量400 
  • 厂家LUCENT 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • JW150F1 99W图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • JW150F1 99W
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号JW150F1的Datasheet PDF文件预览

Data Sheet  
April 2008  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Features  
n Small size: 61.0 mm x 57.9 mm x 12.7 mm  
(2.40 in. x 2.28 in. x 0.50 in.)  
n High power density  
n High efficiency: 80% typical  
n Low output noise  
n Constant frequency  
n Industry-standard pinout  
n Metal baseplate  
n 2:1 input voltage range  
The JW050F, JW075F, JW100F, and JW150F Power Modules  
n Overtemperature protection (66 W and 99 W only)  
n Overcurrent and overvoltage protection  
n Remote sense  
use advanced, surface-mount technology and deliver high-  
quality, efficient, and compact dc-dc conversion.  
Applications  
n Remote on/off  
n Adjustable output voltage: 60% to 110% of VO, nom  
n Case ground pin  
n Distributed power architectures  
n Workstations  
n ISO9001 Certified manufacturing facilities  
n Computer equipment  
n Communications equipment  
n UL* 1950 Recognized, CSAC22.2 No. 950-95  
Certified, and VDE 0805 (EN60950, IEC950)  
Licensed  
Options  
n CE mark meets 73/23/EEC and 93/68/EEC  
directives‡  
n Heat sinks available for extended operation  
n Choice of remote on/off logic configuration  
* UL is a registered trademark of Underwriters Laboratories, Inc.  
CSA is a registered trademark of Canadian Standards Assn.  
This product is intended for integration into end-use equipment.  
All the required procedures for CE marking of end-use equip-  
ment should be followed. (The CE mark is placed on selected  
products.)  
Description  
The JW050F, JW075F, JW100F, and JW150F Power Modules are dc-dc converters that operate over an input  
voltage range of 36 Vdc to 75 Vdc and provide a precisely regulated dc output. The outputs are fully isolated  
from the inputs, allowing versatile polarity configurations and grounding connections. The modules have maxi-  
mum power ratings from 33 W to 99 W at a typical full-load efficiency of 80%.  
The sealed modules offer a metal baseplate for excellent thermal performance. Threaded-through holes are pro-  
vided to allow easy mounting or addition of a heat sink for high-temperature applications. The standard feature set  
includes remote sensing, output trim, and remote on/off for convenient flexibility in distributed power applications.  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are abso-  
lute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess  
of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended  
periods can adversely affect device reliability.  
Parameter  
Symbol  
Min  
Max  
Unit  
Input Voltage:  
Continuous:  
JW050F, JW075F  
JW100F, JW150F  
Transient (100 ms; JW100F, JW150F only)  
VI  
VI  
VI, trans  
75  
80  
100  
Vdc  
Vdc  
V
I/O Isolation Voltage (for 1 minute)  
1500  
100  
Vdc  
°C  
Operating Case Temperature  
TC  
–40  
(See Thermal Considerations section.)  
Storage Temperature  
Tstg  
–55  
125  
°C  
Electrical Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions.  
Table 1. Input Specifications  
Parameter  
Operating Input Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
VI  
36  
48  
75  
Vdc  
Maximum Input Current  
(VI = 0 V to 75 V; IO = IO, max):  
JW050F (See Figure 1.)  
JW075F (See Figure 2.)  
JW100F (See Figure 3.)  
JW150F (See Figure 4.)  
II, max  
II, max  
II, max  
II, max  
1.2  
1.8  
2.4  
3.7  
A
A
A
A
Inrush Transient  
i2t  
5
1.0  
A2s  
Input Reflected-ripple Current, Peak-to-peak  
(5 Hz to 20 MHz, 12 µH source impedance;  
see Figure 17.)  
II  
mAp-p  
Input Ripple Rejection (120 Hz)  
60  
dB  
Fusing Considerations  
CAUTION: This power module is not internally fused. An input line fuse must always be used.  
This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone  
operation to an integrated part of a sophisticated power architecture. To preserve maximum flexibility, internal fus-  
ing is not included; however, to achieve maximum safety and system protection, always use an input line fuse. The  
safety agencies require a normal-blow, dc fuse with a maximum rating of 20 A (see Safety Considerations section).  
Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same  
type of fuse with a lower rating can be used. Refer to the fuse manufacturer’s data for further information.  
2
Lineage Power  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Electrical Specifications (continued)  
Table 2. Output Specifications  
Parameter  
Device  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage Set Point  
All  
VO, set  
3.25  
3.3  
3.35  
Vdc  
(VI = 48 V; IO = IO, max; TC = 25 °C)  
Output Voltage  
All  
VO  
3.20  
3.40  
Vdc  
(Over all operating input voltage, resistive load,  
and temperature conditions until end of life. See  
Figure 19.)  
Output Regulation:  
Line (VI = 36 V to 75 V)  
Load (IO = IO, min to IO, max)  
Temperature (TC = –40 °C to +100 °C)  
All  
All  
All  
0.01  
0.05  
15  
0.1  
0.2  
50  
%VO  
%VO  
mV  
Output Ripple and Noise Voltage (See  
Figure 18.):  
RMS  
All  
All  
40  
150  
mVrms  
mVp-p  
Peak-to-peak (5 Hz to 20 MHz)  
External Load Capacitance  
All  
0
*
µF  
Output Current  
(At IO < IO, min, the modules may exceed output  
ripple specifications.)  
JW050F  
JW075F  
JW100F  
JW150F  
IO  
IO  
IO  
IO  
0.5  
0.5  
0.5  
0.5  
10  
15  
20  
30  
A
A
A
A
Output Current-limit Inception  
(VO = 90% of VO, nom)  
JW050F  
JW075F  
JW100F  
JW150F  
IO, cli  
IO, cli  
IO, cli  
IO, cli  
12.0  
18.0  
23.0  
34.5  
14†  
21†  
26†  
39†  
A
A
A
A
Output Short-circuit Current (VO = 250 mV)  
All  
170  
%IO, max  
Efficiency  
(VI = 48 V; IO = IO, max; TC = 70 °C)  
JW050F  
JW075F  
JW100F  
JW150F  
η
η
η
η
80  
80  
80  
80  
%
%
%
%
Switching Frequency  
All  
500  
kHz  
Dynamic Response  
(ýIO/ýt = 1 A/10 µs, VI = 48 V, TC = 25 °C; tested  
with a 10 µF aluminum and a 1.0 µF ceramic  
capacitor across the load; see Figures 14 and  
15):  
Load Change from IO = 50% to 75% of IO, max:  
Peak Deviation  
Settling Time (VO < 10% of peak deviation)  
Load Change from IO = 50% to 25% of IO, max:  
Peak Deviation  
All  
All  
3.8  
300  
%VO, set  
µs  
All  
All  
3.8  
300  
%VO, set  
Settling Time (VO < 10% of peak deviation)  
µs  
* Consult your sales representative or the factory.  
† These are manufacturing test limits. In some situations, results may differ.  
Lineage Power  
3
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Electrical Specifications (continued)  
Table 3. Isolation Specifications  
Parameter  
Min  
Typ  
2500  
Max  
Unit  
pF  
Isolation Capacitance  
Isolation Resistance  
10  
M¾  
General Specifications  
Parameter  
Min  
Typ  
2,600,000  
Max  
Unit  
hr.  
Calculated MTBF (IO = 80% of IO, max; TC = 40 °C)  
Weight  
100 (3.5)  
g (oz.)  
Feature Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions. See Feature Descriptions for additional information.  
Parameter  
Remote On/Off Signal Interface  
Symbol  
Min  
Typ  
Max  
Unit  
(VI = 0 V to 75 V; open collector or equivalent compatible;  
signal referenced to VI(–) terminal; see Figure 20 and  
Feature Descriptions.):  
JWxxxF1 Preferred Logic:  
Logic Low—Module On  
Logic High—Module Off  
JWxxxF Optional Logic:  
Logic Low—Module Off  
Logic High—Module On  
Logic Low:  
At Ion/off = 1.0 mA  
At Von/off = 0.0 V  
Von/off  
Ion/off  
0
1.2  
1.0  
V
mA  
Logic High:  
At Ion/off = 0.0 µA  
Leakage Current  
Turn-on Time (See Figure 16.)  
(IO = 80% of IO, max; VO within ±1% of steady state)  
Von/off  
Ion/off  
20  
15  
50  
35  
V
µA  
ms  
Output Voltage Adjustment (See Feature Descriptions.):  
Output Voltage Remote-sense Range  
60  
0.5  
110  
V
Output Voltage Set-point Adjustment Range (trim)  
%VO, nom  
Output Overvoltage Protection  
VO, clamp  
TC  
4.0*  
5.0*  
V
Overtemperature Protection (shutdown)  
105  
°C  
(66 W and 99 W only; see Feature Descriptions.)  
* These are manufacturing test limits. In some situations, results may differ.  
4
Lineage Power  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Characteristic Curves  
The following figures provide typical characteristics for the power modules. The figures are identical for both on/off  
configurations.  
1.4  
1.2  
3.0  
2.5  
1.0  
0.8  
0.6  
2.0  
1.5  
1.0  
0.5  
0.0  
0.4  
0.2  
0.0  
0
4
8
12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72  
INPUT VOLTAGE, V (V )  
0
4
8
12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72  
INPUT VOLTAGE, V (V)  
I
I
8-1446 (C)  
8-1448 (C)  
Figure 1. Typical JW050F Input Characteristics at  
Room Temperature  
Figure 3. Typical JW100F Input Characteristics at  
Room Temperature  
2.0  
1.8  
4.0  
3.5  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
4
8
12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72  
INPUT VOLTAGE, V (V)  
0
4
8
12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72  
INPUT VOLTAGE, V (V)  
I
I
8-1447 (C)  
8-1449 (C)  
Figure 2. Typical JW075F Input Characteristics at  
Room Temperature  
Figure 4. Typical JW150F Input Characteristics at  
Room Temperature  
Lineage Power  
5
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Characteristic Curves (continued)  
3.5  
3.5  
3.0  
3
2.5  
2.5  
2.0  
1.5  
1.0  
VI = 36 V  
VI = 54 V  
VI = 72 V  
2
1.5  
1
0.5  
0.0  
0.5  
0
0
5
10  
15  
20  
(A)  
25  
30  
0
2
4
6
8
10  
12  
OUTPUT CURRENT, I  
O
OUTPUT CURRENT, I  
O (A)  
8-1452 (C)  
8-2159 (C)  
Figure 7. Typical JW100F Output Characteristics at  
Room Temperature  
Figure 5. Typical JW050F Output Characteristics at  
Room Temperature  
3.5  
3.0  
3.5  
3.0  
2.5  
2.0  
1.5  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.0  
0.5  
0.0  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
30  
35  
40  
OUTPUT CURRENT, I  
O
(A)  
OUTPUT CURRENT, I  
O
(A)  
8-1453 (C)  
8-1451 (C)  
Figure 8. Typical JW150F Output Characteristics at  
Room Temperature  
Figure 6. Typical JW075F Output Characteristics at  
Room Temperature  
6
Lineage Power  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Characteristic Curves (continued)  
81  
80  
82  
81.5  
81  
80.5  
80  
79  
78  
77  
76  
VI = 36 V  
VI = 54 V  
79.5  
79  
V
V
V
I
I
I
= 36 V  
= 54 V  
= 72 V  
78.5  
78  
75  
74  
73  
72  
71  
VI = 72 V  
77.5  
77  
76.5  
76  
0
2
4
6
8
10  
12  
14  
(A)  
16  
18 20  
2
3
4
5
6
7
8
9
10  
OUTPUT CURRENT, I  
O
OUTPUT CURRENT, I  
O (A)  
8-1454 (C)  
8-1456 (C)  
Figure 9. Typical JW050F Converter Efficiency vs.  
Output Current at Room Temperature  
Figure 11. Typical JW100F Converter Efficiency vs.  
Output Current at Room Temperature  
78.5  
78.0  
82  
81  
77.5  
77.0  
76.5  
76.0  
80  
79  
78  
V
V
V
I
= 36 V  
= 54 V  
= 72 V  
77  
76  
75  
74  
V
V
V
I
I
I
= 36 V  
= 54 V  
= 72 V  
I
I
75.5  
75.0  
74.5  
74.0  
73.5  
73  
72  
3
4
5
6
7
8
9
10 11 12  
13 14 15  
0
5
10  
15  
20  
(A)  
25  
30  
OUTPUT CURRENT, I (A)  
O
OUTPUT CURRENT, I  
O
8-1455 (C)  
8-1457 (C)  
Figure 10. Typical JW075F Converter Efficiency vs.  
Output Current at Room Temperature  
Figure 12. Typical JW150F Converter Efficiency vs.  
Output Current at Room Temperature  
Lineage Power  
7
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Characteristic Curves (continued)  
1.5 A  
3.3 V  
15.0 A  
15.0 A  
7.5 A  
30.0 A  
TIME, t (50 µs/div)  
8-2001 (C)  
TIME, t (1 µs/div)  
Note: Tested with a 10 µF aluminum and a 1.0 µF ceramic capacitor  
across the load.  
8-2002 (C)  
Figure 13. Typical JW150F Output Ripple Voltage at  
Room Temperature, IO = Full Load  
Figure 15. Typical JW150F Transient Response to  
Step Decrease in Load from 50% to 25%  
of Full Load at Room Temperature and  
48 V Input (Waveform Averaged to  
Eliminate Ripple Component.)  
3.30 V  
22.5 A  
0
15.0 A  
TIME, t (50 µs/div)  
8-2000 (C)  
Note: Tested with a 10 µF aluminum and a 1.0 µF ceramic capacitor  
across the load.  
0
TIME, t (5 ms/div)  
Figure 14. Typical JW150F Transient Response to  
Step Increase in Load from 50% to 75%  
of Full Load at Room Temperature and  
48 V Input (Waveform Averaged to  
8-1458 (C)  
Note: Tested with a 10 µF aluminum and a 1.0 µF ceramic capacitor  
across the load.  
Eliminate Ripple Component.)  
Figure 16. Typical Start-Up from Remote On/Off  
JW150F1; IO = IO, max  
8
Lineage Power  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Test Configurations  
SENSE(+)  
CONTACT AND  
DISTRIBUTION LOSSES  
V
V
I
(+)  
V
O
(+)  
TO OSCILLOSCOPE  
I
O
I
I
CURRENT  
PROBE  
LOAD  
SUPPLY  
L
T E S T  
VI (+)  
12 µH  
I(–)  
V
O
(–)  
C
S
220 µF  
ESR < 0.1 •  
@ 20 °C, 100 kHz  
CONTACT  
RESISTANCE  
33 µF  
ESR < 0.7 •  
@ 100 kHz  
BATTERY  
SENSE(–)  
8-749 (C)  
VI (–)  
Note: All measurements are taken at the module terminals. When  
socketing, place Kelvin connections at module terminals to  
avoid measurement errors due to socket contact resistance.  
8-203 (C).l  
Note: Measure input reflected-ripple current with a simulated source  
inductance (LTEST) of 12 µH. Capacitor CS offsets possible bat-  
tery impedance. Measure current as shown above.  
[VO(+) – VO(–)]IO  
[VI(+) – VI(–)]II  
------------------------------------------------  
η =  
x 100  
%
Figure 17. Input Reflected-Ripple Test Setup  
Figure 19. Output Voltage and Efficiency  
Measurement Test Setup  
Design Considerations  
Input Source Impedance  
COPPER STRIP  
V
V
O
O
(+)  
(–)  
RESISTIVE  
LOAD  
1.0 µF  
10 µF  
SCOPE  
The power module should be connected to a low  
ac-impedance input source. Highly inductive source  
impedances can affect the stability of the power mod-  
ule. For the test configuration in Figure 17, a 33 µF  
electrolytic capacitor (ESR < 0.7 ¾ at 100 kHz)  
mounted close to the power module helps ensure sta-  
bility of the unit. For other highly inductive source  
impedances, consult the factory for further application  
guidelines.  
8-513 (C).d  
Note: Use a 1.0 µF ceramic capacitor and a 10 µF aluminum or  
tantalum capacitor. Scope measurement should be made  
using a BNC socket. Position the load between 51 mm and  
76 mm (2 in. and 3 in.) from the module.  
Figure 18. Peak-to-Peak Output Noise  
Measurement Test Setup  
Lineage Power  
9
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Remote On/Off  
Safety Considerations  
For safety-agency approval of the system in which the  
power module is used, the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standard,  
i.e., UL1950, CSA C22.2 No. 950-95, and VDE 0805  
(EN60950, IEC950).  
Two remote on/off options are available. Positive logic  
remote on/off turns the module on during a logic-high  
voltage on the ON/OFF pin, and off during a logic low.  
Negative logic remote on/off turns the module off dur-  
ing a logic high and on during a logic low. Negative  
logic (code suffix 1) is the factory-preferred configura-  
tion.  
If the input source is non-SELV (ELV or a hazardous  
voltage greater than 60 Vdc and less than or equal to  
75 Vdc), for the module’s output to be considered  
meeting the requirements of safety extra-low voltage  
(SELV), all of the following must be true:  
To turn the power module on and off, the user must  
supply a switch to control the voltage between the  
on/off terminal and the VI(–) terminal (Von/off). The  
switch can be an open collector or equivalent (see  
Figure 20). A logic low is Von/off = 0 V to 1.2 V. The  
maximum Ion/off during a logic low is 1 mA. The switch  
should maintain a logic-low voltage while sinking 1 mA.  
n The input source is to be provided with reinforced  
insulation from any hazardous voltages, including the  
ac mains.  
During a logic high, the maximum Von/off generated by  
the power module is 15 V. The maximum allowable  
leakage current of the switch at Von/off = 15 V is 50 µA.  
n One VI pin and one VO pin are to be grounded or  
both the input and output pins are to be kept floating.  
n The input pins of the module are not operator acces-  
sible.  
If not using the remote on/off feature, do one of the  
following:  
n Another SELV reliability test is conducted on the  
whole system, as required by the safety agencies, on  
the combination of supply source and the subject  
module to verify that under a single fault, hazardous  
voltages do not appear at the module’s output.  
n For negative logic, short ON/OFF pin to VI(–).  
n For positive logic, leave ON/OFF pin open.  
I
on/off  
Note: Do not ground either of the input pins of the  
module without grounding one of the output pins.  
This may allow a non-SELV voltage to appear  
between the output pin and ground.  
ON/OFF  
V
on/off  
SENSE(+)  
(+)  
V
O
The power module has extra-low voltage (ELV) outputs  
when all inputs are ELV.  
LOAD  
V
O
(–)  
V
V
I
I
(+)  
(–)  
SENSE(–)  
The input to these units is to be provided with a maxi-  
mum 20 A normal-blow fuse in the ungrounded lead.  
Feature Descriptions  
Overcurrent Protection  
8-720 (C).c  
Figure 20. Remote On/Off Implementation  
To provide protection in a fault (output overload) condi-  
tion, the unit is equipped with internal current-limiting  
circuitry and can endure current limiting for an unlim-  
ited duration. At the point of current-limit inception, the  
unit shifts from voltage control to current control. If the  
output voltage is pulled very low during a severe fault,  
the current-limit circuit can exhibit either foldback or tai-  
lout characteristics (output current decrease or  
increase). The unit operates normally once the output  
current is brought back into its specified range.  
10  
Lineage Power  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Output Voltage Set-Point Adjustment  
(Trim)  
Feature Descriptions (continued)  
Remote Sense  
Output voltage trim allows the user to increase or  
decrease the output voltage set point of a module. This  
is accomplished by connecting an external resistor  
between the TRIM pin and either the SENSE(+) or  
SENSE(–) pins. The trim resistor should be positioned  
close to the module.  
Remote sense minimizes the effects of distribution  
losses by regulating the voltage at the remote-sense  
connections. The voltage between the remote-sense  
pins and the output terminals must not exceed the out-  
put voltage sense range given in the Feature Specifica-  
tions table, i.e.:  
If not using the trim feature, leave the TRIM pin open.  
[VO(+) – VO(–)] – [SENSE(+) – SENSE(–)] ð 0.5 V  
With an external resistor between the TRIM and  
SENSE(–) pins (Radj-down), the output voltage set point  
(VO, adj) decreases (see Figure 22). The following equa-  
tion determines the required external-resistor value to  
obtain a percentage output voltage change of ý%.  
The voltage between the VO(+) and VO(–) terminals  
must not exceed the minimum value of the output over-  
voltage protection. This limit includes any increase in  
voltage due to remote-sense compensation and output  
voltage set-point adjustment (trim). See Figure 21.  
100  
If not using the remote-sense feature to regulate the  
output at the point of load, then connect SENSE(+) to  
VO(+) and SENSE(–) to VO(–) at the module.  
Radj-down = --------- 2 kΩ  
Δ%  
The test results for this configuration are displayed in  
Figure 23. This figure applies to all output voltages.  
Although the output voltage can be increased by both  
the remote sense and by the trim, the maximum  
increase for the output voltage is not the sum of both.  
The maximum increase is the larger of either the  
remote sense or the trim. Consult the factory if you  
need to increase the output voltage more than the  
above limitation.  
With an external resistor connected between the TRIM  
and SENSE(+) pins (Radj-up), the output voltage set  
point (VO, adj) increases (see Figure 24).  
The following equation determines the required exter-  
nal-resistor value to obtain a percentage output voltage  
change of ý%.  
The amount of power delivered by the module is defined  
as the voltage at the output terminals multiplied by the  
output current. When using remote sense and trim, the  
output voltage of the module can be increased, which at  
the same output current would increase the power output  
of the module. Care should be taken to ensure that the  
maximum output power of the module remains at or  
below the maximum rated power.  
(100 + 2Δ%)  
(100 + Δ%)  
VO  
---------------------------------  
Radj-up = -------------------------------------- –  
kΩ  
Δ%  
1.225Δ%  
The test results for this configuration are displayed in  
Figure 25.  
The voltage between the VO(+) and VO(–) terminals  
must not exceed the minimum value of the output over-  
voltage protection. This limit includes any increase in  
voltage due to remote-sense compensation and output  
voltage set-point adjustment (trim). See Figure 21.  
SENSE(+)  
SENSE(–)  
Although the output voltage can be increased by both  
the remote sense and by the trim, the maximum  
increase for the output voltage is not the sum of both.  
The maximum increase is the larger of either the  
remote sense or the trim. Consult the factory if you  
need to increase the output voltage more than the  
above limitation.  
V
V
I
I
(+)  
(–)  
VO(+)  
I
O
SUPPLY  
LOAD  
I
I
VO(–)  
CONTACT  
RESISTANCE  
CONTACT AND  
DISTRIBUTION LOSSES  
8-651 (C).m  
Figure 21. Effective Circuit Configuration for  
Single-Module Remote-Sense Operation  
The amount of power delivered by the module is defined  
as the voltage at the output terminals multiplied by the  
output current. When using remote sense and trim, the  
output voltage of the module can be increased, which at  
the same output current would increase the power output  
of the module. Care should be taken to ensure that the  
maximum output power of the module remains at or  
below the maximum rated power.  
Lineage Power  
11  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Feature Descriptions (continued)  
Output Voltage Set-Point Adjustment  
10M  
(Trim) (continued)  
1M  
V
I
(+)  
VO(+)  
ON/OFF  
CASE  
SENSE(+)  
100k  
10k  
TRIM  
R
LOAD  
R
adj-down  
V
I
(–)  
SENSE(–)  
VO(–)  
0
2
4
6
8
10  
% CHANGE IN OUTPUT VOLTAGE (•%)  
8-748 (C).b  
8-2090 (C)  
Figure 22. Circuit Configuration to Decrease  
Output Voltage  
Figure 25. Resistor Selection for Increased Output  
Voltage  
Output Overvoltage Protection  
1M  
The output overvoltage clamp consists of control cir-  
cuitry, independent of the primary regulation loop, that  
monitors the voltage on the output terminals. The con-  
trol loop of the clamp has a higher voltage set point  
than the primary loop (see Feature Specifications  
table). This provides a redundant voltage control that  
reduces the risk of output overvoltage.  
100k  
10k  
1k  
Overtemperature Protection  
The 100 W and 150 W modules feature an overtemper-  
ature protection circuit to safeguard against thermal  
damage.  
100  
0
10  
20  
30  
40  
% CHANGE IN OUTPUT VOLTAGE (•%)  
The circuit shuts down the module when the maximum  
case temperature is exceeded. The module restarts  
automatically after cooling.  
8-879 (C)  
Figure 23. Resistor Selection for Decreased  
Output Voltage  
Thermal Considerations  
Introduction  
V
I
(+)  
VO(+)  
ON/OFF  
CASE  
SENSE(+)  
R
adj-up  
The power modules operate in a variety of thermal  
environments; however, sufficient cooling should be  
provided to help ensure reliable operation of the unit.  
Heat-dissipating components inside the unit are ther-  
mally coupled to the case. Heat is removed by conduc-  
tion, convection, and radiation to the surrounding  
environment. Proper cooling can be verified by mea-  
suring the case temperature. Peak temperature (TC)  
occurs at the position indicated in Figure 26.  
R
LOAD  
TRIM  
V
I
(–)  
SENSE (–)  
VO()  
8-715 (C).b  
Figure 24. Circuit Configuration to Increase  
Output Voltage  
12  
Lineage Power  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Note that the natural convection condition was mea-  
Thermal Considerations (continued)  
Introduction (continued)  
sured at 0.05 m/s to 0.1 m/s (10 ft./min. to 20 ft./min.);  
however, systems in which these power modules may  
be used typically generate natural convection airflow  
rates of 0.3 m/s (60 ft./min.) due to other heat dissipat-  
ing components in the system. The use of Figure 31 is  
shown in the following example.  
MEASURE CASE  
38.0 (1.50)  
TEMPERATURE HERE  
Example  
7.6 (0.3)  
What is the minimum airflow necessary for a JW100F  
operating at VI = 54 V, an output current of 20 A, and a  
maximum ambient temperature of 40 °C?  
V
I
(+)  
V (+)  
O
+ SEN  
ON/OFF  
CASE  
TRIM  
Solution  
– SEN  
Given: VI = 54 V  
IO = 20 A  
VO (–)  
V (–)  
I
TA = 40 °C  
Determine PD (Use Figure 29.):  
PD = 15.8 W  
8-716 (C).f  
Note: Top view, pin locations are for reference only.  
Measurements shown in millimeters and (inches).  
Determine airflow (v) (Use Figure 31.):  
v = 1.7 m/s (340 ft./min.)  
Figure 26. Case Temperature Measurement  
Location  
9
8
The temperature at this location should not exceed  
100 °C. The output power of the module should not  
exceed the rated power for the module as listed in the  
Ordering Information table.  
7
V
I
= 75 V  
6
5
V
I = 54 V  
Although the maximum case temperature of the power  
modules is 100 °C, you can limit this temperature to a  
lower value for extremely high reliability.  
VI = 36 V  
4
3
2
For additional information on these modules, refer to  
the Thermal Management JC-, JFC-, JW-, and JFW-  
Series 50 W to 150 W Board-Mounted Power Modules  
Technical Note  
0
1
2
3
4
5
6
7
(A)  
8
9
10  
OUTPUT CURRENT, I  
O
(TN97-008EPS).  
8-1459 (C)  
Figure 27. JW050F Power Dissipation vs.  
Output Current  
Heat Transfer Without Heat Sinks  
Increasing airflow over the module enhances the heat  
transfer via convection. Figure 31 shows the maximum  
power that can be dissipated by the module without  
exceeding the maximum case temperature versus local  
ambient temperature (TA) for natural convection  
through 4 m/s (800 ft./min.).  
Lineage Power  
13  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Thermal Considerations (continued)  
30  
Heat Transfer Without Heat Sinks (continued)  
25  
20  
16  
14  
15  
12  
10  
8
10  
5
V
V
V
I
= 36 V  
= 54 V  
= 75V  
I
I
V
V
V
I
I
= 36 V  
= 54 V  
= 75V  
0
6
0
5
10  
15  
20  
(A)  
25  
30  
I
4
OUTPUT CURRENT, I  
O
2
0
8-1462 (C)  
Figure 30. JW150F Power Dissipation vs.  
Output Current  
0
2
4
6
8
10  
(A)  
12  
14  
OUTPUT CURRENT, I  
O
8-1460 (C)  
Figure 28. JW075F Power Dissipation vs.  
Output Current  
35  
4.0 m/s (800 ft./min.)  
3.5 m/s (700 ft./min.)  
3.0 m/s (600 ft./min.)  
30  
2.5 m/s (500 ft./min.)  
2.0 m/s (400 ft./min.)  
1.5 m/s (300 ft./min.)  
1.0 m/s (200 ft./min.)  
0.5 m/s (100 ft./min.)  
25  
20  
15  
10  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
V
V
V
I
I
= 36 V  
= 54 V  
= 75V  
5
0
0.1 m/s (NAT. CONV.)  
(20 ft./min.)  
7
6
5
4
3
2
1
0
I
0
10  
20  
30  
40  
50  
60  
70  
80  
(°C)  
90 100  
LOCAL AMBIENT TEMPERATURE, T  
A
8-1150 (C).a  
0
2
4
6
8
10  
12  
14  
16  
18 20  
Figure 31. Forced Convection Power Derating with  
No Heat Sink; Either Orientation  
OUTPUT CURRENT, I  
O
(A)  
8-1461 (C)  
Figure 29. JW100F Power Dissipation vs.  
Output Current  
Heat Transfer with Heat Sinks  
The power modules have through-threaded, M3 x 0.5  
mounting holes, which enable heat sinks or cold plates  
to attach to the module. The mounting torque must not  
exceed 0.56 N-m (5 in.-lb.). For a screw attachment  
from the pin side, the recommended hole size on the  
customer’s PWB around the mounting holes is  
0.130 ± 0.005 inches. If a larger hole is used, the  
mounting torque from the pin side must not exceed  
0.25 N-m (2.2 in.-lb.).  
14  
Lineage Power  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Example  
Thermal Considerations (continued)  
Heat Transfer with Heat Sinks (continued)  
If an 85 °C case temperature is desired, what is the  
minimum airflow necessary? Assume the JW100F  
module is operating at VI = 54 V and an output current  
of 20 A, maximum ambient air temperature of 40 °C,  
and the heat sink is 1/2 inch.  
Thermal derating with heat sinks is expressed by using  
the overall thermal resistance of the module. Total  
module thermal resistance (θca) is defined as the max-  
imum case temperature rise (ΔTC, max) divided by the  
module power dissipation (PD):  
Solution  
Given: VI = 54 V  
IO = 20 A  
(TC TA)  
ΔTC, max  
θca = --------------------  
=
------------------------  
PD  
PD  
TA = 40 °C  
The location to measure case temperature (TC) is  
shown in Figure 26. Case-to-ambient thermal resis-  
tance vs. airflow is shown, for various heat sink config-  
urations and heights, in Figure 32. These curves were  
obtained by experimental testing of heat sinks, which  
are offered in the product catalog.  
TC = 85 °C  
Heat sink = 1/2 in.  
Determine PD by using Figure 29:  
PD = 15.8 W  
Then solve the following equation:  
8
(TC TA)  
θca = ------------------------  
1 1/2 IN. HEAT SINK  
7
PD  
1 IN. HEAT SINK  
1/2 IN. HEAT SINK  
1/4 IN. HEAT SINK  
6
5
4
3
2
1
0
(85 40)  
-----------------------  
θca =  
15.8  
NO HEAT SINK  
θca = 2.8 °C/W  
Use Figure 32 to determine air velocity for the 1/2 inch  
heat sink.  
The minimum airflow necessary for the JW100F  
module is 1.1 m/s (220 ft./min.).  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
(100)  
(200)  
(300)  
(400)  
(500)  
(600)  
AIR VELOCITY, m/s (ft./min.)  
Custom Heat Sinks  
8-1153 (C)  
Figure 32. Case-to-Ambient Thermal Resistance  
Curves; Either Orientation  
A more detailed model can be used to determine the  
required thermal resistance of a heat sink to provide  
necessary cooling. The total module resistance can be  
separated into a resistance from case-to-sink (θcs) and  
sink-to-ambient (θsa) shown below (Figure 33).  
These measured resistances are from heat transfer  
from the sides and bottom of the module as well as the  
top side with the attached heat sink; therefore, the  
case-to-ambient thermal resistances shown are gener-  
ally lower than the resistance of the heat sink by itself.  
The module used to collect the data in Figure 32 had a  
thermal-conductive dry pad between the case and the  
heat sink to minimize contact resistance. The use of  
Figure 32 is shown in the following example.  
T
C
T
S
TA  
D
P
θ
cs  
θsa  
8-1304 (C)  
Figure 33. Resistance from Case-to-Sink and  
Sink-to-Ambient  
Lineage Power  
15  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Thermal Considerations (continued)  
Custom Heat Sinks (continued)  
Solder, Cleaning, and Drying  
Considerations  
Post solder cleaning is usually the final circuit-board  
assembly process prior to electrical testing. The result  
of inadequate circuit-board cleaning and drying can  
affect both the reliability of a power module and the  
testability of the finished circuit-board assembly. For  
guidance on appropriate soldering, cleaning, and dry-  
ing procedures, refer to the Board-Mounted Power  
Modules Soldering and Cleaning Application Note  
(AP97-021EPS).  
For a managed interface using thermal grease or foils,  
a value of θcs = 0.1 °C/W to 0.3 °C/W is typical. The  
solution for heat sink resistance is:  
(TC TA)  
θsa = ------------------------ θcs  
PD  
This equation assumes that all dissipated power must  
be shed by the heat sink. Depending on the user-  
defined application environment, a more accurate  
model, including heat transfer from the sides and bot-  
tom of the module, can be used. This equation pro-  
vides a conservative estimate for such instances.  
EMC Considerations  
For assistance with designing for EMC compliance,  
please refer to the FLTR100V10 data sheet  
(DS98-152EPS).  
Layout Considerations  
Copper paths must not be routed beneath the power  
module mounting inserts. For additional layout guide-  
lines, refer to the FLTR100V10 data sheet  
(DS98-152EPS).  
16  
Lineage Power  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Outline Diagram  
Dimensions are in millimeters and (inches).  
Tolerances: x.x mm ± 0.5 mm (x.xx in. ± 0.02 in.)  
x.xx mm ± 0.25 mm (x.xxx in. ± 0.010 in.)  
Top View  
57.9 (2.28) MAX  
61.0  
(2.40)  
MAX  
Side View  
SIDE LABEL*  
12.70 ± 0.5  
(0.500 ± 0.020)  
2.06 (0.081) DIA  
5.1 (0.20) MIN  
1.02 (0.040) DIA  
SOLDER-PLATED  
BRASS, 7 PLACES  
SOLDER-PLATED BRASS,  
2 PLACES (–OUTPUT  
AND +OUTPUT)  
Bottom View  
MOUNTING INSERTS  
M3 x 0.5 THROUGH,  
4 PLACES  
12.7 (0.50)  
5.1 (0.20)  
V
I
(–)  
VO (–)  
10.16  
(0.400)  
10.16  
(0.400) 17.78  
(0.700)  
CASE  
–SEN  
TRIM  
50.8  
(2.00)  
25.40  
(1.000)  
25.40  
(1.000)  
35.56  
(1.400)  
35.56  
(1.400)  
ON/OFF  
+SEN  
V
I
(+)  
VO (+)  
48.26  
(1.900)  
4.8  
(0.19)  
48.3 (1.90)  
8-1945 (C).c  
* Side label includes Lineage name, product designation, safety agency markings, input/output voltage and current ratings, and bar code.  
Lineage Power  
17  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Recommended Hole Pattern  
Component-side footprint.  
Dimensions are in millimeters and (inches).  
57.9 (2.28) MAX  
4.8  
(0.19)  
48.3 (1.90)  
48.26  
(1.900)  
VO (+)  
VI (+)  
35.56  
35.56  
+SEN  
TRIM  
–SEN  
ON/OFF  
CASE  
(1.400)  
(1.400)  
25.40  
(1.000)  
50.8  
25.40  
(2.00)  
(1.000)  
61.0  
(2.40)  
MAX  
17.78  
10.16 (0.700)  
(0.400)  
10.16  
(0.400)  
V
I
(–)  
VO (–)  
5.1 (0.20)  
12.7 (0.50)  
MOUNTING INSERTS  
MODULE OUTLINE  
8-1945 (C).c  
Ordering Information  
Table 4. Device Codes  
Input  
Voltage  
Output  
Voltage  
Output  
Power  
Remote On/Off  
Device  
Code  
Comcode  
Logic  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
33 W  
49.5 W  
66 W  
Negative  
Negative  
Negative  
Negative  
Positive  
Positive  
Positive  
Positive  
JW050F1  
JW075F1  
JW100F1  
JW150F1  
JW050F  
JW075F  
JW100F  
JW150F  
107253171  
107431256  
107253189  
107361461  
107309775  
107477374  
107309791  
107018962  
99 W  
33 W  
49.5 W  
66 W  
99 W  
18  
Lineage Power  
JW050F, JW075F, JW100F, JW150F Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 3.3 Vdc Output; 33 W to 99 W  
Data Sheet  
April 2008  
Ordering Information (continued)  
Table 5. Device Accessories  
Accessory  
Comcode  
1/4 in. transverse kit (heat sink, thermal pad, and screws)  
1/4 in. longitudinal kit (heat sink, thermal pad, and screws)  
1/2 in. transverse kit (heat sink, thermal pad, and screws)  
1/2 in. longitudinal kit (heat sink, thermal pad, and screws)  
1 in. transverse kit (heat sink, thermal pad, and screws)  
1 in. longitudinal kit (heat sink, thermal pad, and screws)  
1 1/2 in. transverse kit (heat sink, thermal pad, and screws)  
1 1/2 in. longitudinal kit (heat sink, thermal pad, and screws)  
407243989  
407243997  
407244706  
407244714  
407244722  
407244730  
407244748  
407244755  
Dimensions are in millimeters and (inches).  
1/4 IN.  
1/2 IN.  
1/4 IN.  
1/2 IN.  
1 IN.  
1 IN.  
61  
(2.4)  
57.9  
(2.28)  
1 1/2 IN.  
1 1/2 IN.  
57.9 (2.28)  
61 (2.4)  
D000-c.cvs  
D000-d.cvs  
Figure 34. Longitudinal Heat Sink  
Figure 35. Transverse Heat Sink  
Lineage Power  
19  
Asia-Pacific Headquarters  
Tel: +65 641 6 4283  
Europe, Middle-East and Afric a He adquarters  
Tel: +49 89 6089 286  
World Wide Headquarters  
Lineage Power Corporation  
30 00 Skyline Drive, Mesquite, TX 75149, USA  
+1-800-526-7819  
India Headquarters  
Tel: +91 80 28411633  
(Outside U.S.A .: +1-97 2-2 84-2626)  
www.line agepower.com  
e-m ail: techsupport1@linea gepower.com  
Lineage Power reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or  
application. No rights under any patent accompany the sale of any such product(s) or information.  
© 2008 Lineage Power Corporation, (Mesquite, Texas) All International Rights Reserved.  
April 2008  
DS99-289EPS (Replaces DS99-288EPS)  

    JW150F1相关文章


    Fatal error: Uncaught PDOException: SQLSTATE[HY000]: General error: 145 mroonga: repair: can't recover from crash while updating in /www/wwwroot/website_ic37/s.ic37.com/index.php:504 Stack trace: #0 /www/wwwroot/website_ic37/s.ic37.com/index.php(504): PDO->query() #1 /www/wwwroot/website_ic37/www.ic37.com/s_index.php(3): include('...') #2 {main} thrown in /www/wwwroot/website_ic37/s.ic37.com/index.php on line 504