欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • KSZ8081MLXIA
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • KSZ8081MLXIA图
  • 集好芯城

     该会员已使用本站13年以上
  • KSZ8081MLXIA 现货库存
  • 数量24797 
  • 厂家Microchip(微芯) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • KSZ8081MLXIA图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • KSZ8081MLXIA 现货库存
  • 数量12500 
  • 厂家Microchip 
  • 封装250 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • KSZ8081MLXIA图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • KSZ8081MLXIA 现货库存
  • 数量8000 
  • 厂家Microchip(微芯) 
  • 封装SMD 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • KSZ8081MLXIA图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • KSZ8081MLXIA 现货库存
  • 数量50600 
  • 厂家MICROCHIP/微芯 
  • 封装LQFP48 
  • 批号2103+ 
  • 原装价格当天为准可含票
  • QQ:2885134398QQ:2885134398 复制
    QQ:2885134554QQ:2885134554 复制
  • 0755- QQ:2885134398QQ:2885134554
  • KSZ8081MLXIA图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • KSZ8081MLXIA 现货库存
  • 数量26890 
  • 厂家MICROCHIP 
  • 封装LQFP48 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • KSZ8081MLXIA图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • KSZ8081MLXIA 现货库存
  • 数量
  • 厂家MICROCHIP 
  • 封装LQFP48 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • KSZ8081MLXIA图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • KSZ8081MLXIA 优势库存
  • 数量25000 
  • 厂家Microchip 
  • 封装LQFP48 
  • 批号24+ 
  • ***主营此品牌,百分百特价原装现货,免费提供样品支持
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • KSZ8081MLXIA图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • KSZ8081MLXIA 热卖库存
  • 数量8800 
  • 厂家MICROCHIP 
  • 封装LQFP48 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:3533288158QQ:3533288158 复制
    QQ:408391813QQ:408391813 复制
  • 0755-84876394 QQ:3533288158QQ:408391813
  • KSZ8081MLXIA图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • KSZ8081MLXIA
  • 数量6350 
  • 厂家Microchip 
  • 封装LQFP48 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • KSZ8081MLXIA图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • KSZ8081MLXIA
  • 数量6800 
  • 厂家Microchip 
  • 封装原装现货 
  • 批号最新批号 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • KSZ8081MLXIA图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • KSZ8081MLXIA
  • 数量628 
  • 厂家Microchip Technology 
  • 封装 
  • 批号24+ 
  • 原厂原装公司现货
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • KSZ8081MLXIA图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • KSZ8081MLXIA
  • 数量5824 
  • 厂家Microchip Technology 
  • 封装48-LQFP(7x7) 
  • 批号23+ 
  • 接口以太网IC-接口原装假一赔十
  • QQ:892152356QQ:892152356 复制
  • 0755-82777852 QQ:892152356
  • KSZ8081MLXIA IC图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • KSZ8081MLXIA IC
  • 数量1890 
  • 厂家MICROCHIP/微芯 
  • 封装QFP48 
  • 批号21+ 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • KSZ8081MLXIA图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • KSZ8081MLXIA
  • 数量1000 
  • 厂家MICROCHIP 
  • 封装LQFP48 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • KSZ8081MLXIA图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • KSZ8081MLXIA
  • 数量425 
  • 厂家MROCHIP/微芯 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • KSZ8081MLXIA图
  • 集好芯城

     该会员已使用本站13年以上
  • KSZ8081MLXIA
  • 数量628 
  • 厂家Microchip Technology 
  • 封装 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • KSZ8081MLXIA图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • KSZ8081MLXIA
  • 数量15300 
  • 厂家Microchip Technology 
  • 封装48-LQFP 
  • 批号24+ 
  • 只做原装★真实库存★含13点增值税票!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • KSZ8081MLXIA图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • KSZ8081MLXIA
  • 数量22048 
  • 厂家Microchip(微芯) 
  • 封装LQFP48 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • KSZ8081MLXIA图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • KSZ8081MLXIA
  • 数量8800 
  • 厂家Microchip 
  • 封装原装现货 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:3533288158QQ:3533288158 复制
    QQ:408391813QQ:408391813 复制
  • 0755-84876394 QQ:3533288158QQ:408391813
  • KSZ8081MLXIA图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • KSZ8081MLXIA
  • 数量660000 
  • 厂家MICROCHIP(美国微芯) 
  • 封装LQFP-48(7x7) 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • KSZ8081MLXIA图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • KSZ8081MLXIA
  • 数量9328 
  • 厂家MICROCHIP-微芯 
  • 封装QFP-48 
  • 批号▉▉:2年内 
  • ▉▉¥12.2元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • KSZ8081MLXIA TR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • KSZ8081MLXIA TR
  • 数量13500 
  • 厂家MICREL 
  • 封装CUTT 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • KSZ8081MLXIA图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • KSZ8081MLXIA
  • 数量3210 
  • 厂家Microchip(微芯) 
  • 封装QFN-48 
  • 批号23+ 
  • ▉原厂渠道▉支持实单
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • KSZ8081MLXIA-TR图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • KSZ8081MLXIA-TR
  • 数量9800 
  • 厂家Microchip(微芯) 
  • 封装QFN-48 
  • 批号1年内 
  • 全新原装 正品保障
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • KSZ8081MLXIA图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • KSZ8081MLXIA
  • 数量32222 
  • 厂家MICROCHIP/微芯 
  • 封装LQFP48 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • KSZ8081MLXIA图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • KSZ8081MLXIA
  • 数量26700 
  • 厂家Microchip(微芯) 
  • 封装▊原厂封装▊ 
  • 批号▊ROHS环保▊ 
  • 十年以上分销商原装进口件服务型企业0755-83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • KSZ8081MLXIA图
  • 深圳市凯信扬科技有限公司

     该会员已使用本站7年以上
  • KSZ8081MLXIA
  • 数量4505 
  • 厂家MICREL/麦瑞 
  • 封装LQFP48 
  • 批号20+ 
  • ▲▲▲诚信经营,服务至上,十年专注▲▲▲
  • QQ:872328909QQ:872328909 复制
  • 0755-82518059 QQ:872328909
  • KSZ8081MLXIA图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • KSZ8081MLXIA
  • 数量82000 
  • 厂家MICROCHIP原装 
  • 封装LQFP48 
  • 批号2023+ 
  • 原装原包现货支持实单
  • QQ:2885134554QQ:2885134554 复制
    QQ:2885134398QQ:2885134398 复制
  • 0755-22669259 QQ:2885134554QQ:2885134398
  • KSZ8081MLXIA图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • KSZ8081MLXIA
  • 数量4365 
  • 厂家Microchip 
  • 封装48-LQFP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • KSZ8081MLXIA图
  • 深圳市思诺康科技有限公司

     该会员已使用本站16年以上
  • KSZ8081MLXIA
  • 数量4101 
  • 厂家Microchip Technology 
  • 封装48-LQFP 
  • 批号23+ 
  • IC-接口芯片驱动器、接收器、收发器
  • QQ:2881281130QQ:2881281130 复制
    QQ:2881281133QQ:2881281133 复制
  • 0755-83286481 QQ:2881281130QQ:2881281133
  • KSZ8081MLXIA-TR图
  • 深圳市勤思达科技有限公司

     该会员已使用本站14年以上
  • KSZ8081MLXIA-TR
  • 数量18900 
  • 厂家MICROCHIP/微芯 
  • 封装QFN 
  • 批号2019+ 
  • 全新原装正品 现货库存 闪电发货 欢迎咨询
  • QQ:2881910282QQ:2881910282 复制
    QQ:2881239443QQ:2881239443 复制
  • 0755-83268779 QQ:2881910282QQ:2881239443

产品型号KSZ8081MLXIA的概述

芯片概述 KSZ8081MLXIA 是由微芯科技(Microchip Technology Inc.)开发的一款低功耗以太网 PHY(物理层)设备。该芯片适用于各种网络通信应用,尤其是在物联网及嵌入式系统中表现出色。KSZ8081MLXIA 提供了全双工和半双工操作模式,支持 10/100 Mbps 的速度,并遵循 IEEE 802.3 以太网标准,确保了广泛的兼容性和高效的数据传输。 KSZ8081MLXIA 采用了先进的集成电路设计,具有多种内置功能,如自动协商、MDI/MDI-X 自适应技术以及多种电源管理选项。这些特性使得该芯片在低功耗和性能之间取得了良好的平衡,成为众多嵌入式和网络设备中的首选方案。 详细参数 KSZ8081MLXIA 的关键参数包括: - 传输速率:10/100 Mbps 自适应。 - 工作电压:3.3V ±10%。 - 功耗:在工作状态下,典型功耗为 0....

产品型号KSZ8081MLXIA的Datasheet PDF文件预览

KSZ8081MLX  
10BASE-T/100BASE-TX  
Physical Layer Transceiver  
Features  
Target Applications  
• Single-Chip 10BASE-T/100BASE-TX IEEE 802.3  
Compliant Ethernet Transceiver  
• Game Consoles  
• IP Phones  
• IP Set-Top Boxes  
• IP TVs  
• MII Interface Support  
• Back-to-Back Mode Support for a 100 Mbps Cop-  
per Repeater  
• LOM  
• MDC/MDIO Management Interface for PHY Reg-  
ister Configuration  
• Printers  
• Programmable Interrupt Output  
• LED Outputs for Link and Activity Status Indica-  
tion  
• On-Chip Termination Resistors for the Differential  
Pairs  
• Baseline Wander Correction  
• HP Auto MDI/MDI-X to Reliably Detect and Cor-  
rect Straight-Through and Crossover Cable Con-  
nections with Disable and Enable Option  
• Auto-Negotiation to Automatically Select the  
Highest Link-Up Speed (10/100 Mbps) and  
Duplex (Half/Full)  
• Power-Down and Power-Saving Modes  
• LinkMD® TDR-Based Cable Diagnostics to Iden-  
tify Faulty Copper Cabling  
• Parametric NAND Tree Support for Fault Detec-  
tion Between Chip I/Os and the Board  
• HBM ESD Rating (6 kV)  
• Loopback Modes for Diagnostics  
• Single 3.3V Power Supply with VDD I/O Options  
for 1.8V, 2.5V, or 3.3V  
• Built-In 1.2V Regulator for Core  
• Available in 48-pin 7 mm x 7 mm LQFP Package  
2016 Microchip Technology Inc.  
DS00002264A-page 1  
KSZ8081MLX  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for cur-  
rent devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the  
revision of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS00002264A-page 2  
2016 Microchip Technology Inc.  
KSZ8081MLX  
Table of Contents  
1.0 Introduction ..................................................................................................................................................................................... 4  
2.0 Pin Description and Configuration .................................................................................................................................................. 5  
3.0 Functional Description .................................................................................................................................................................. 11  
4.0 Register Descriptions .................................................................................................................................................................... 26  
5.0 Operational Characteristics ........................................................................................................................................................... 35  
6.0 Electrical Characteristics ............................................................................................................................................................... 36  
7.0 Timing Diagrams ........................................................................................................................................................................... 38  
8.0 Reset Circuit ................................................................................................................................................................................. 46  
9.0 Reference Circuits — LED Strap-In Pins ...................................................................................................................................... 47  
10.0 Reference Clock - Connection and Selection ............................................................................................................................. 48  
11.0 Magnetic - Connection and Selection ......................................................................................................................................... 49  
12.0 Package Outline .......................................................................................................................................................................... 51  
Appendix A: Data Sheet Revision History ........................................................................................................................................... 52  
The Microchip Web Site ...................................................................................................................................................................... 53  
Customer Change Notification Service ............................................................................................................................................... 53  
Customer Support ............................................................................................................................................................................... 53  
Product Identification System ............................................................................................................................................................. 54  
2016 Microchip Technology Inc.  
DS00002264A-page 3  
KSZ8081MLX  
1.0  
1.1  
INTRODUCTION  
General Description  
The KSZ8081MLX is a single-supply 10BASE-T/100BASE-TX Ethernet physical-layer transceiver for transmission and  
reception of data over standard CAT-5 unshielded twisted pair (UTP) cable.  
The KSZ8081MLX is a highly-integrated, compact solution. It reduces board cost and simplifies board layout by using  
on-chip termination resistors for the differential pairs, by integrating a low-noise regulator to supply the 1.2V core, and  
by offering 1.8/2.5/3.3V digital I/O interface support.  
The KSZ8081MLX offers the Media Independent Interface (MII) for direct connection with MII-compliant Ethernet MAC  
processors and switches.  
The KSZ8081MLX provides diagnostic features to facilitate system bring-up and debugging in production testing and in  
product deployment. Parametric NAND tree support enables fault detection between KSZ8081MLX I/Os and the board.  
LinkMD® TDR-based cable diagnostics identify faulty copper cabling.  
The KSZ8081MLX is available in the 48-pin, lead-free LQFP package.  
FIGURE 1-1:  
SYSTEM BLOCK DIAGRAM  
MDC/MDIO  
MANAGEMENT  
MEDIA TYPES:  
10BASE-T  
100BASE-TX  
MII  
RJ-45  
CONNECTOR  
10/100Mbps  
MII MAC  
KSZ8081MLX  
XO  
XI  
25MHz  
XTAL  
22pF  
22pF  
DS00002264A-page 4  
2016 Microchip Technology Inc.  
KSZ8081MLX  
2.0  
PIN DESCRIPTION AND CONFIGURATION  
FIGURE 2-1:  
48-PIN 7 MM X 7 MM LQFP ASSIGNMENT (TOP VIEW)  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
1
2
3
4
5
6
7
8
9
GND  
GND  
TXD1 36  
TXD0 35  
TXEN 34  
TXC 33  
GND  
VDD_1.2  
NC  
INTRP /  
NAND_TREE#  
32  
NC  
VDD_1.2 31  
GND 30  
KSZ8081MLX  
VDDA_3.3  
NC  
RXER /  
29  
ISO  
RXC /  
B-CAST_OFF  
RXM  
28  
RXDV /  
10 RXP  
11 TXM  
12 TXP  
27  
CONFIG2  
NC 26  
VDDIO 25  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
2016 Microchip Technology Inc.  
DS00002264A-page 5  
KSZ8081MLX  
TABLE 2-1:  
SIGNALS - KSZ8081MLX  
Type  
Note  
2-1  
Pin  
Number  
Pin  
Name  
Description  
1
2
3
GND  
GND  
GND  
GND  
GND  
GND  
Ground.  
Ground.  
Ground.  
1.2V Core VDD (power supplied by KSZ8081MLX). Decouple with 2.2 µF and  
0.1 µF capacitors to ground, and join with Pin 31 by power trace or plane.  
4
VDD_!.2  
P
5
6
NC  
NC  
No Connect. This pin is not bonded and can be left floating.  
No Connect. This pin is not bonded and can be left floating.  
7
VDDA_3.3  
NC  
P
3.3V Analog VDD.  
8
No Connect. This pin is not bonded and can be left floating.  
Physical Receive or Transmit Signal (– differential).  
Physical Receive or Transmit Signal (+ differential).  
Physical Transmit or Receive Signal (– differential).  
Physical Transmit or Receive Signal (+ differential).  
Ground.  
9
RXM  
RXP  
I/O  
I/O  
I/O  
I/O  
GND  
10  
11  
12  
13  
TXM  
TXP  
GND  
Crystal Feedback for 25 MHz Crystal. This pin is a no connect if an oscillator  
or external clock source is used.  
14  
15  
16  
17  
18  
XO  
XI  
O
I
I
Crystal/Oscillator/External Clock Input (25 MHz ±50 ppm).  
Set PHY Transmit Output Current. Connect a 6.49 kresistor to ground on  
this pin.  
REXT  
GND  
MDIO  
GND  
Ground.  
Ipu/  
Opu  
Management Interface (MII) Data I/O. This pin has a weak pull-up, is open-  
drain, and requires an external 1.0 kpull-up resistor.  
Management Interface (MII) Clock Input. This clock pin is synchronous to the  
MDIO data pin.  
19  
20  
MDC  
Ipu  
MII Mode: MII Receive Data Output[3] (Note 2-2)  
Config. Mode: The pull-up/pull-down value is latched as PHYADDR[0] at the  
de-assertion of reset. See the Strap-In Options - KSZ8081MLX section for  
details.  
RXD3/  
PHYAD0  
Ipu/O  
MII Mode: MII Receive Data Output[2] (Note 2-2)  
Config. Mode: The pull-up/pull-down value is latched as PHYADDR[1] at the  
de-assertion of reset. See the Strap-In Options - KSZ8081MLX section for  
details.  
RXD2/  
PHYAD1  
21  
22  
Ipd/O  
Ipd/O  
MII Mode: MII Receive Data Output[1] (Note 2-2)  
Config. Mode: The pull-up/pull-down value is latched as PHYADDR[2] at the  
de-assertion of reset. See the Strap-In Options - KSZ8081MLX section for  
details.  
RXD1/  
PHYAD2  
DS00002264A-page 6  
2016 Microchip Technology Inc.  
KSZ8081MLX  
TABLE 2-1:  
SIGNALS - KSZ8081MLX (CONTINUED)  
Type  
Pin  
Number  
Pin  
Note  
Name  
2-1  
Description  
MII Mode: MII Receive Data Output[0] (Note 2-2)  
Config. Mode: The pull-up/pull-down value is latched as DUPLEX at the de-  
assertion of reset. See the Strap-In Options - KSZ8081MLX section for  
details.  
RXD0/  
DUPLEX  
23  
Ipu/O  
24  
25  
26  
GND  
VDDIO  
NC  
GND  
P
Ground.  
3.3V, 2.5V, or 1.8V Digital VDD  
.
No Connect. This pin is not bonded and can be left floating.  
MII Mode: MII Receive Data Valid Output.  
RXDV/  
CONFIG2  
Config. Mode: The pull-up/pull-down value is latched as CONFIG2 at the de-  
assertion of reset. See the Strap-In Options - KSZ8081MLX section for  
details.  
27  
Ipd/O  
MII Mode: MII Receive Clock Output.  
RXC/  
B-CAST_OFF  
Config. Mode: The pull-up/pull-down value is latched as B-CAST_OFF at the  
de-assertion of reset. See the Strap-In Options - KSZ8081MLX section for  
details.  
28  
29  
Ipd/O  
Ipd/O  
MII Mode: MII Receive Error output  
Config. Mode: The pull-up/pull-down value is latched as ISOLATE at thede-  
assertion of reset See the Strap-In Options - KSZ8081MLX section for details.  
RXER/  
ISO  
30  
31  
GND  
GND  
P
Ground.  
1.2V Core VDD (power supplied by KSZ8081MLX). Decouple with 0.1 µF  
capacitor to ground, and join with Pin 4 by power trace or plane.  
VDD_1.2  
Interrupt Output: Programmable interrupt output.  
This pin has a weak pull-up, is open drain, and requires an external 1.0 kꢀ  
pull-up resistor.  
Config. Mode: The pull-up/pull-down value is latched as NAND Tree# at the  
de-assertion of reset. See the Strap-In Options - KSZ8081MLX section for  
details.  
INTRP/  
NAND_Tree#  
Ipu/  
Opu  
32  
33  
MII Mode: MII Transmit Clock Output.  
At the de-assertion of reset, this pin needs to latch in a pull-down value for  
normal  
operation. If MAC side pulls this pin high, see Register 16h, Bit [15] for solu-  
tion. It is better having an external pull-down resistor to avoid MAC side pulls  
this pin high.  
TXC  
Ipd/O  
34  
35  
36  
37  
38  
39  
TXEN  
TXD0  
TXD1  
GND  
I
MII Mode: MII Transmit Enable input.  
MII Mode: MII Transmit Data Input[0] (Note 2-3)  
MII Mode: MII Transmit Data Input[1] (Note 2-3)  
Ground.  
I
I
GND  
TXD2  
TXD3  
I
I
MII Mode: MII Transmit Data Input[2] (Note 2-3)  
MII Mode: MII Transmit Data Input[3] (Note 2-3)  
2016 Microchip Technology Inc.  
DS00002264A-page 7  
KSZ8081MLX  
TABLE 2-1:  
SIGNALS - KSZ8081MLX (CONTINUED)  
Type  
Note  
2-1  
Pin  
Number  
Pin  
Name  
Description  
MII Mode: MII Collision Detect output  
COL/  
CONFIG0  
Config. Mode: The pull-up/pull-down value is latched as CONFIG0 at the de-  
assertion of reset. See the Strap-In Options - KSZ8081MLX section for  
details.  
40  
41  
Ipd/O  
Ipd/O  
MII Mode: MII Carrier Sense Output  
CRS/  
CONFIG1  
Config. Mode: The pull-up/pull-down value is latched as CONFIG1 at the de-  
assertion of reset. See the Strap-In Options - KSZ8081MLX section for  
details.  
LED Output: Programmable LED0 Output  
Config. Mode: Latched as auto-negotiation enable (Register 0h, Bit [12]) at  
the de-assertion of reset. See the Strap-In Options section for details.  
The LED0 pin is programmable using Register 1Fh Bits [5:4], and is defined  
as follows:  
LED Mode = [00]  
Link/Activity  
No Link  
Link  
Pin State  
High  
LED Definition  
OFF  
LED0/  
NWAYEN  
42  
Ipu/O  
Low  
ON  
Activity  
Toggle  
Blinking  
LED Mode = [01]  
Link  
Pin State  
High  
LED Definition  
No Link  
Link  
OFF  
ON  
Low  
LED Mode = [10], [11] Reserved  
LED Output: Programmable LED1 output  
Config. Mode: Latched as Speed (Register 0h, Bit [13]) at the de-assertion of  
reset. See the Strap-In Options section for details.  
The LED1 pin is programmable using Register 1Fh Bits [5:4], and is defined  
as follows:  
LED Mode = [00]  
Speed  
Pin State  
High  
LED Definition  
10BASE-T  
100BASE-TX  
LED Mode = [01]  
Activity  
OFF  
ON  
LED1/  
SPEED  
43  
Ipu/O  
Low  
Pin State  
High  
LED Definition  
OFF  
No Activity  
Activity  
Toggle  
Blinking  
LED Mode = [10], [11] Reserved  
DS00002264A-page 8  
2016 Microchip Technology Inc.  
KSZ8081MLX  
TABLE 2-1:  
SIGNALS - KSZ8081MLX (CONTINUED)  
Type  
Pin  
Number  
Pin  
Note  
Name  
2-1  
Description  
No Connect for normal operation, an external pull-up resistor for NAND tree  
testing.  
44  
TEST/NC  
Ipd  
45  
46  
47  
NC  
NC  
No Connect. This pin is not bonded and can be left floating.  
No Connect. This pin is not bonded and can be left floating.  
Chip Reset (active low).  
RST#  
NC  
Ipu  
48  
No Connect. This pin is not bonded and can be left floating.  
Note 2-1  
P = power supply  
GND = ground  
I = input  
O = output  
I/O = bi-directional  
Ipu = Input with internal pull-up (see Electrical Characteristics for value).  
Ipu/O = Input with internal pull-up (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
Ipu/Opu = Input with internal pull-up (see Electrical Characteristics for value) and output with internal  
pull-up (see Electrical Characteristics for value).  
Note 2-2  
Note 2-3  
MII RX Mode: The RXD[3:0] bits are synchronous with RXC. When RXDV is asserted, RXD[3:0]  
presents valid data to the MAC.  
MII TX Mode: The TXD[3:0] bits are synchronous with TXC. When TXEN is asserted, TXD[3:0]  
presents valid data from the MAC.  
2.1  
Strap-In Options  
The PHYAD[1:0] strap-in pin is latched at the de-assertion of reset. In some systems, the RMII MAC receive input pins  
may drive high/low during power-up or reset, and consequently cause the PHYAD[1:0] strap-in pin, a shared pin with  
the RMII CRS_DV signal, to be latched to the unintended high/low state. In this case an external pull-up (4.7 k) or pull-  
down (1.0 k) should be added on the PHYAD[1:0] strap-in pin to ensure that the intended value is strapped-in correctly.  
TABLE 2-2:  
Pin Number  
STRAP-IN OPTIONS - KSZ8081MLX  
Type  
Pin Name  
Description  
Note 2-4  
22  
21  
PHYAD2  
PHYAD1  
The PHY address is latched at de-assertion of reset and is configu-  
rable to any value from 0 to 7. The default PHY address is 00001.  
PHY address 00000 is enabled only if the B-CAST_OFF strap-in pin  
is pulled high. PHY address Bits [4:3] are set to 00 by default.  
Ipd/O  
Ipd/O  
20  
27  
PHYAD0  
The CONFIG[2:0] strap-in pins are latched at the de-assertion of  
reset.  
CONFIG2  
CONFIG[2:0] Mode  
41  
40  
CONFIG1  
CONFIG0  
000  
110  
MII (default)  
MII back-to-back  
001 – 101,  
111  
Reserved, not used  
2016 Microchip Technology Inc.  
DS00002264A-page 9  
KSZ8081MLX  
TABLE 2-2:  
Pin Number  
STRAP-IN OPTIONS - KSZ8081MLX (CONTINUED)  
Type  
Pin Name  
Description  
Note 2-4  
Isolate Mode:  
Pull-up = Enable  
29  
43  
ISO  
Ipd/O  
Ipu/O  
Pull-down (default) = Disable  
At the de-assertion of reset, this pin value is latched into Register 0h,  
Bit [10].  
Speed Mode:  
Pull-up (default) = 100 Mbps  
Pull-down = 10 Mbps  
At the de-assertion of reset, this pin value is latched into Register 0h,  
Bit [13] as the speed select, and also is latched into Register 4h  
(auto-negotiation advertisement) as the speed capability support.  
SPEED  
Duplex Mode:  
Pull-up (default) = Half-duplex  
23  
42  
28  
DUPLEX  
NWAYEN  
Ipu/O  
Ipu/O  
Pull-down = Full-duplex  
At the de-assertion of reset, this pin value is latched into Register 0h,  
Bit [8].  
Nway Auto-Negotiation Enable:  
Pull-up (default) = Enable auto-negotiation  
Pull-down = Disable auto-negotiation  
At the de-assertion of reset, this pin value is latched into Register 0h,  
Bit [12].  
Broadcast Off – for PHY Address 0:  
Pull-up = PHY Address 0 is set as an unique PHY address  
Pull-down (default) = PHY Address 0 is set as a broadcast PHY  
address  
B-CAST_OFF  
NAND_Tree#  
Ipd/O  
At the de-assertion of reset, this pin value is latched by the chip.  
NAND Tree Mode:  
Pull-up (default) = Disable  
Pull-down = Enable  
32  
Ipu/Opu  
At the de-assertion of reset, this pin value is latched by the chip.  
Note 2-4  
Ipu/O = Input with internal pull-up (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
Ipu/Opu = Input with internal pull-up (see Electrical Characteristics for value) and output with internal  
pull-up (see Electrical Characteristics for value).  
DS00002264A-page 10  
2016 Microchip Technology Inc.  
KSZ8081MLX  
3.0  
FUNCTIONAL DESCRIPTION  
The KSZ8081MLX is an integrated single 3.3V supply Fast Ethernet transceiver. It is fully compliant with the IEEE 802.3  
Specification, and reduces board cost and simplifies board layout by using on-chip termination resistors for the two dif-  
ferential pairs and by integrating the regulator to supply the 1.2V core.  
On the copper media side, the KSZ8081MLX supports 10BASE-T and 100BASE-TX for transmission and reception of  
data over a standard CAT-5 unshielded twisted pair (UTP) cable, and HP Auto MDI/MDI-X for reliable detection of and  
correction for straight-through and crossover cables.  
On the MAC processor side, the KSZ8081MLX offers the Media Independent Interface (MII) for direct connection with  
MII compliant Ethernet MAC processors and switches.  
The MII management bus option gives the MAC processor complete access to the KSZ8081MLX control and status  
registers. Additionally, an interrupt pin eliminates the need for the processor to poll for PHY status change.  
3.1  
10BASE-T/100BASE-TX Transceiver  
3.1.1  
100BASE-TX TRANSMIT  
The 100BASE-TX transmit function performs parallel-to-serial conversion, 4B/5B encoding, scrambling, NRZ-to-NRZI  
conversion, and MLT3 encoding and transmission.  
The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125 MHz serial  
bit stream. The data and control stream is then converted into 4B/5B coding and followed by a scrambler. The serialized  
data is further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output. The output current is  
set by an external 6.49 k1% resistor for the 1:1 transformer ratio.  
The output signal has a typical rise/fall time of 4 ns and complies with the ANSI TP-PMD standard regarding amplitude  
balance, overshoot, and timing jitter. The wave-shaped 10BASE-T output is also incorporated into the 100BASE-TX  
transmitter.  
3.1.2  
100BASE-TX RECEIVE  
The 100BASE-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and  
clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.  
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted  
pair cable. Because the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust  
its characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on  
comparisons of incoming signal strength against some known cable characteristics, then tunes itself for optimization.  
This is an ongoing process and self-adjusts against environmental changes such as temperature variations.  
Next, the equalized signal goes through a DC-restoration and data-conversion block. The DC-restoration circuit com-  
pensates for the effect of baseline wander and improves the dynamic range. The differential data-conversion circuit con-  
verts MLT3 format back to NRZI. The slicing threshold is also adaptive.  
The clock-recovery circuit extracts the 125 MHz clock from the edges of the NRZI signal. This recovered clock is then  
used to convert the NRZI signal into NRZ format. This signal is sent through the de-scrambler, then the 4B/5B decoder.  
Finally, the NRZ serial data is converted to MII format and provided as the input data to the MAC.  
3.1.3  
SCRAMBLER/DE-SCRAMBLER (100BASE-TX ONLY)  
The scrambler spreads the power spectrum of the transmitted signal to reduce electromagnetic interference (EMI) and  
baseline wander. The de-scrambler recovers the scrambled signal.  
3.1.4  
10BASE-T TRANSMIT  
The 10BASE-T drivers are incorporated with the 100BASE-TX drivers to allow for transmission using the same mag-  
netic. The drivers perform internal wave-shaping and pre-emphasis, and output 10BASE-T signals with typical ampli-  
tude of 2.5V peak. The 10BASE-T signals have harmonic contents that are at least 27 dB below the fundamental  
frequency when driven by an all-ones Manchester-encoded signal.  
3.1.5  
10BASE-T RECEIVE  
On the receive side, input buffer and level detecting squelch circuits are used. A differential input receiver circuit and a  
phase-locked loop (PLL) performs the decoding function. The Manchester-encoded data stream is separated into clock  
signal and NRZ data. A squelch circuit rejects signals with levels less than 400 mV, or with short pulse widths, to prevent  
2016 Microchip Technology Inc.  
DS00002264A-page 11  
KSZ8081MLX  
noise at the RXP and RXM inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL  
locks onto the incoming signal and the KSZ8081MLX decodes a data frame. The receive clock is kept active during idle  
periods between data receptions.  
3.1.6  
SQE AND JABBER FUNCTION (10BASE-T ONLY)  
In 10BASE-T operation, a short pulse is put out on the COL pin after each frame is transmitted. This SQE test is needed  
to test the 10BASE-T transmit/receive path. If transmit enable (TXEN) is high for more than 20 ms (jabbering), the  
10BASE-T transmitter is disabled and COL is asserted high. If TXEN is then driven low for more than 250 ms, the  
10BASE-T transmitter is re-enabled and COL is de-asserted (returns to low).  
3.1.7  
PLL CLOCK SYNTHESIZER  
The KSZ8081MLX generates all internal clocks and all external clocks for system timing from an external 25 MHz crys-  
tal, oscillator, or reference clock.  
3.1.8  
AUTO-NEGOTIATION  
The KSZ8081MLX conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3 Specification.  
Auto-negotiation allows unshielded twisted pair (UTP) link partners to select the highest common mode of operation.  
During auto-negotiation, link partners advertise capabilities across the UTP link to each other and then compare their  
own capabilities with those they received from their link partners. The highest speed and duplex setting that is common  
to the two link partners is selected as the mode of operation.  
The following list shows the speed and duplex operation mode from highest to lowest priority.  
• Priority 1: 100BASE-TX, full-duplex  
• Priority 2: 100BASE-TX, half-duplex  
• Priority 3: 10BASE-T, full-duplex  
• Priority 4: 10BASE-T, half-duplex  
If auto-negotiation is not supported or the KSZ8081MLX link partner is forced to bypass auto-negotiation, then the  
KSZ8081MLX sets its operating mode by observing the signal at its receiver. This is known as parallel detection, and  
allows the KSZ8081MLX to establish a link by listening for a fixed signal protocol in the absence of the auto-negotiation  
advertisement protocol.  
Auto-negotiation is enabled by either hardware pin strapping (NWAYEN, Pin 42) or software (Register 0h, Bit [12]).  
By default, auto-negotiation is enabled after power-up or hardware reset. After that, auto-negotiation can be enabled or  
disabled by Register 0h, Bit [12]. If auto-negotiation is disabled, the speed is set by Register 0h, Bit [13], and the duplex  
is set by Register 0h, Bit [8].  
The auto-negotiation link-up process is shown in Figure 3-1.  
DS00002264A-page 12  
2016 Microchip Technology Inc.  
KSZ8081MLX  
FIGURE 3-1:  
AUTO-NEGOTIATION FLOW CHART  
START AUTO-NEGOTIATION  
PARALLEL  
OPERATION  
FORCE LINK SETTING  
YES  
NO  
ATTEMPT AUTO-  
NEGOTIATION  
LISTEN FOR 100BASE-TX  
IDLES  
LISTEN FOR 10BASE-T  
LINK PULSES  
BYPASS AUTO-NEGOTIATION  
AND SET LINK MODE  
NO  
JOIN FLOW  
LINK MODE SET?  
YES  
LINK MODE SET  
3.2  
MII Interface  
The Media Independent Interface (MII) is compliant with the IEEE 802.3 Specification. It provides a common interface  
between MII PHYs and MACs, and has the following key characteristics:  
• Pin count is 15 pins (6 pins for data transmission, 7 pins for data reception, and 2 pins for carrier and collision indi-  
cation).  
• 10 Mbps and 100 Mbps data rates are supported at both half- and full-duplex.  
• Data transmission and reception are independent and belong to separate signal groups.  
• Transmit data and receive data are each 4 bits wide, a nibble.  
By default, the KSZ8081MLX is configured to MII mode after it is powered up or hardware reset with the following:  
• A 25 MHz crystal connected to XI, XO (Pins 15, 14), or an external 25 MHz clock source (oscillator) connected to  
XI.  
• The CONFIG[2:0] strapping pins (Pins 27, 41, 40) set to 000 (default setting).  
3.2.1  
MII SIGNAL DEFINITION  
Table 3-1 describes the MII signals. Refer to Clause 22 of the IEEE 802.3 Specification for detailed information.  
2016 Microchip Technology Inc.  
DS00002264A-page 13  
KSZ8081MLX  
TABLE 3-1:  
MII SIGNAL DEFINITION  
Direction with  
Respect to PHY,  
KSZ8081 Signal  
MII Signal  
Name  
Direction with  
Respect to MAC  
Description  
Transmit Clock  
(2.5 MHz for 10 Mbps; 25 MHz for 100 Mbps)  
TXC  
Output  
Input  
TXEN  
Input  
Input  
Output  
Output  
Transmit Enable  
TXD[3:0]  
Transmit Data[3:0]  
Receive Clock  
(2.5 MHz for 10 Mbps; 25 MHz for 100 Mbps)  
RXC  
Output  
Input  
RXDV  
RXD[3:0]  
RXER  
CRS  
Output  
Output  
Output  
Output  
Output  
Input  
Input  
Receive Data Valid  
Receive Data[3:0]  
Input or not required Receive Error  
Input  
Input  
Carrier Sense  
COL  
Collision Detection  
3.2.1.1  
Transmit Clock (TXC)  
TXC is sourced by the PHY. It is a continuous clock that provides the timing reference for TXEN and TXD[3:0].  
TXC is 2.5 MHz for 10 Mbps operation and 25 MHz for 100 Mbps operation.  
3.2.1.2  
Transmit Enable (TXEN)  
TXEN indicates that the MAC is presenting nibbles on TXD[3:0] for transmission. It is asserted synchronously with the  
first nibble of the preamble and remains asserted while all nibbles to be transmitted are presented on the MII. It is  
negated before the first TXC following the final nibble of a frame.  
TXEN transitions synchronously with respect to TXC.  
3.2.1.3  
Transmit Data[3:0] (TXD[3:0])  
When TXEN is asserted, TXD[3:0] are the data nibbles accepted by the PHY for transmission. TXD[3:0] is 00 to indicate  
idle when TXEN is de-asserted.  
TXD[3:0] transitions synchronously with respect to TXC.  
3.2.1.4  
Receive Clock (RXC)  
RXC provides the timing reference for RXDV, RXD[3:0], and RXER.  
In 10 Mbps mode, RXC is recovered from the line while the carrier is active. RXC is derived from the PHY’s reference  
clock when the line is idle or the link is down.  
In 100 Mbps mode, RXC is continuously recovered from the line. If the link is down, RXC is derived from the PHY’s  
reference clock.  
RXC is 2.5 MHz for 10 Mbps operation and 25 MHz for 100 Mbps operation.  
3.2.1.5  
Receive Data Valid (RXDV)  
RXDV is driven by the PHY to indicate that the PHY is presenting recovered and decoded nibbles on RXD[3:0].  
In 10 Mbps mode, RXDV is asserted with the first nibble of the start-of-frame delimiter (SFD), 5D, and remains asserted  
until the end of the frame.  
In 100 Mbps mode, RXDV is asserted from the first nibble of the preamble to the last nibble of the frame.  
RXDV transitions synchronously with respect to RXC.  
3.2.1.6  
Receive Data[3:0] (RXD[3:0])  
RXD[3:0] transitions synchronously with respect to RXC. For each clock period in which RXDV is asserted, RXD[3:0]  
transfers a nibble of recovered data from the PHY.  
DS00002264A-page 14  
2016 Microchip Technology Inc.  
KSZ8081MLX  
3.2.1.7  
Receive Error (RXER)  
RXER is asserted for one or more RXC periods to indicate that a symbol error (for example, a coding error that a PHY  
can detect that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame being  
transferred from the PHY.  
RXER transitions synchronously with respect to RXC.  
3.2.1.8  
Carrier Sense (CRS)  
CRS is asserted and de-asserted as follows:  
In 10 Mbps mode, CRS assertion is based on the reception of valid preambles. CRS de-assertion is based on the recep-  
tion of an end-of-frame (EOF) marker.  
In 100 Mbps mode, CRS is asserted when a start-of-stream delimiter or /J/K symbol pair is detected. CRS is de-asserted  
when an end-of-stream delimiter or /T/R symbol pair is detected. Additionally, the PMA layer de-asserts CRS if IDLE  
symbols are received without /T/R.  
3.2.1.9  
Collision Detection (COL)  
COL is asserted in half-duplex mode whenever the transmitter and receiver are simultaneously active on the line. This  
informs the MAC that a collision has occurred during its transmission to the PHY.  
COL transitions asynchronously with respect to TXC and RXC.  
3.2.2  
MII SIGNAL DIAGRAM  
The KSZ8081MLX MII pin connections to the MAC are shown in Figure 3-2.  
FIGURE 3-2:  
KSZ8081MLX MII INTERFACE  
'
MII  
KSZ8081MLX  
ETHERNET MAC  
TXC  
TXC  
TXEN  
TXEN  
TXD[3:0]  
TXD[3:0  
]
RXC  
RXC  
RXDV  
RXDV  
RXD[3:0]  
RXER  
RXD[3:0]  
RXER  
CRS  
COL  
CRS  
COL  
2016 Microchip Technology Inc.  
DS00002264A-page 15  
KSZ8081MLX  
3.3  
Back-to-Back Mode – 100 Mbps Copper Repeater  
Two KSZ8081MLX devices can be connected back-to-back to form a 100BASE-TX to 100BASE-TX copper repeater.  
FIGURE 3-3:  
KSZ8081MLX TO KSZ8081MLX BACK-TO-BACK COPPER REPEATER  
RXP/RXM  
TXP/TXM  
RxD  
TxD  
KSZ8081MLX  
(COPPER MODE)  
XI  
25MHz  
OSC  
XI  
KSZ8081MLX  
(COPPER MODE)  
TXP/TXM  
RXP/RXM  
TxD  
RxD  
3.3.1  
MII BACK-TO-BACK MODE  
In MII back-to-back mode, a KSZ8081MLX interfaces with another KSZ8081MLX to provide a complete 100 Mbps cop-  
per repeater solution.  
The KSZ8081MLX devices are configured to MII back-to-back mode after power-up or reset with the following:  
• Strapping pin CONFIG[2:0] (Pins 27, 41, 40) set to 110.  
• A common 25 MHz reference clock connected to XI (Pin 15) of both KSZ8081MLX devices.  
• MII signals connected as shown in Table 3-2.  
TABLE 3-2:  
MII SIGNAL CONNECTION FOR MII BACK-TO-BACK MODE (100BASE-TX COPPER  
REPEATER)  
KSZ8081MLX (100BASE-TX Copper)  
KSZ8081MLX (100BASE-TX Copper)  
[Device 2]  
[Device 1]  
Pin Name  
Pin Number  
Pin Type  
Pin Name  
Pin Number  
Pin Type  
RXDV  
RXD3  
RXD2  
RXD1  
RXD0  
TXEN  
TXD3  
TXD2  
TXD1  
TXD0  
27  
20  
21  
22  
23  
34  
39  
38  
36  
35  
Output  
Output  
Output  
Output  
Output  
Input  
TXEN  
TXD3  
TXD2  
TXD1  
TXD0  
RXDV  
RXD3  
RXD2  
RXD1  
RXD0  
34  
39  
38  
36  
35  
27  
20  
21  
22  
23  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Input  
Input  
Input  
Input  
DS00002264A-page 16  
2016 Microchip Technology Inc.  
KSZ8081MLX  
3.4  
MII Management (MIIM) Interface  
The KSZ8081MLX supports the IEEE 802.3 MII management interface, also known as the Management Data Input/  
Output (MDIO) interface. This interface allows an upper-layer device, such as a MAC processor, to monitor and control  
the state of the KSZ8081MLX. An external device with MIIM capability is used to read the PHY status and/or configure  
the PHY settings. More details about the MIIM interface can be found in Clause 22.2.4 of the IEEE 802.3 Specification.  
The MIIM interface consists of the following:  
• A physical connection that incorporates the clock line (MDC) and the data line (MDIO).  
• A specific protocol that operates across the physical connection mentioned earlier, which allows the external con-  
troller to communicate with one or more PHY devices.  
• A set of 16-bit MDIO registers. Registers [0:8] are standard registers, and their functions are defined in the IEEE  
802.3 Specification. The additional registers are provided for expanded functionality. See the Register Map section  
for details.  
As the default, the KSZ8081MLX supports unique PHY addresses 1 to 7, and broadcast PHY address 0. The latter is  
defined in the IEEE 802.3 Specification, and can be used to read/write to a single KSZ8081MLX device, or write to mul-  
tiple KSZ8081MLX devices simultaneously.  
PHY address 0 can optionally be disabled as the broadcast address by either hardware pin strapping (B-CAST_OFF,  
Pin 28) or software (Register 16h, Bit [9]), and assigned as a unique PHY address.  
The PHYAD[2:0] strapping pins are used to assign a unique PHY address between 0 and 7 to each KSZ8081MLX  
device.  
The MIIM interface can operates up to a maximum clock speed of 10 MHz MAC clock.  
Table 3-3 shows the MII management frame format for the KSZ8081MLX.  
TABLE 3-3:  
MII MANAGEMENT FRAME FORMAT FOR THE KSZ8081MLX  
Read/  
PHY  
REG  
Start of  
Frame  
Preamble  
Write OP Address Address TA  
Code  
Data Bits[15:0]  
Idle  
Bits[4:0] Bits[4:0]  
Read  
Write  
32 1’s  
32 1’s  
01  
01  
10  
01  
000AA  
000AA  
RRRRR Z0  
RRRRR 10  
DDDDDDDD_DDDDDDDD  
DDDDDDDD_DDDDDDDD  
Z
Z
3.5  
Interrupt (INTRP)  
INTRP (Pin 32) is an optional interrupt signal that is used to inform the external controller that there has been a status  
update to the KSZ8081MLX PHY Register. Bits [15:8] of Register 1Bh are the interrupt control bits to enable and disable  
the conditions for asserting the INTRP signal. Bits [7:0] of Register 1Bh are the interrupt status bits to indicate which  
interrupt conditions have occurred. The interrupt status bits are cleared after reading Register 1Bh.  
Bit [9] of Register 1Fh sets the interrupt level to active high or active low. The default is active low.  
The MII management bus option gives the MAC processor complete access to the KSZ8081MLX control and status  
registers. Additionally, an interrupt pin eliminates the need for the processor to poll the PHY for status change.  
3.6  
HP Auto MDI/MDI-X  
HP Auto MDI/MDI-X configuration eliminates the need to decide whether to use a straight cable or a crossover cable  
between the KSZ8081MLX and its link partner. This feature allows the KSZ8081MLX to use either type of cable to con-  
nect with a link partner that is in either MDI or MDI-X mode. The auto-sense function detects transmit and receive pairs  
from the link partner and assigns transmit and receive pairs of the KSZ8081MLX accordingly.  
HP Auto MDI/MDI-X is enabled by default. It is disabled by writing a ‘1’ to Register 1Fh, Bit [13]. MDI and MDI-X mode  
is selected by Register 1Fh, Bit [14] if HP Auto MDI/MDI-X is disabled.  
An isolation transformer with symmetrical transmit and receive data paths is recommended to support Auto MDI/MDI-X.  
Table 3-4 shows how the IEEE 802.3 Standard defines MDI and MDI-X.  
2016 Microchip Technology Inc.  
DS00002264A-page 17  
KSZ8081MLX  
TABLE 3-4:  
MDI/MDI-X PIN DESCRIPTION  
MDI  
MDI-X  
RJ-45 Pin  
Signal  
RJ-45 Pin  
Signal  
1
2
3
6
TX+  
TX–  
RX+  
RX–  
1
2
3
6
RX+  
RX–  
TX+  
TX–  
3.6.1  
STRAIGHT CABLE  
A straight cable connects an MDI device to an MDI-X device, or an MDI-X device to an MDI device. Figure 3-4 shows  
a typical straight cable connection between a NIC card (MDI device) and a switch or hub (MDI-X device).  
FIGURE 3-4:  
TYPICAL STRAIGHT CABLE CONNECTION  
10/100 ETHERNET  
MEDIA DEPENDENT INTERFACE  
10/100 ETHERNET  
MEDIA DEPENDENT INTERFACE  
1
1
TRANSMIT PAIR  
RECEIVE PAIR  
2
2
3
STRAIGHT  
CABLE  
3
4
4
RECEIVE PAIR  
5
TRANSMIT PAIR  
5
6
7
8
6
7
8
MODULAR CONNECTOR  
(RJ-45)  
MODULAR CONNECTOR  
(RJ-45)  
NIC  
HUB  
(REPEATER OR SWITCH)  
3.6.2  
CROSSOVER CABLE  
A crossover cable connects an MDI device to another MDI device, or an MDI-X device to another MDI-X device.  
Figure 3-5 shows a typical crossover cable connection between two switches or hubs (two MDI-X devices).  
DS00002264A-page 18  
2016 Microchip Technology Inc.  
KSZ8081MLX  
FIGURE 3-5:  
TYPICAL CROSSOVER CABLE CONNECTION  
10/100 ETHERNET  
MEDIA DEPENDENT INTERFACE  
10/100 ETHERNET  
MEDIA DEPENDENT INTERFACE  
1
1
2
3
4
5
6
7
8
CROSSOVER  
CABLE  
RECEIVE PAIR  
2
RECEIVE PAIR  
3
4
TRANSMIT PAIR  
5
TRANSMIT PAIR  
6
7
8
MODULAR CONNECTOR  
MODULAR CONNECTOR  
(RJ-45)  
HUB  
(RJ-45)  
HUB  
(REPEATER OR SWITCH)  
(REPEATER OR SWITCH)  
3.7  
Loopback Mode  
The KSZ8081MLX supports the following loopback operations to verify analog and/or digital data paths.  
• Local (digital) loopback  
• Remote (analog) loopback  
3.7.1  
LOCAL (DIGITAL) LOOPBACK  
This loopback mode checks the MII transmit and receive data paths between the KSZ8081MLX and the external MAC,  
and is supported for both speeds (10/100 Mbps) at full-duplex.  
The loopback data path is shown in Figure 3-6.  
1. The MII MAC transmits frames to the KSZ8081MLX.  
2. Frames are wrapped around inside the KSZ8081MLX.  
3. The KSZ8081MLX transmits frames back to the MII MAC.  
FIGURE 3-6:  
LOCAL (DIGITAL) LOOPBACK  
KSZ8081MLX  
AFE  
PCS  
MII  
MAC  
MII  
(ANALOG)  
(DIGITAL)  
2016 Microchip Technology Inc.  
DS00002264A-page 19  
KSZ8081MLX  
The following programming action and register settings are used for local loopback mode:  
For 10/100 Mbps loopback:  
Set Register 0h,  
Bit [14] = 1  
// Enable local loopback mode  
Bit [13] = 0/1 // Select 10 Mbps/100 Mbps speed  
Bit [12] = 0  
Bit [8] = 1  
// Disable auto-negotiation  
// Select full-duplex mode  
3.7.2  
REMOTE (ANALOG) LOOPBACK  
This loopback mode checks the line (differential pairs, transformer, RJ-45 connector, Ethernet cable) transmit and  
receive data paths between the KSZ8081MLX and its link partner, and is supported for 100BASE-TX full-duplex mode  
only.  
The loopback data path is shown in Figure 3-7.  
1. The Fast Ethernet (100BASE-TX) PHY link partner transmits frames to the KSZ8081MLX.  
2. Frames are wrapped around inside the KSZ8081MLX.  
3. The KSZ8081MLX transmits frames back to the Fast Ethernet (100BASE-TX) PHY link partner.  
FIGURE 3-7:  
REMOTE (ANALOG) LOOPBACK  
KSZ8081MLX  
AFE  
(ANALOG)  
PCS  
(DIGITAL)  
MII  
RJ-45  
CAT-5  
(UTP)  
100BASE-TX  
LINK PARTNER  
RJ-45  
The following programming steps and register settings are used for remote loopback mode:  
1. Set Register 0h,  
Bits [13] = 1 // Select 100 Mbps speed  
Bit [12] = 0 // Disable auto-negotiation  
Bit [8] = 1  
// Select full-duplex mode  
Or just auto-negotiate and link up at 100BASE-TX full-duplex mode with the link partner.  
2. Set Register 1Fh,  
Bit [2] = 1  
// Enable remote loopback mode  
DS00002264A-page 20  
2016 Microchip Technology Inc.  
KSZ8081MLX  
3.8  
LinkMD® Cable Diagnostic  
The LinkMD function uses time-domain reflectometry (TDR) to analyze the cabling plant for common cabling problems.  
These include open circuits, short circuits, and impedance mismatches.  
LinkMD works by sending a pulse of known amplitude and duration down the MDI or MDI-X pair, then analyzing the  
shape of the reflected signal to determine the type of fault. The time duration for the reflected signal to return provides  
the approximate distance to the cabling fault. The LinkMD function processes this TDR information and presents it as  
a numerical value that can be translated to a cable distance.  
LinkMD is initiated by accessing Register 1Dh, the LinkMD Control/Status register, in conjunction with Register 1Fh, the  
PHY Control 2 register. The latter register is used to disable Auto MDI/MDI-X and to select either MDI or MDI-X as the  
cable differential pair for testing.  
3.8.1  
USAGE  
The following is a sample procedure for using LinkMD with Registers 1Dh and 1Fh:  
1. Disable auto MDI/MDI-X by writing a ‘1’ to Register 1Fh, bit [13].  
2. Start cable diagnostic test by writing a ‘1’ to Register 1Dh, bit [15]. This enable bit is self-clearing.  
3. Wait (poll) for Register 1Dh, bit [15] to return a ‘0’, and indicating cable diagnostic test is completed.  
4. Read cable diagnostic test results in Register 1Dh, bits [14:13]. The results are as follows:  
00 = normal condition (valid test)  
01 = open condition detected in cable (valid test)  
10 = short condition detected in cable (valid test)  
11 = cable diagnostic test failed (invalid test)  
The ‘11’ case, invalid test, occurs when the device is unable to shut down the link partner. In this instance, the test is  
not run because it would be impossible for the device to determine if the detected signal is a reflection of the signal  
generated or a signal from another source.  
5. Get distance to fault by concatenating Register 1Dh, bits [8:0] and multiplying the result by a constant of 0.38.  
The distance to the cable fault can be determined by the following formula:  
EQUATION 3-1:  
·
DDistance to cable fault in meters= 0.38  Register 1Dh, bits[8:0]  
Concatenated value of Registers 1Dh bits [8:0] should be converted to decimal before multiplying by 0.38.  
The constant (0.38) may be calibrated for different cabling conditions, including cables with a velocity of propagation  
that varies significantly from the norm.  
3.9  
NAND Tree Support  
The KSZ8081MLX provides parametric NAND tree support for fault detection between chip I/Os and board. The NAND  
tree is a chain of nested NAND gates in which each KSZ8081MLX digital I/O (NAND tree input) pin is an input to one  
NAND gate along the chain. At the end of the chain, the CRS/CONFIG1 pin provides the output for the nested NAND  
gates.  
The NAND tree test process includes:  
• Enabling NAND tree mode  
• Pulling all NAND tree input pins high  
• Driving each NAND tree input pin low, sequentially, according to the NAND tree pin order  
• Checking the NAND tree output to make sure there is a toggle high-to-low or low-to-high for each NAND tree input  
driven low  
Table 3-5 lists the NAND tree pin order.  
2016 Microchip Technology Inc.  
DS00002264A-page 21  
KSZ8081MLX  
TABLE 3-5:  
NAND TREE TEST PIN ORDER FOR KSZ8081MLX  
Pin Number  
Pin Name  
NAND Tree Description  
18  
19  
20  
21  
22  
23  
27  
28  
29  
32  
33  
34  
35  
36  
38  
39  
42  
43  
40  
41  
MDIO  
MDC  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
RXD3  
RXD2  
RXD1  
RXD0  
RXDV  
RXC  
RXER  
INTRP  
TXC  
TXEN  
TXD0  
TXD1  
TXD2  
TXD3  
LED0  
LED1  
COL  
CRS  
3.9.1  
NAND TREE I/O TESTING  
Use the following procedure to check for faults on the KSZ8081MLX digital I/O pin connections to the board:  
1. Enable NAND tree mode using either a hardware strap-in pin (NAND_Tree#, Pin 32) or software (Register 16h,  
Bit [5]). Pin 44 TEST/NC has to use a pull-up resistor for normal NAND tree testing.  
2. Use board logic to drive all KSZ8081MLX NAND tree input pins high.  
3. Use board logic to drive each NAND tree input pin, in KSZ8081MLX NAND tree pin order, as follows:  
a) Toggle the first pin (MDIO) from high to low, and verify that the CRS/CONFIG1 pin switches from high to low  
to indicate that the first pin is connected properly.  
b) Leave the first pin (MDIO) low.  
c) Toggle the second pin (MDC) from high to low, and verify that the CRS/CONFIG1 pin switches from low to  
high to indicate that the second pin is connected properly.  
d) Leave the first pin (MDIO) and the second pin (MDC) low.  
e) Toggle the third pin from high to low, and verify that the CRS/CONFIG1 pin switches from high-to-low to indi-  
cate that the third pin is connected properly.  
f) Continue with this sequence until all KSZ8081MLX NAND tree input pins have been toggled.  
Each KSZ8081MLX NAND tree input pin must cause the CRS/CONFIG1 output pin to toggle high-to-low or low-to-high  
to indicate a good connection. If the CRS pin fails to toggle when the KSZ8081MLX input pin toggles from high to low,  
the input pin has a fault.  
3.10 Power Management  
The KSZ8081MLX incorporates a number of power-management modes and features that provide methods to consume  
less energy. These are discussed in the following sections.  
3.10.1  
POWER-SAVING MODE  
Power-saving mode is used to reduce the transceiver power consumption when the cable is unplugged. It is enabled  
by writing a ‘1’ to Register 1Fh, Bit [10], and is in effect when auto-negotiation mode is enabled and the cable is discon-  
nected (no link).  
DS00002264A-page 22  
2016 Microchip Technology Inc.  
KSZ8081MLX  
In this mode, the KSZ8081MLX shuts down all transceiver blocks, except for the transmitter, energy detect, and PLL  
circuits.  
By default, power-saving mode is disabled after power-up.  
3.10.2  
ENERGY-DETECT POWER-DOWN MODE  
Energy-detect power-down (EDPD) mode is used to further reduce transceiver power consumption when the cable is  
unplugged. It is enabled by writing a ‘0’ to Register 18h, Bit [11], and is in effect when auto-negotiation mode is enabled  
and the cable is disconnected (no link).  
EDPD mode works with the PLL off (set by writing a ‘1’ to Register 10h, Bit [4] to automatically turn the PLL off in EDPD  
mode) to turn off all KSZ8081MLX transceiver blocks, except for the transmitter and energy-detect circuits.  
Power can be reduced further by extending the time interval between transmissions of link pulses to check for the pres-  
ence of a link partner. The periodic transmission of link pulses is needed to ensure two link partners in the same low-  
power state, with Auto MDI/MDI-X disabled, can wake up when the cable is connected between them.  
By default, energy-detect power-down mode is disabled after power-up.  
3.10.3  
POWER-DOWN MODE  
Power-down mode is used to power down the KSZ8081MLX device when it is not in use after power-up. It is enabled  
by writing a ‘1’ to Register 0h, Bit [11].  
In this mode, the KSZ8081MLX disables all internal functions except the MII management interface. The KSZ8081MLX  
exits (disables) power-down mode after Register 0h, Bit [11] is set back to ‘0’.  
3.10.4  
SLOW-OSCILLATOR MODE  
Slow-oscillator mode is used to disconnect the input reference crystal/clock on XI (Pin 15) and select the on-chip slow  
oscillator when the KSZ8081MLX device is not in use after power-up. It is enabled by writing a ‘1’ to Register 11h, Bit [5].  
Slow-oscillator mode works in conjunction with power-down mode to put the KSZ8081MLX device in the lowest power  
state with all internal functions disabled except the MII management interface. To properly exit this mode and return to  
normal PHY operation, use the following programming sequence:  
1. Disable slow-oscillator mode by writing a ‘0’ to Register 11h, Bit [5].  
2. Disable power-down mode by writing a ‘0’ to Register 0h, Bit [11].  
3. Initiate software reset by writing a ‘1’ to Register 0h, Bit [15].  
2016 Microchip Technology Inc.  
DS00002264A-page 23  
KSZ8081MLX  
3.11 Reference Circuit for Power and Ground Connections  
The KSZ8081MLX is a single 3.3V supply device with a built-in regulator to supply the 1.2V core. The power and ground  
connections are shown in Figure 3-8 and Table 3-6 for 3.3V VDDIO  
.
FIGURE 3-8:  
KSZ8081MLX POWER AND GROUND CONNECTIONS  
FERRITE  
BEAD  
7
VDDA_3.3  
31  
0.1μF  
22μF  
VDD_1.2  
`
`
0.1μF  
2.2μF  
KSZ8081MLX  
3.3V  
VDDIO  
VDD_1.2  
25  
4
`
`
0.1uF  
0.1μF  
22μF  
GND  
13 17 24 30  
1
2
3
37  
TABLE 3-6:  
KSZ8081MLX POWER PIN DESCRIPTION  
Pin Number  
Power Pin  
Description  
VDD_1.2  
VDDA_3.3  
VDDIO  
4
Connect with Pin 31 by power trace or plane.  
Decouple with 2.2 µF and 0.1 µF capacitors to ground.  
7
Connect to board’s 3.3V supply through a ferrite bead.  
Decouple with 22 µF and 0.1 µF capacitors to ground.  
25  
31  
Connect to board’s 3.3V supply for 3.3V VDDIO.  
Decouple with 22 µF and 0.1 µF capacitors to ground.  
VDD_1.2  
Connect with Pin 4 by power trace or plane.  
Decouple with 0.1 µF capacitor to ground.  
3.12 Typical Current/Power Consumption  
Table 3-7, Table 3-8, and Table 3-9 show typical values for current consumption by the transceiver (VDDA_3.3) and dig-  
ital I/O (VDDIO) power pins and typical values for power consumption by the KSZ8081MLX device for the indicated  
nominal operating voltages. These current and power consumption values include the transmit driver current and on-  
chip regulator current for the 1.2V core.  
TABLE 3-7:  
TYPICAL CURRENT/POWER CONSUMPTION (VDDA_3.3 = 3.3V, VDDIO = 3.3V)  
3.3V Transceiver  
(VDDA_3.3)  
3.3V Digital I/Os  
(VDDIO)  
Condition  
Total Chip Power  
100BASE-TX Link-up (no traffic)  
100BASE-TX Full-duplex @ 100% utilization  
10BASE-T Link-up (no traffic)  
34 mA  
34 mA  
14 mA  
30 mA  
12 mA  
13 mA  
11 mA  
11 mA  
152 mW  
155 mW  
82.5 mW  
135 mW  
10BASE-T Full-duplex @ 100% utilization  
DS00002264A-page 24  
2016 Microchip Technology Inc.  
KSZ8081MLX  
TABLE 3-7:  
TYPICAL CURRENT/POWER CONSUMPTION (VDDA_3.3 = 3.3V, VDDIO = 3.3V)  
3.3V Transceiver  
(VDDA_3.3)  
3.3V Digital I/Os  
(VDDIO)  
Condition  
Total Chip Power  
Power-saving mode (Reg. 1Fh, Bit [10] = 1)  
EDPD mode (Reg. 18h, Bit [11] = 0)  
14 mA  
10 mA  
10 mA  
10 mA  
79.2 mW  
66 mW  
EDPD mode (Reg. 18h, Bit [11] = 0) and  
PLL off (Reg. 10h, Bit [4] = 1)  
3.77 mA  
1.54 mA  
1.75 mW  
Software power-down mode (Reg. 0h, Bit [11] =1)  
2.59 mA  
1.36 mA  
1.51 mA  
0.45 mA  
13.5 mW  
5.97 mW  
Software power-down mode (Reg. 0h, Bit [11] =1)  
and slow-oscillator mode (Reg. 11h, Bit [5] =1)  
TABLE 3-8:  
TYPICAL CURRENT/POWER CONSUMPTION (VDDA_3.3 = 3.3V, VDDIO = 2.5V)  
3.3V Transceiver  
(VDDA_3.3)  
2.5V Digital I/Os  
(VDDIO)  
Condition  
Total Chip Power  
100BASE-TX Link-up (no traffic)  
100BASE-TX Full-duplex @ 100% utilization  
10BASE-T Link-up (no traffic)  
34 mA  
34 mA  
15 mA  
27 mA  
15 mA  
11 mA  
3.55 mA  
11 mA  
12 mA  
10 mA  
10 mA  
10 mA  
10 mA  
1.35 mA  
140 mW  
142 mW  
74.5 mW  
114 mW  
74.5 mW  
61.3 mW  
15.1 mW  
10BASE-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, Bit [10] = 1)  
EDPD mode (Reg. 18h, Bit [11] = 0)  
EDPD mode (Reg. 18h, Bit [11] = 0) and  
PLL off (Reg. 10h, Bit [4] = 1)  
Software power-down mode (Reg. 0h, Bit [11] =1)  
2.29 mA  
1.15 mA  
1.34 mA  
0.29 mA  
10.9 mW  
4.52 mW  
Software power-down mode (Reg. 0h, Bit [11] =1)  
and slow-oscillator mode (Reg. 11h, Bit [5] =1)  
TABLE 3-9:  
TYPICAL CURRENT/POWER CONSUMPTION (VDDA_3.3 = 3.3V, VDDIO = 1.8V)  
3.3V Transceiver  
(VDDA_3.3)  
1.8V Digital I/Os  
(VDDIO)  
Condition  
Total Chip Power  
100BASE-TX Link-up (no traffic)  
100BASE-TX Full-duplex @ 100% utilization  
10BASE-T Link-up (no traffic)  
34 mA  
34 mA  
15 mA  
27 mA  
15 mA  
11 mA  
4.05 mA  
11 mA  
12 mA  
9 mA  
132 mW  
134 mW  
65.7 mW  
105 mW  
65.7 mW  
52.5 mW  
15.5 mW  
10BASE-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, Bit [10] = 1)  
EDPD mode (Reg. 18h, Bit [11] = 0)  
9 mA  
9 mA  
9 mA  
EDPD mode (Reg. 18h, Bit [11] = 0) and  
PLL off (Reg. 10h, Bit [4] = 1)  
1.21 mA  
Software power-down mode (Reg. 0h, Bit [11] =1)  
2.79 mA  
1.65 mA  
1.21 mA  
0.19 mA  
11.4 mW  
5.79 mW  
Software power-down mode (Reg. 0h, Bit [11] =1)  
and slow-oscillator mode (Reg. 11h, Bit [5] =1)  
2016 Microchip Technology Inc.  
DS00002264A-page 25  
KSZ8081MLX  
4.0  
REGISTER DESCRIPTIONS  
This chapter describes the various control and status registers (CSRs).  
4.1  
Register Map  
TABLE 4-1:  
REGISTERS SUPPORTED BY KSZ8081MLX  
Register Number (hex)  
Description  
0h  
1h  
Basic Control  
Basic Status  
2h  
PHY Identifier 1  
3h  
PHY Identifier 2  
4h  
Auto-Negotiation Advertisement  
Auto-Negotiation Link Partner Ability  
Auto-Negotiation Expansion  
Auto-Negotiation Next Page  
Link Partner Next Page Ability  
Reserved  
5h  
6h  
7h  
8h  
9h  
10h  
11h  
12h - 14h  
15h  
16h  
17h  
18h  
19h - 1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Digital Reserved Control  
AFE Control 1  
Reserved  
RXER Counter  
Operation Mode Strap Override  
Operation Mode Strap Status  
Expanded Control  
Reserved  
Interrupt Control/Status  
Reserved  
LinkMD Control/Status  
PHY Control 1  
PHY Control 2  
4.2  
Register Descriptions  
TABLE 4-2:  
REGISTER DESCRIPTIONS  
Mode  
Note 4-1  
Address Name  
Description  
Default  
Register 0h – Basic Control  
1 = Software reset  
0.15  
0.14  
Reset  
0 = Normal operation  
This bit is self-cleared after a ‘1’ is written to it.  
RW/SC  
RW  
0
0
1 = Loopback mode  
0 = Normal operation  
Loopback  
Set by the SPEED  
strapping pin.  
See the Strap-In  
Options section for  
details.  
1 = 100 Mbps  
0 = 10 Mbps  
This bit is ignored if auto-negotiation is enabled  
(Register 0.12 = 1).  
0.13  
Speed Select  
RW  
DS00002264A-page 26  
2016 Microchip Technology Inc.  
KSZ8081MLX  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Default  
Note 4-1  
Address Name  
Description  
Set by the NWAYEN  
strapping pin.  
See the Strap-In  
Options section for  
details.  
1 = Enable auto-negotiation process  
Auto-Negoti- 0 = Disable auto-negotiation process  
ation Enable If enabled, the auto-negotiation result overrides the  
settings in Registers 0.13 and 0.8.  
0.12  
0.11  
RW  
RW  
1 = Power-down mode  
0 = Normal operation  
If software reset (Register 0.15) is used to exit  
power-down mode (Register 0.11 = 1), two soft-  
Power-Down  
0
ware reset writes (Register 0.15 = 1) are required.  
The first write clears power-down mode; the sec-  
ond write resets the chip and re-latches the pin  
strapping pin values.  
Set by the ISO strap-  
ping pin.  
See the Strap-In  
Options section for  
details.  
1 = Electrical isolation of PHY from MII  
0 = Normal operation  
0.10  
0.9  
Isolate  
RW  
1 = Restart auto-negotiation process  
Restart Auto-  
Negotiation  
0 = Normal operation.  
This bit is self-cleared after a ‘1’ is written to it.  
RW/SC  
0
The inverse of the  
DUPLEX strapping  
pin value.  
See the Strap-In  
Options section for  
details.  
1 = Full-duplex  
Duplex Mode  
0.8  
RW  
0 = Half-duplex  
1 = Enable COL test  
Collision Test  
0.7  
RW  
RO  
0
0 = Disable COL test  
0.6:0  
Reserved  
Reserved  
000_0000  
Register 1h - Basic Status  
1 = T4 capable  
0 = Not T4 capable  
1.15  
1.14  
1.13  
1.12  
100BASE-T4  
RO  
RO  
RO  
RO  
0
1
1
1
100BASE-TX 1 = Capable of 100 Mbps full-duplex  
Full-Duplex 0 = Not capable of 100 Mbps full-duplex  
100BASE-TX 1 = Capable of 100 Mbps half-duplex  
Half-Duplex 0 = Not capable of 100 Mbps half-duplex  
10BASE-T  
Full-Duplex  
1 = Capable of 10 Mbps full-duplex  
0 = Not capable of 10 Mbps full-duplex  
10BASE-T  
1 = Capable of 10 Mbps half-duplex  
1.11  
1.10:7  
1.6  
RO  
RO  
RO  
1
Half-Duplex 0 = Not capable of 10 Mbps half-duplex  
Reserved  
Reserved  
000_0  
1
1 = Preamble suppression  
0 = Normal preamble  
No Preamble  
Auto-Negoti-  
ation Com-  
plete  
1 = Auto-negotiation process completed  
0 = Auto-negotiation process not completed  
1.5  
RO  
0
1 = Remote fault  
0 = No remote fault  
1.4  
1.3  
Remote Fault  
RO/LH  
RO  
0
1
Auto-Negoti- 1 = Can perform auto-negotiation  
ation Ability 0 = Cannot perform auto-negotiation  
2016 Microchip Technology Inc.  
DS00002264A-page 27  
KSZ8081MLX  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Note 4-1  
Address Name  
Description  
Default  
1 = Link is up  
0 = Link is down  
1.2  
1.1  
1.0  
Link Status  
RO/LL  
RO/LH  
RO  
0
0
1
Jabber  
Detect  
1 = Jabber detected  
0 = Jabber not detected (default is low)  
Extended  
Capability  
1 = Supports extended capability registers  
Register 2h - PHY Identifier 1  
Assigned to the 3rd through 18th bits of the Organi-  
zationally Unique Identifier (OUI). KENDIN Com-  
munication’s OUI is 0010A1 (hex).  
PHY ID  
Number  
2.15:0  
RO  
0022h  
Register 3h - PHY Identifier 2  
Assigned to the 19th through 24th bits of the Orga-  
nizationally Unique Identifier (OUI). KENDIN Com- RO  
munication’s OUI is 0010A1 (hex).  
PHY ID Num-  
ber  
3.15:10  
0001_01  
01_0110  
Model Num-  
ber  
3.9:4  
3.3:0  
Six-bit manufacturer’s model number  
RO  
RO  
Revision  
Number  
Indicates silicon  
revision.  
Four-bit manufacturer’s revision number  
Register 4h - Auto-Negotiation Advertisement  
1 = Next page capable  
4.15  
Next Page  
0 = No next page capability  
RW  
1
Note: Recommend to set this bit to ‘0’.  
4.14  
4.13  
4.12  
Reserved  
Reserved  
RO  
RW  
RO  
0
0
0
1 = Remote fault supported  
0 = No remote fault  
Remote Fault  
Reserved  
Reserved  
[00] = No pause  
[10] = Asymmetric pause  
[01] = Symmetric pause  
[11] = Asymmetric and symmetric pause  
4.11:10  
4.9  
Pause  
RW  
RO  
00  
1 = T4 capable  
0 = No T4 capability  
100BASE-T4  
0
Set by the SPEED  
strapping pin.  
See the Strap-In  
Options section for  
details.  
100BASE-TX 1 = 100 Mbps full-duplex capable  
Full-Duplex 0 = No 100 Mbps full-duplex capability  
4.8  
4.7  
RW  
RW  
Set by the SPEED  
strapping pin.  
See the Strap-In  
Options section for  
details.  
100BASE-TX 1 = 100 Mbps half-duplex capable  
Half-Duplex 0 = No 100 Mbps half-duplex capability  
10BASE-T  
Full-Duplex  
1 = 10 Mbps full-duplex capable  
0 = No 10 Mbps full-duplex capability  
4.6  
RW  
RW  
RW  
1
10BASE-T  
1 = 10 Mbps half-duplex capable  
4.5  
1
Half-Duplex 0 = No 10 Mbps half-duplex capability  
Selector  
4.4:0  
[00001] = IEEE 802.3  
Field  
0_0001  
DS00002264A-page 28  
2016 Microchip Technology Inc.  
KSZ8081MLX  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Description  
Mode  
Default  
Note 4-1  
Address Name  
Register 5h - Auto-Negotiation Link Partner Ability  
1 = Next page capable  
0 = No next page capability  
5.15  
5.14  
Next Page  
RO  
RO  
0
0
1 = Link code word received from partner  
0 = Link code word not yet received  
Acknowledge  
1 = Remote fault detected  
0 = No remote fault  
5.13  
5.12  
Remote Fault  
Reserved  
RO  
RO  
0
0
Reserved  
[00] = No pause  
[10] = Asymmetric pause  
[01] = Symmetric pause  
5.11:10  
Pause  
RO  
00  
[11] = Asymmetric and symmetric pause  
1 = T4 capable  
0 = No T4 capability  
5.9  
100BASE-T4  
RO  
RO  
RO  
RO  
RO  
RO  
0
100BASE-TX 1 = 100 Mbps full-duplex capable  
Full-Duplex 0 = No 100 Mbps full-duplex capability  
5.8  
5.7  
5.6  
5.5  
5.4:0  
0
100BASE-TX 1 = 100 Mbps half-duplex capable  
Half-Duplex 0 = No 100 Mbps half-duplex capability  
0
10BASE-T  
Full-Duplex  
1 = 10 Mbps full-duplex capable  
0 = No 10 Mbps full-duplex capability  
0
10BASE-T  
1 = 10 Mbps half-duplex capable  
Half-Duplex 0 = No 10 Mbps half-duplex capability  
0
Selector  
[00001] = IEEE 802.3  
Field  
0_0001  
Register 6h - Auto-Negotiation Expansion  
6.15:5  
Reserved  
Reserved  
RO  
0000_0000_000  
0
Parallel  
Detection  
Fault  
1 = Fault detected by parallel detection  
0 = No fault detected by parallel detection  
6.4  
RO/LH  
Link Partner  
Next Page  
Able  
1 = Link partner has next page capability  
0 = Link partner does not have next page capability  
6.3  
RO  
0
1 = Local device has next page capability  
0 = Local device does not have next page capabil- RO  
ity  
Next Page  
Able  
6.2  
6.1  
6.0  
1
0
0
Page  
Received  
1 = New page received  
0 = New page not received yet  
RO/LH  
Link Partner 1 = Link partner has auto-negotiation capability  
Auto-Negoti- 0 = Link partner does not have auto-negotiation  
RO  
ation Able  
capability  
Register 7h - Auto-Negotiation Next Page  
1 = Additional next pages will follow  
0 = Last page  
7.15  
7.14  
7.13  
Next Page  
Reserved  
RW  
RO  
RW  
0
0
1
Reserved  
Message  
Page  
1 = Message page  
0 = Unformatted page  
Acknowl-  
edge2  
1 = Will comply with message  
0 = Cannot comply with message  
7.12  
RW  
0
2016 Microchip Technology Inc.  
DS00002264A-page 29  
KSZ8081MLX  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Note 4-1  
Address Name  
Description  
Default  
1 = Previous value of the transmitted link code  
word equaled logic 1  
7.11  
Toggle  
RO  
0
0 = Logic 0  
Message  
Field  
7.10:0  
11-bit wide field to encode 2048 messages  
RW  
000_0000_0001  
Register 8h - Link Partner Next Page Ability  
1 = Additional next pages will follow  
0 = Last page  
8.15  
8.14  
8.13  
8.12  
Next Page  
RO  
RO  
RO  
RO  
0
0
0
0
1 = Successful receipt of link word  
0 = No successful receipt of link word  
Acknowledge  
Message  
Page  
1 = Message page  
0 = Unformatted page  
Acknowl-  
edge2  
1 = Can act on the information  
0 = Cannot act on the information  
1 = Previous value of transmitted link code word  
equal to logic 0  
0 = Previous value of transmitted link code word  
equal to logic 1  
8.11  
Toggle  
RO  
RO  
0
Message  
Field  
8.10:0  
11-bit wide field to encode 2048 messages  
000_0000_0000  
Register 10h – Digital Reserved Control  
10.15:5  
Reserved  
Reserved  
RW  
RW  
RW  
0000_0000_000  
1 = Turn PLL off automatically in EDPD mode  
0 = Keep PLL on in EDPD mode.  
See also Register 18h, Bit [11] for EDPD mode  
10.4  
PLL Off  
0
10.3:0  
Reserved  
Reserved  
0000  
Register 11h – AFE Control 1  
11.15:6  
Reserved  
Reserved  
RW  
0000_0000_00  
Slow-oscillator mode is used to disconnect the  
input reference crystal/clock on the XI pin and  
select the on-chip slow oscillator when the  
KSZ8081MLX device is not in use after power-up.  
1 = Enable  
Slow-Oscilla-  
tor Mode  
Enable  
11.5  
RW  
0
0 = Disable  
This bit automatically sets software power-down to  
the analog side when enabled.  
11.4:0  
Reserved  
Reserved  
RW  
0_0000  
0000h  
Register 15h – RXER Counter  
RXER  
Counter  
15.15:0  
Receive error counter for symbol error frames  
RO/SC  
Register 16h – Operation Mode Strap Override  
0 = Normal operation  
1 = Factory test mode  
0
Reserved  
Factory  
Mode  
Set by the pull-up /  
pull-down value of  
TXC (Pin 33).  
16.15  
If TXC (Pin 33) latches in a pull-up value at the de- RW  
assertion of reset, write a ‘0’ to this bit to clear  
Reserved Factory Mode.  
16.14:11  
16.10  
Reserved  
Reserved  
Reserved  
Reserved  
RW  
RO  
000_0  
0
DS00002264A-page 30  
2016 Microchip Technology Inc.  
KSZ8081MLX  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Default  
Note 4-1  
Address Name  
Description  
B-  
1 = Override strap-in for B-CAST_OFF  
If bit is ‘1’, PHY Address 0 is non-broadcast.  
16.9  
CAST_OFF  
Override  
RW  
0
16.8  
16.7  
16.6  
16.5  
Reserved  
Reserved  
RW  
RW  
RW  
RW  
0_0  
0
MII B-to-B  
Override  
1 = Override strap-in for MII back-to-back mode  
(also set Bit 1 of this register to ‘1’)  
Reserved  
Reserved  
0
NAND Tree  
Override  
1 = Override strap-in for NAND tree mode  
0
16.4:1  
16.0  
Reserved  
Reserved  
RW  
RW  
0_000  
1
MII Override 1 = Override strap-in for MII mode  
Register 17h - Operation Mode Strap Status  
[000] = Strap to PHY Address 0  
[001] = Strap to PHY Address 1  
[010] = Strap to PHY Address 2  
[011] = Strap to PHY Address 3  
[100] = Strap to PHY Address 4  
[101] = Strap to PHY Address 5  
[110] = Strap to PHY Address 6  
[111] = Strap to PHY Address 7  
PHYAD[2:0]  
Strap-In Sta-  
tus  
17.15:13  
RO  
17.12:10  
17.9  
Reserved  
B-  
Reserved  
RO  
RO  
CAST_OFF 1 = Strap to B-CAST_OFF  
Strap-In  
Status  
If bit is ‘1’, PHY Address 0 is non-broadcast.  
17.8  
17.7  
17.6  
17.5  
Reserved  
Reserved  
RO  
RO  
RO  
RO  
MII B-to-B  
Strap-In  
Status  
1 = Strap to MII back-to-back mode  
Reserved  
Reserved  
NAND Tree  
Strap-In  
Status  
1 = Strap to NAND tree mode  
17.4:1  
17.0  
Reserved  
Reserved  
RO  
RO  
MII Strap-In  
Status  
1 = Strap to MII mode  
Register 18h - Expanded Control  
18.15:12  
Reserved  
Reserved  
RW  
RW  
0000  
1
Energy-detect power-down mode  
1 = Disable  
0 = Enable  
EDPD  
Disabled  
18.11  
See also Register 10h, Bit [4] for PLL off.  
1 = MII output is random latency  
100BASE-TX 0 = MII output is fixed latency  
18.10  
RW  
RW  
0
Latency  
For both settings, all bytes of received preamble  
are passed to the MII output.  
18.9:7  
Reserved  
Reserved  
00_0  
2016 Microchip Technology Inc.  
DS00002264A-page 31  
KSZ8081MLX  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Note 4-1  
Address Name  
Description  
Default  
10BASE-T  
Preamble  
Restore  
1 = Restore received preamble to MII output  
0 = Remove all seven bytes of preamble before  
sending frame (starting with SFD) to MII output  
18.6  
RW  
0
18.5:0  
Reserved  
Reserved  
RW  
00_0000  
Register 1Bh – Interrupt Control/Status  
Jabber Inter- 1 = Enable jabber interrupt  
1B.15  
RW  
RW  
0
0
rupt Enable  
0 = Disable jabber interrupt  
Receive  
Error Inter-  
rupt Enable  
1 = Enable receive error interrupt  
0 = Disable receive error interrupt  
1B.14  
Page  
Received  
Interrupt  
Enable  
1 = Enable page received interrupt  
0 = Disable page received interrupt  
1B.13  
1B.12  
1B.11  
RW  
RW  
RW  
0
0
0
Parallel  
Detect Fault 1 = Enable parallel detect fault interrupt  
Interrupt  
Enable  
0 = Disable parallel detect fault interrupt  
Link Partner  
Acknowl-  
edge Inter-  
rupt Enable  
1 = Enable link partner acknowledge interrupt  
0 = Disable link partner acknowledge interrupt  
Link-Down  
Interrupt  
Enable  
1= Enable link-down interrupt  
0 = Disable link-down interrupt  
1B.10  
1B.9  
RW  
RW  
0
0
RemoteFault  
Interrupt  
Enable  
1 = Enable remote fault interrupt  
0 = Disable remote fault interrupt  
Link-Up  
Interrupt  
Enable  
1 = Enable link-up interrupt  
0 = Disable link-up interrupt  
1B.8  
1B.7  
1B.6  
RW  
0
0
0
Jabber Inter- 1 = Jabber occurred  
rupt  
RO/SC  
RO/SC  
0 = Jabber did not occur  
Receive  
Error Inter-  
rupt  
1 = Receive error occurred  
0 = Receive error did not occur  
Page  
Receive  
Interrupt  
1 = Page receive occurred  
0 = Page receive did not occur  
1B.5  
1B.4  
RO/SC  
RO/SC  
0
0
Parallel  
Detect Fault  
Interrupt  
1 = Parallel detect fault occurred  
0 = Parallel detect fault did not occur  
Link Partner  
Acknowl-  
edge Inter-  
rupt  
1 = Link partner acknowledge occurred  
0 = Link partner acknowledge did not occur  
1B.3  
RO/SC  
0
Link-Down  
Interrupt  
1 = Link-down occurred  
0 = Link-down did not occur  
1B.2  
1B.1  
RO/SC  
RO/SC  
0
0
RemoteFault 1 = Remote fault occurred  
Interrupt 0 = Remote fault did not occur  
DS00002264A-page 32  
2016 Microchip Technology Inc.  
KSZ8081MLX  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Default  
Note 4-1  
Address Name  
Description  
Link-Up  
Interrupt  
1 = Link-up occurred  
0 = Link-up did not occur  
1B.0  
RO/SC  
0
Register 1Dh – LinkMD Control/Status  
1 = Enable cable diagnostic test. After test has  
Cable Diag- completed, this bit is self-cleared.  
1D.15  
nostic Test  
Enable  
0 = Indicates cable diagnostic test (if enabled) has RW/SC  
completed and the status information is valid for  
read.  
0
[00] = Normal condition  
[01] = Open condition has been detected in cable  
[10] = Short condition has been detected in cable  
[11] = Cable diagnostic test has failed  
Cable Diag-  
nostic Test  
Result  
1D.14:13  
RO  
00  
Short Cable 1 = Short cable (<10 meter) has been detected by  
1D.12  
RO  
RW  
RO  
0
Indicator  
LinkMD  
1D.11:9  
1D.8:0  
Reserved  
Reserved  
000  
Cable Fault  
Counter  
Distance to fault  
0_0000_0000  
Register 1Eh – PHY Control 1  
1E.15:10  
Reserved  
Reserved  
RO  
RO  
0000_00  
0
Enable  
Pause (Flow  
Control)  
1 = Flow control capable  
0 = No flow control capability  
1E.9  
1 = Link is up  
0 = Link is down  
1E.8  
Link Status  
RO  
0
Polarity Sta- 1 = Polarity is reversed  
1E.7  
1E.6  
1E.5  
RO  
RO  
RO  
0
tus  
0 = Polarity is not reversed  
Reserved  
Reserved  
MDI/MDI-X  
State  
1 = MDI-X  
0 = MDI  
Energy  
Detect  
1 = Signal present on receive differential pair  
0 = No signal detected on receive differential pair  
1E.4  
1E.3  
RO  
RW  
0
0
1 = PHY in isolate mode  
0 = PHY in normal operation  
PHY Isolate  
[000] = Still in auto-negotiation  
[001] = 10BASE-T half-duplex  
[010] = 100BASE-TX half-duplex  
[011] = Reserved  
Operation  
Mode Indica-  
tion  
1E.2:0  
RO  
RW  
000  
[100] = Reserved  
[101] = 10BASE-T full-duplex  
[110] = 100BASE-TX full-duplex  
[111] = Reserved  
Register 1Fh – PHY Control 2  
1 = HP Auto MDI/MDI-X mode  
0 = Microchip Auto MDI/MDI-X mode  
1F.15  
HP_MDIX  
1
2016 Microchip Technology Inc.  
DS00002264A-page 33  
KSZ8081MLX  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Note 4-1  
Address Name  
Description  
Default  
When Auto MDI/MDI-X is disabled,  
1 = MDI-X mode  
Transmit on RXP, RXM (Pins 10, 9) and Receive  
on TXP, TXM (Pins 12, 11)  
0 = MDI mode  
MDI/MDI-X  
Select  
1F.14  
RW  
0
Transmit on TXP, TXM (Pins 12, 11) and Receive  
on RXP, RXM (Pins 10, 9)  
Pair Swap  
Disable  
1 = Disable Auto MDI/MDI-X  
0 = Enable Auto MDI/MDI-X  
1F.13  
1F.12  
RW  
RW  
0
0
Reserved  
Reserved  
1 = Force link pass  
0 = Normal link operation  
This bit bypasses the control logic and allows the  
transmitter to send a pattern even if there is no link.  
1F.11  
Force Link  
RW  
0
Power Sav- 1 = Enable power saving  
1F.10  
1F.9  
RW  
RW  
0
0
ing  
0 = Disable power saving  
Interrupt  
Level  
1 = Interrupt pin active high  
0 = Interrupt pin active low  
Enable Jab- 1 = Enable jabber counter  
1F.8  
RW  
RW  
1
0
ber  
0 = Disable jabber counter  
1F.7:6  
Reserved  
Reserved  
[00] = LED1: Speed  
LED0: Link/Activity  
[01] = LED1: Activity  
LED0: Link  
1F.5:4  
LED Mode  
RW  
00  
[10], [11] = Reserved  
Disable  
Transmitter  
1 = Disable transmitter  
0 = Enable transmitter  
1F.3  
1F.2  
1F.1  
RW  
RW  
RW  
RW  
0
0
0
0
Remote  
Loopback  
1 = Remote (analog) loopback is enabled  
0 = Normal mode  
Enable SQE 1 = Enable SQE test  
Test 0 = Disable SQE test  
Disable Data 1 = Disable scrambler  
Scrambling 0 = Enable scrambler  
1F.0  
Note 4-1  
RW = Read/Write; RO = Read Only; SC = Self-Cleared; LH = Latch High; LL = Latch Low.  
DS00002264A-page 34  
2016 Microchip Technology Inc.  
KSZ8081MLX  
5.0  
5.1  
OPERATIONAL CHARACTERISTICS  
Absolute Maximum Ratings*  
Supply Voltage (VIN)  
(VDD_1.2).................................................................................................................................................... –0.5V to +1.8V  
(VDDIO, VDDA_3.3)...................................................................................................................................... –0.5V to +5.0V  
Input Voltage (all inputs)............................................................................................................................ –0.5V to +5.0V  
Output Voltage (all outputs)....................................................................................................................... –0.5V to +5.0V  
Lead Temperature (soldering, 10s)....................................................................................................................... +260°C  
Storage Temperature (TS)...................................................................................................................... –55°C to +150°C  
*Exceeding the absolute maximum rating may damage the device. Stresses greater than the absolute maximum rating  
may cause permanent damage to the device. Operation of the device at these or any other conditions above those spec-  
ified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect  
reliability.  
5.2  
Operating Ratings**  
Supply Voltage  
(VDDIO_3.3, VDDA_3.3) ........................................................................................................................ +3.135V to +3.465V  
(VDDIO_2.5) ........................................................................................................................................ +2.375V to +2.625V  
(VDDIO_1.8) ........................................................................................................................................ +1.710V to +1.890V  
Ambient Temperature  
(TA Commercial)...........................................................................................................................................0°C to +70°C  
(TA Industrial) ...........................................................................................................................................40°C to +85°C  
Maximum Junction Temperature (TJ max.)........................................................................................................... +125°C  
Thermal Resistance (ΘJA)...................................................................................................................................+76°C/W  
Thermal Resistance (ΘJC) ..................................................................................................................................+15°C/W  
**The device is not guaranteed to function outside its operating ratings.  
Note:  
Do not drive input signals without power supplied to the device.  
2016 Microchip Technology Inc.  
DS00002264A-page 35  
KSZ8081MLX  
6.0  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. Specification is for packaged product only.  
TABLE 6-1:  
Parameters  
Supply Current (VDDIO, VDDA_3.3 = 3.3V), Note 6-1  
ELECTRICAL CHARACTERISTICS  
Symbol  
Min.  
Typ.  
Max.  
Units  
Note  
10BASE-T  
IDD1_3.3V  
IDD2_3.3V  
41  
47  
mA  
mA  
Full-duplex traffic @ 100% utilization  
Full-duplex traffic @ 100% utilization  
100BASE-TX  
Ethernet cable disconnected  
(Reg. 18h.11 = 0)  
EDPD Mode  
IDD3_3.3V  
IDD4_3.3V  
20  
4
mA  
mA  
Software power-down  
(Reg. 0h.11 = 1)  
Power-Down Mode  
CMOS Level Inputs  
2.4  
2.0  
1.5  
V
V
VDDIO = 3.3V  
Output High Voltage  
Output Low Voltage  
VOH  
V
V
DDIO = 2.5V  
DDIO = 1.8V  
V
0.4  
0.4  
0.3  
10  
V
VDDIO = 3.3V  
VOL  
|IOZ  
ILED  
V
V
DDIO = 2.5V  
DDIO = 1.8V  
V
V
Output Tri-State Leakage  
LED Output  
|
µA  
Output Drive Current  
8
mA  
Each LED pin (LED0, LED1)  
VDDIO = 3.3V  
All Pull-Up/Pull-Down Pins (including Strapping Pins)  
30  
39  
48  
26  
34  
53  
45  
61  
99  
43  
59  
99  
73  
102  
178  
79  
kꢀ  
kꢀ  
kꢀ  
kꢀ  
kꢀ  
kꢀ  
Internal Pull-Up Resistance  
pu  
pd  
VDDIO = 2.5V  
VDDIO = 1.8V  
VDDIO = 3.3V  
Internal Pull-Down  
Resistance  
113  
200  
VDDIO = 2.5V  
VDDIO = 1.8V  
100BASE-TX Transmit (measured differentially after 1:1 transformer)  
Peak Differential Output  
100termination across differential  
VO  
0.95  
1.05  
2
V
Voltage  
output  
100termination across differential  
Output Voltage Imbalance  
VIMB  
%
output  
Rise/Fall Time  
Rise/Fall Time Imbalance  
Duty Cycle Distortion  
Overshoot  
tr/tf  
3
5
0.5  
±0.25  
5
ns  
ns  
ns  
%
0
Output Jitter  
0.7  
ns  
Peak-to-peak  
10BASE-T Transmit (measured differentially after 1:1 transformer)  
Peak Differential Output  
100termination across differential  
VP  
2.2  
2.8  
V
Voltage  
output  
Jitter Added  
3.5  
ns  
ns  
Peak-to-peak  
Rise/Fall Time  
tr/tf  
25  
10BASE-T Receive  
Squelch Threshold  
Transmitter - Drive Setting  
Reference Voltage of ISET  
VSQ  
400  
mV  
V
5 MHz square wave  
VSET  
0.65  
R(ISET) = 6.49 kꢀ  
DS00002264A-page 36  
2016 Microchip Technology Inc.  
KSZ8081MLX  
TABLE 6-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Note  
100 Mbps Mode - Industrial Applications Parameters  
XI (25 MHz clock input) to MII TXC  
(25 MHz clock output) delay, refer-  
enced to rising edges of both clocks.  
Clock Phase Delay – XI  
Input to MII TXC Output  
15  
20  
25  
ns  
Link loss detected at receive  
differential inputs to PHY signal  
indication time for each of the  
following:  
Link Loss Reaction  
(Indication) Time  
tllr  
4.4  
µs  
1. For LED mode 01, Link LED output  
changes from low (link-up) to high  
(link-down).  
2. INTRP pin asserts for link-down  
status change.  
Note 6-1  
Current consumption is for the single 3.3V supply KSZ8081MLX device only, and includes the  
transmit driver current and the 1.2V supply voltage (VDD_1.2) that are supplied by the KSZ8081MLX.  
2016 Microchip Technology Inc.  
DS00002264A-page 37  
KSZ8081MLX  
7.0  
7.1  
TIMING DIAGRAMS  
MII SQE Timing (10BASE-T)  
FIGURE 7-1:  
MII SQE TIMING (10BASE-T)  
tWL  
TXC  
tWH  
tP  
TXEN  
COL  
tSQE  
tSQEP  
TABLE 7-1:  
Parameter  
MII SQE TIMING (10BASE-T) PARAMETERS  
Description  
Min.  
Typ.  
Max.  
Units  
tP  
TXC period  
400  
200  
200  
2.2  
ns  
ns  
ns  
µs  
µs  
tWL  
TXC pulse width low  
tWH  
tSQE  
tSQEP  
TXC pulse width high  
COL (SQE) delay after TXEN de-asserted  
COL (SQE) pulse duration  
1.0  
DS00002264A-page 38  
2016 Microchip Technology Inc.  
KSZ8081MLX  
7.2  
MII Transmit Timing (10BASE-T)  
FIGURE 7-2:  
MII TRANSMIT TIMING (10BASE-T)  
tP  
tWL  
TXC  
tWH  
tSU2  
TXEN  
tHD2  
TXD[3:0]  
tSU1  
tHD1  
tCRS1  
CRS  
tCRS2  
TABLE 7-2:  
Parameter  
MII TRANSMIT TIMING (10BASE-T) PARAMETERS  
Description  
Min.  
Typ.  
Max.  
Units  
tP  
TXC period  
120  
120  
0
400  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
tWL  
TXC pulse width low  
tWH  
TXC pulse width high  
tSU1  
tSU2  
tHD1  
tHD2  
tCRS1  
tCRS2  
TXD[3:0] setup to rising edge of TXC  
TXEN setup to rising edge of TXC  
TXD[3:0] hold from rising edge of TXC  
TXEN hold from rising edge of TXC  
TXEN high to CRS asserted latency  
TXEN low to CRS de-asserted latency  
0
600  
1.0  
2016 Microchip Technology Inc.  
DS00002264A-page 39  
KSZ8081MLX  
7.3  
MII Receive Timing (10BASE-T)  
FIGURE 7-3:  
MII RECEIVE TIMING (10BASE-T)  
CRS  
tRLAT  
tOD  
RXDV  
RXD[3:0]  
RXER  
tP  
tWL  
RXC  
tWH  
TABLE 7-3:  
Parameter  
MII RECEIVE TIMING (10BASE-T) PARAMETERS  
Description  
Min.  
Typ.  
Max.  
Units  
tP  
RXC period  
400  
200  
200  
205  
ns  
ns  
ns  
tWL  
tWH  
tOD  
RXC pulse width low  
RXC pulse width high  
(RXDV, RXD[3:0], RXER) output delay from rising  
edge of RXC  
ns  
µs  
tRLAT  
CRS to (RXDV, RXD[3:0]) latency  
7.2  
DS00002264A-page 40  
2016 Microchip Technology Inc.  
KSZ8081MLX  
7.4  
MII Transmit Timing (100BASE-TX)  
FIGURE 7-4:  
MII TRANSMIT TIMING (100BASE-TX)  
tWL  
TXC  
tWH  
tHD2  
tSU2  
tP  
TXEN  
TXD[3:0]  
CRS  
tHD1  
tSU1  
DATA  
IN  
tCRS2  
tCRS1  
TABLE 7-4:  
Parameter  
MII TRANSMIT TIMING (100BASE-TX) PARAMETERS  
Description  
Min.  
Typ.  
Max.  
Units  
tP  
TXC period  
10  
10  
0
40  
20  
20  
72  
72  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWL  
TXC pulse width low  
tWH  
TXC pulse width high  
tSU1  
tSU2  
tHD1  
tHD2  
tCRS1  
tCRS2  
TXD[3:0] setup to rising edge of TXC  
TXEN setup to rising edge of TXC  
TXD[3:0] hold from rising edge of TXC  
TXEN hold from rising edge of TXC  
TXEN high to CRS asserted latency  
TXEN low to CRS de-asserted latency  
0
2016 Microchip Technology Inc.  
DS00002264A-page 41  
KSZ8081MLX  
7.5  
MII Receive Timing (100BASE-TX)  
FIGURE 7-5:  
MII RECEIVE TIMING (100BASE-TX)  
CRS  
tRLAT  
RXDV  
tOD  
RXD[3:0]  
RXER  
tWL  
RXC  
tWH  
tP  
TABLE 7-5:  
Parameter  
MII RECEIVE TIMING (10BASE-T) PARAMETERS  
Description  
Min.  
Typ.  
Max.  
Units  
tP  
RXC period  
16  
40  
20  
20  
21  
25  
ns  
ns  
ns  
tWL  
tWH  
tOD  
RXC pulse width low  
RXC pulse width high  
(RXDV, RXD[3:0], RXER) output delay from rising  
edge of RXC  
ns  
ns  
tRLAT  
CRS to (RXDV, RXD[3:0]) latency  
170  
DS00002264A-page 42  
2016 Microchip Technology Inc.  
KSZ8081MLX  
7.6  
Auto-Negotiation Timing  
FIGURE 7-6:  
AUTO-NEGOTIATION FAST LINK PULSE (FLP) TIMING  
AUTO -NEGOTIATION  
FAST LINK PULSE (FLP) TIMING  
FLP  
BURST  
FLP  
BURST  
TX+/TX-  
tFLPW  
tBTB  
CLOCK  
PULSE  
DATA  
PULSE  
CLOCK  
PULSE  
DATA  
PULSE  
TX+/TX-  
tPW  
tPW  
tCTD  
tCTC  
TABLE 7-6:  
Parameter  
AUTO-NEGOTIATION FAST LINK PULSE TIMING PARAMETERS  
Description  
Min.  
Typ.  
Max.  
Units  
tBTB  
tFLPW  
tPW  
FLP burst to FLP burst  
8
16  
2
24  
ms  
ms  
ns  
µs  
µs  
FLP burst width  
Clock/Data pulse width  
100  
64  
tCTD  
tCTC  
Clock pulse to data pulse  
Clock pulse to clock pulse  
Number of clock/data pulses per FLP burst  
55.5  
111  
17  
69.5  
139  
33  
128  
2016 Microchip Technology Inc.  
DS00002264A-page 43  
KSZ8081MLX  
7.7  
MDC/MDIO Timing  
FIGURE 7-7:  
MDC/MDIO TIMING  
tP  
MDC  
tMD1  
tMD2  
MDIO  
(PHY INPUT)  
VALID  
DATA  
VALID  
DATA  
tMD3  
MDIO  
(PHY OUTPUT)  
VALID  
DATA  
TABLE 7-7:  
Parameter  
MDC/MDIO TIMING PARAMETERS  
Description  
Min.  
Typ.  
Max.  
Units  
fc  
MDC Clock Frequency  
MDC period  
10  
4
2.5  
400  
10  
MHz  
ns  
tP  
tMD1  
tMD2  
tMD3  
MDIO (PHY input) setup to rising edge of MDC  
ns  
MDIO (PHY input) hold from rising edge of MDC  
MDIO (PHY output) delay from rising edge of MDC  
ns  
5
222  
ns  
DS00002264A-page 44  
2016 Microchip Technology Inc.  
KSZ8081MLX  
7.8  
Power-Up/Reset Timing  
The KSZ8081MLX reset timing requirement is summarized in Figure 7-8 and Table 7-8.  
FIGURE 7-8:  
POWER-UP/RESET TIMING  
SUPPLY  
VOLTAGES  
tSR  
tVR  
RST#  
tCS  
tCH  
STRAP-IN  
VALUE  
tRC  
STRAP-IN /  
OUTPUT PIN  
TABLE 7-8:  
POWER-UP/RESET TIMING PARAMETERS  
Description  
Parameter  
Min.  
Typ.  
Max.  
Units  
tVR  
tSR  
Supply voltage (VDDIO, VDDA_3.3) rise time  
300  
10  
µs  
Stable supply voltage (VDDIO, VDDA_3.3) to reset  
high  
ms  
tCS  
tCH  
tRC  
Configuration setup time  
Configuration hold time  
Reset to strap-in pin output  
5
5
6
ns  
ns  
ns  
The supply voltage (VDDIO and VDDA_3.3) power-up waveform should be monotonic. The 300 µs minimum rise time is  
from 10% to 90%.  
For warm reset, the reset (RST#) pin should be asserted low for a minimum of 500 µs. The strap-in pin values are read  
and updated at the de-assertion of reset.  
After the de-assertion of reset, wait a minimum of 100 µs before starting programming on the MIIM (MDC/MDIO) inter-  
face.  
2016 Microchip Technology Inc.  
DS00002264A-page 45  
KSZ8081MLX  
8.0  
RESET CIRCUIT  
Figure 8-1 shows a reset circuit recommended for powering up the KSZ8081MLX if reset is triggered by the power sup-  
ply.  
FIGURE 8-1:  
RECOMMENDED RESET CIRCUIT  
VDDIO  
D1: 1N4148  
D1  
R 10K  
KSZ8081MLX  
RST#  
C 10μF  
Figure 8-2 shows a reset circuit recommended for applications where reset is driven by another device (for example,  
the CPU or an FPGA). The reset out RST_OUT_n from CPU/FPGA provides the warm reset after power up reset. D2  
is used if using different VDDIO between the switch and CPU/FPGA, otherwise, the different VDDIO will fight each other.  
If different VDDIO have to use in a special case, a low VF (<0.3V) diode is required (for example, Vishay’s BAT54,  
MSS1P2L and so on), or a level shifter device can be used too. If Ethernet device and CPU/FPGA use same VDDIO  
voltage, D2 can be removed to connect both devices directly. Usually, Ethernet device and CPU/FPGA should use same  
VDDIO voltage.  
FIGURE 8-2:  
RECOMMENDED RESET CIRCUIT FOR CPU/FPGA RESET OUTPUT  
VDDIO  
R 10K  
D1  
KSZ8081MLX  
RST#  
CPU/FPGA  
RST_OUT_n  
D2  
C 10μF  
D1, D2: 1N4148  
DS00002264A-page 46  
2016 Microchip Technology Inc.  
KSZ8081MLX  
9.0  
REFERENCE CIRCUITS — LED STRAP-IN PINS  
The pull-up, float, and pull-down reference circuits for the LED0/NWAYEN strapping pin are shown in Figure 9-1 for 3.3V  
and 2.5V VDDIO  
.
FIGURE 9-1:  
REFERENCE CIRCUITS FOR LED STRAPPING PINS  
VDDIO = 3.3V, 2.5V  
PULL-UP  
4.7kŸ  
220Ÿ  
KSZ8081MLX  
LED PIN  
VDDIO = 3.3V, 2.5V  
FLOAT  
220Ÿ  
KSZ8081MLX  
LED PIN  
VDDIO = 3.3V, 2.5V  
PULL-DOWN  
220Ÿ  
KSZ8081MLX  
LED PIN  
1kŸ  
For 1.8V VDDIO, LED indication support is not recommended due to the low voltage. Without the LED indicator, the  
SPEED and NWAYEN strap-in pins are functional with a 4.7 kpull-up to 1.8V VDDIO or float for a value of ‘1’, and with  
a 1.0 kpull-down to ground for a value of ‘0’.  
If using RJ45 jacks with integrated LEDs and 1.8V VDDIO, a level shifting is required from LED 3.3V to 1.8V. For example,  
use a bipolar transistor or a level shift device.  
2016 Microchip Technology Inc.  
DS00002264A-page 47  
KSZ8081MLX  
10.0 REFERENCE CLOCK - CONNECTION AND SELECTION  
A crystal or external clock source, such as an oscillator, is used to provide the reference clock for the KSZ8081MLX.  
For the KSZ8081MLX in all operating modes, the reference clock is 25 MHz. The reference clock connections to XI (Pin  
15) and XO (Pin 14), and the reference clock selection criteria, are provided in Figure 10-1 and Table 10-1.  
FIGURE 10-1:  
25 MHZ CRYSTAL/OSCILLATOR REFERENCE CLOCK CONNECTION  
22pF  
22pF  
XI  
XI  
25MHz OSC  
50ppꢀ  
NC  
XO  
XO  
25MHz XTAL  
50ppꢀ  
TABLE 10-1: 25 MHZ CRYSTAL/REFERENCE CLOCK SELECTION CRITERIA  
Characteristics  
Value  
Frequency  
25 MHz  
±50 ppm  
40ꢀ  
Frequency Tolerance (max.); Note 10-1  
Crystal Series Resistance (typ.)  
Crystal Load Capacitance (typ.)  
16 pF  
Note 10-1  
±60 ppm for overtemperature crystal.  
DS00002264A-page 48  
2016 Microchip Technology Inc.  
KSZ8081MLX  
11.0 MAGNETIC - CONNECTION AND SELECTION  
A 1:1 isolation transformer is required at the line interface. Use one with integrated common-mode chokes for designs  
exceeding FCC requirements.  
The KSZ8081MLX design incorporates voltage-mode transmit drivers and on-chip terminations.  
With the voltage-mode implementation, the transmit drivers supply the common-mode voltages to the two differential  
pairs. Therefore, the two transformer center tap pins on the KSZ8081MLX side should not be connected to any power  
supply source on the board; instead, the center tap pins should be separated from one another and connected through  
separate 0.1 µF common-mode capacitors to ground. Separation is required because the common-mode voltage is dif-  
ferent between transmitting and receiving differential pairs.  
Figure 11-1 shows the typical magnetic interface circuit for the KSZ8081MLX.  
FIGURE 11-1:  
TYPICAL MAGNETIC INTERFACE CIRCUIT  
1
TXP  
2
3
TXM  
RXP  
RXM  
4
5
6
7
8
4 x 75Ÿ  
1000pF/2kV  
(2 x 0.1μF)  
SIGNAL GROUND  
CHASSIS GROUND  
Table 11-1 lists recommended magnetic characteristics.  
TABLE 11-1: MAGNETICS SELECTION CRITERIA  
Parameter  
Value  
Test Conditions  
Turns Ratio  
Open-Circuit Inductance (min.)  
Insertion Loss (max.)  
HIPOT (min.)  
1 CT : 1 CT  
350 µH  
100 mV, 100 kHz, 8 mA  
100 kHz to 100 MHz  
–1.1 dB  
1500 VRMS  
Table 11-2 is a list of compatible single-port magnetics with separated transformer center tap pins on the PHY chip side  
that can be used with the KSZ8081MLX.  
2016 Microchip Technology Inc.  
DS00002264A-page 49  
KSZ8081MLX  
TABLE 11-2: COMPATIBLE SINGLE-PORT 10/100 MAGNETICS  
Manufacturer  
Part Number  
Temperature Range  
Magnetic + RJ-45  
Bel Fuse  
Bel Fuse  
Bel Fuse  
Delta  
S558-5999-U7  
SI-46001-F  
SI-50170-F  
LF8505  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
No  
Yes  
Yes  
No  
HALO  
HFJ11-2450E  
TG110-E055N5  
LF-H41S-1  
H1102  
Yes  
No  
HALO  
LANKom  
Pulse  
No  
No  
Pulse  
H1260  
No  
Pulse  
HX1188  
No  
Pulse  
J00-0014  
Yes  
Yes  
Yes  
No  
Pulse  
JX0011D21NL  
TLA-6T718A  
HB726  
TDK  
Transpower  
Wurth/Midcom  
000-7090-37R-LF1  
No  
DS00002264A-page 50  
2016 Microchip Technology Inc.  
KSZ8081MLX  
12.0 PACKAGE OUTLINE  
FIGURE 12-1:  
48-LEAD LQFP 7 MM X 7 MM PACKAGE  
Note: For the ꢀost current package drawings, please see the Microchip Packaging Specification located at  
http://www.ꢀicrochip.coꢀ/packaging.  
2016 Microchip Technology Inc.  
DS00002264A-page 51  
KSZ8081MLX  
APPENDIX A: DATA SHEET REVISION HISTORY  
TABLE A-1:  
REVISION HISTORY  
Section/Figure/Entry  
Revision  
Correction  
Converted Micrel data sheet KSZ8081MLX to  
Microchip DS00002264A. Minor text changes  
throughout.  
DS00002264A (08-30-16)  
DS00002264A-page 52  
2016 Microchip Technology Inc.  
KSZ8081MLX  
THE MICROCHIP WEB SITE  
Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make  
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site con-  
tains the following information:  
Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s  
guides and hardware support documents, latest software releases and archived software  
General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion  
groups, Microchip consultant program member listing  
Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of semi-  
nars and events, listings of Microchip sales offices, distributors and factory representatives  
CUSTOMER CHANGE NOTIFICATION SERVICE  
Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive  
e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or  
development tool of interest.  
To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notifi-  
cation” and follow the registration instructions.  
CUSTOMER SUPPORT  
Users of Microchip products can receive assistance through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales  
offices are also available to help customers. A listing of sales offices and locations is included in the back of this docu-  
ment.  
Technical support is available through the web site at: http://microchip.com/support  
2016 Microchip Technology Inc.  
DS00002264A-page 53  
KSZ8081MLX  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
XX  
PART NO.  
Device  
X
X
XX  
Examples:  
X
a)  
b)  
c)  
d)  
KSZ8081MLXCA  
MII Interface  
48-pin LQFP  
No Special Attribute  
Commercial Temperature  
Tray  
KSZ8081MLXIA  
MII Interface  
Media Type  
Interface Package  
Temperature  
Special  
Attribute  
Device:  
KSZ8081  
Interface:  
Package:  
M = MII  
48-pin QFN  
No Special Attribute  
Industrial Temperature  
Tray  
KSZ8081MLXCA-TR  
MII Interface  
L = 48-pin LQFP  
Special Attribute:  
Temperature:  
X = None  
48-pin QFN  
No Special Attribute  
Commercial Temperature  
Tape & Reel  
KSZ8081MLXIA-TR  
MII Interface  
CA = 0C to +70C (Commercial)  
IA = –40C to +85C (Industrial)  
48-pin QFN  
Media Type:  
blank = Tray  
TR = Tape & Reel  
No Special Attribute  
Industrial Temperature  
Tape & Reel  
DS00002264A-page 54  
2016 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be  
superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO  
REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Micro-  
chip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold  
harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or  
otherwise, under any Microchip intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo,  
Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial  
Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless  
DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their respective companies.  
© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.  
ISBN: 978-1-5224-0908-3  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
and India. The Company’s quality system processes and procedures  
CERTIFIEDBYDNVꢀ  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS16949==ꢀ  
2016 Microchip Technology Inc.  
DS00002264A-page 55  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Karlsruhe  
Tel: 49-721-625370  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
Tel: 248-848-4000  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Houston, TX  
Tel: 281-894-5983  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
06/23/16  
DS00002264A-page 56  
2016 Microchip Technology Inc.