欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • L6565A图
  • 集好芯城

     该会员已使用本站13年以上
  • L6565A
  • 数量14214 
  • 厂家ST/意法 
  • 封装SOP-8 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • L6565A图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • L6565A
  • 数量23480 
  • 厂家ST 
  • 封装SOP8 
  • 批号全新环保批次 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • L6565A图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • L6565A
  • 数量5000 
  • 厂家ST 
  • 封装SOP8 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • L6565A图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • L6565A
  • 数量65000 
  • 厂家ST 
  • 封装SOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • L6565A图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • L6565A
  • 数量10000 
  • 厂家ST 
  • 封装SOP8 
  • 批号21+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • L6565A图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • L6565A
  • 数量12000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号L6565D的Datasheet PDF文件预览

L6565  
QUASI-RESONANT SMPS CONTROLLER  
QUASI-RESONANT (QR) ZERO-VOLTAGE-  
SWITCHING (ZVS) TOPOLOGY  
LINE FEED FORWARD TO DELIVER  
CONSTANT POWER vs. MAINS CHANGE  
FREQUENCY FOLDBACK FOR OPTIMUM  
STANDBY EFFICIENCY  
PULSE-BY-PULSE & HICCUP-MODE OCP  
ULTRA-LOW START-UP (< 70µA) AND  
QUIESCENT CURRENT (< 3.5mA)  
DISABLE FUNCTION (ON/OFF CONTROL)  
DIP8(Minidip)  
ORDERING NUMBERS:  
SO-8  
1% PRECISION (@ T = 25°C) INTERNAL  
j
L6565N  
L6565D  
REFERENCE VOLTAGE  
±400mA TOTEM POLE GATE DRIVER WITH  
UVLO PULL-DOWN  
BLUE ANGEL, ENERGY STAR, ENERGY  
DESCRIPTION  
2000 COMPLIANT  
The L6565 is a current-mode primary controller IC,  
specifically designed to build offline Quasi-resonant  
ZVS (Zero Voltage Switching at switch turn-on) fly-  
back converters.  
APPLICATIONS  
TV/MONITOR SMPS  
AC-DC ADAPTERS/CHARGERS  
DIGITAL CONSUMER  
Quasi-resonant operation is achieved by means of a  
transformer demagnetization sensing input that trig-  
gers MOSFET's turn-on.  
PRINTERS, FAX MACHINES,  
PHOTOCOPIERS AND SCANNERS  
BLOCK DIAGRAM  
COMP  
VFF  
3
2
1
INV  
-
LINE VOLTAGE  
FEEDFORWARD  
+
40K  
4
2.5V  
CS  
2 V  
VOLTAGE  
5pF  
-
+
-
+
REGULATOR  
8
VCC  
Hiccup-mode  
OCP  
CC  
V
INTERNAL  
SUPPLY  
R
S
Q
Q
20V  
R1  
7
GD  
+
UVLO  
DRIVER  
-
R2  
REF2  
V
Blanking  
START  
Starter  
STOP  
ZERO CURRENT  
DETECTOR  
+
-
STARTER  
BLANKING  
2.1V  
1.6V  
Hiccup-mode  
OCP  
DISABLE  
6
5
GND  
ZCD  
January 2003  
1/17  
L6565  
DESCRIPTION (continued)  
Converter's power capability variations with the mains voltage are compensated by line voltage feedforward.  
At light load the device features a special function that automatically lowers the operating frequency still main-  
taining the operation as close to ZVS as possible. In addition to very low start-up and quiescent currents, this  
feature helps keep low the consumption from the mains at light load and be Blue Angel and Energy Star com-  
pliant.  
The IC includes also a disable function, an on-chip filter on current sense, an error amplifier with a precise ref-  
erence voltage for primary regulation and an effective two-level overcurrent protection.  
PIN CONNECTION (Top view, Minidip and SO8)  
INV  
COMP  
VFF  
Vcc  
GD  
GND  
ZCD  
CS  
PIN DESCRIPTION  
N°  
Name  
Function  
1
INV  
Inverting input of the error amplifier. The information on the output voltage is fed into the pin  
through either a resistor divider (primary regulation) or an optocoupler (secondary feedback).  
This pin can be grounded in some secondary feedback schemes (see pin 2).  
2
3
4
COMP Output of the error amplifier. Typically, a compensation network is placed between this pin and  
the INV pin to achieve stability and good dynamic performance of the voltage control loop. With  
secondary feedback, the pin can be also driven directly by an optocoupler to control PWM by  
modulating the current sunk from the pin (with the INV pin grounded).  
VFF  
Line voltage feedforward. The information on the converter’s input voltage is fed into the pin  
through a resistor divider and is used to change the setpoint of the pulse-by-pulse current  
limitation (the higher the voltage, the lower the setpoint). If this function is not desired the pin will  
be grounded and the current limitation setpoint will be maximum.  
CS  
Input to the PWM comparator. The primary current is sensed through a resistor, the resulting  
voltage is applied to this pin and compared with an internal reference to determine MOSFET’s  
turn-off. The internal reference is clamped at a value, which defines the pulse-by-pulse current  
limitation setpoint, depending on the voltage at pin VFF. If the signal at the pin CS exceeds 2 V,  
the gate driver will be disabled (Hiccup-mode OCP).  
5
ZCD  
Transformer’s demagnetization sensing input for Quasi-Resonant operation. Alternately,  
synchronization input for an external signal. A negative-going edge triggers MOSFET’s turn-on.  
The trigger circuit is blanked for a minimum of 3.5 µs after MOSFET turn-off, for safe operation  
under short circuit conditions and frequency foldback. If the pin is grounded the IC will be  
disabled.  
6
7
GND  
GD  
Ground. Current return for both the signal part of the IC and the gate driver.  
Gate driver output. The totem pole output stage is able to drive power MOSFET’s and IGBT’s  
with a peak current of 400 mA (source and sink).  
8
Vcc  
Supply Voltage of both the signal part of the IC and the gate driver. An electrolytic capacitor is  
connected between this pin and ground. A resistor connected from this pin to the converter’s  
input bulk capacitor will be typically used to start up the device.  
2/17  
L6565  
THERMAL DATA  
Symbol  
Parameter  
Max. Thermal Resistance, Junction-to-ambient  
SO8  
Minidip  
Unit  
R
150  
100  
°C/W  
th j-amb  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Pin  
Parameter  
Value  
Unit  
I
8
I
+ I  
Z
30  
mA  
Vcc  
CC  
I
7
Output Totem Pole Peak Current (2 µs)  
±700  
mA  
V
GD  
INV, COMP,  
VFF, CS  
1, 2, 3 4 Analog Inputs & Outputs  
-0.3 to 7  
I
5
Zero Current Detector  
50 (source)  
-10 (sink)  
mA  
W
ZCD  
P
Power Dissipation @T  
= 50°C  
(Minidip)  
(SO8)  
1
0.65  
amb  
tot  
T
Junction Temperature Operating range  
Storage Temperature  
-40 to 150  
-55 to 150  
°C  
°C  
j
T
stg  
ELECTRICAL CHARACTERISTCS  
(T = -25 to 125°C, V = 12V, C = 1nF; unless otherwise specified)  
j
CC  
o
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
SUPPLY VOLTAGE  
V
Operating range  
Turn-on threshold  
Turn-off threshold  
Hysteresis  
After turn-on  
10.3  
12.5  
8.7  
18  
14.5  
10.3  
4.3  
cc  
V
V
13.5  
9.5  
4
V
V
V
V
CCOn  
CCOff  
Hys  
3.65  
18  
V
Zener Voltage  
I
= 25 mA  
cc  
20  
22  
Z
SUPPLY CURRENT  
Start-up Current  
Quiescent Current  
I
45  
2.3  
3.5  
70  
µA  
Before turn-on, V  
After turn-on  
@ 70 kHz  
= 12V  
start-up  
CC  
I
q
3.5  
5
mA  
mA  
mA  
mA  
I
Operating Supply Current  
Quiescent Current  
CC  
I
I
During Hiccup-mode OCP  
1.6  
3.5  
2.1  
q
q
Quiescent Current  
V
< V , V >V  
CCOff  
1.4  
ZCD  
VFF  
DIS  
CC  
LINE FEEDFORWARD  
I
Input Bias Current  
Operating Range  
Gain  
V
= 0 to 3 V  
-1  
µA  
V
VFF  
V
0 to 3  
0.16  
VFF  
K
V
= 1.5V, V = 4V  
COMP  
VFF  
ERROR AMPLIFIER  
V
Voltage Feedback Input  
Threshold  
T
= 25°C  
2.465  
2.44  
2.5  
2.535  
V
INV  
amb  
12V < V < 18V  
2.56  
5
CC  
Line Regulation  
Vcc = 12 to 18V  
2
mV  
µA  
I
Input Bias Current  
-0.1  
-1  
INV  
3/17  
L6565  
ELECTRICAL CHARACTERISTCS (continued)  
(T = -25 to 125°C, V = 12V, C = 1nF; unless otherwise specified)  
j
CC  
Parameter  
Voltage Gain  
o
Symbol  
Test Condition  
Open loop  
Min.  
Typ.  
80  
Max.  
Unit  
dB  
G
V
60  
GB  
Gain-Bandwidth Product  
Source Current  
1
MHz  
mA  
I
V
V
= 4V, V  
= 4V, V  
= 2.4 V  
= 2.6 V  
-2  
2.5  
5
-3.5  
-5  
COMP  
COMP  
COMP  
INV  
Sink Current  
4.5  
5.5  
mA  
V
INV  
V
Upper Clamp Voltage  
Lower Clamp Voltage  
I
I
= 0.5 mA  
SOURCE  
COMP  
= 0.5 mA  
2.25  
2.55  
V
SINK  
CURRENT SENSE COMPARATOR  
I
Input Bias Current  
V
= 0  
-0.05  
200  
1.4  
0.7  
0
-1  
450  
1.5  
µA  
ns  
V
CS  
CS  
t
Delay to Output  
d(H-L)  
V
Current Sense Reference Clamp  
V
= Upper clamp, V  
= 0V  
= 1.5V  
1.28  
0.62  
CSx  
COMP  
COMP  
VFF  
V
= Upper clamp, V  
0.78  
0.2  
VFF  
V
COMP  
= Upper clamp, V  
= 3V  
VFF  
V
CSdis  
Hiccup-mode OCP level  
1.85  
2.0  
2.2  
V
ZERO CURRENT DETECTOR/ SYNCHRONIZATION  
V
Upper Clamp Voltage  
Lower Clamp Voltage  
I
I
= 3mA  
4.7  
0.3  
5.2  
0.65  
2.1  
6.1  
1
V
V
V
ZCDH  
ZCD  
ZCD  
V
= - 3mA  
ZCDL  
ZCDA  
(1)  
V
Arming Voltage  
(positive-going edge)  
V
Triggering Voltage  
(negative-going edge)  
1.6  
2
V
ZCDT  
ZCDb  
I
Input Bias Current  
V
= 1 to 4.5 V  
µA  
mA  
mA  
mV  
µA  
ZCD  
I
Source Current Capability  
Sink Current Capability  
Disable Threshold  
-3  
3
-10  
10  
ZCDsrc  
I
ZCDsnk  
V
150  
-70  
200  
-150  
3.5  
250  
-230  
DIS  
I
Restart Current After Disable  
V
V
V
< V  
, Vcc > Vcc  
DIS off  
ZCDr  
ZCD  
T
Blanking time after pin 7 high-to-  
low transition  
3.2 V  
µs  
BLANK  
COMP  
COMP  
= 2.5 V  
18  
START TIMER  
Start Timer period  
GATE DRIVER  
t
250  
400  
550  
µs  
V
START  
V
OL  
Dropout Voltage  
I
I
I
I
= 200mA  
= 20mA  
1.2  
0.7  
2
1
GDsource  
GDsource  
V
OH  
= 200mA  
= 20mA  
2
V
GDsink  
GDsink  
0.3  
100  
100  
t
Current Fall Time  
Current Rise Time  
40  
40  
10  
ns  
ns  
f
t
r
I
I
sink current  
Vcc = 4 V, V  
GD  
= 1 V  
5
mA  
GDoff  
GD  
(1) Parameters guaranteed by design, not tested in production.  
4/17  
L6565  
Figure 1. Supply current vs. Supply voltage  
Figure 4. Line feedforward characteristics  
ICC  
(mA)  
Vcsx [V]  
1.5  
Upper clamp  
10  
5
5.0 V  
1
0.5  
0
1
4.5 V  
4.0 V  
3.5 V  
0.5  
0.1  
0.05  
CL = 1nF  
f = 70KHz  
TA = 25°C  
3.0 V  
0.01  
0.005  
0
VCOMP = 2.5V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VVFF [V]  
CC  
V
0
5
10  
15  
20  
(V)  
Figure 2. Start-up & UVLO vs. Temperature  
Figure 5. Pin 2 (COMP) V-I characteristics  
VCOMP [V]  
14  
6
V
CC-ON  
Tj = 25 °C  
Vpin1 = 0  
(V)  
13  
5
4
12  
11  
10  
3
Regulation  
range  
2
1
0
V
CC-OFF  
(V)  
9
0
1
2
3
4
-25  
0
25  
50  
75  
100  
125  
ICOMP [mA]  
T (°C)  
Figure 3. Feedback reference vs. Temperature  
Figure 6. ZCD blanking time vs. COMP voltage  
D94IN048A  
V
(V)  
REF  
TBLANK [µs]  
20  
Tj = 25 °C  
15  
10  
5
2.50  
2.48  
2.46  
0
2
3
4
5
6
T (°C)  
VCOMP [V]  
-50  
0
50  
100  
5/17  
L6565  
Figure 7. Gate-drive output saturation  
Figure 10. Zener voltage at Vcc pin vs. Tj  
Vpin7 [V]  
Vz [V]  
22  
2.5  
Tj = 25 °C  
Vcc = 14.5 V  
SINK  
2
21  
20  
1.5  
1
19  
0.5  
0
18  
-50  
0
50  
100  
150  
0
100  
200  
300  
400  
500  
Tj [°C]  
IGD [mA]  
Figure 11. Start-up timer period vs. Tj  
Figure 8. Gate-drive output saturation  
Vpin7 [V]  
TSTART [µs]  
450  
Vcc - 0.5  
Vcc=12V  
Tj = 25 °C  
Vcc = 14.5 V  
SOURCE  
Vcc - 0.5  
400  
350  
Vcc - 1.0  
Vcc - 1.5  
300  
Vcc - 2.0  
Vcc - 0.5  
250  
0
100  
200  
300  
400  
500  
-50  
0
50  
100  
150  
IGD [mA]  
Tj [°C]  
Figure 9. IC consumption vs. temperature  
Icc [mA]  
5
Vcc=12V  
2
Quiescent  
1
0.5  
0.2  
0.1  
Before Start-up  
0.05  
0.02  
-50  
0
50  
100  
150  
Tj [°C]  
6/17  
L6565  
APPLICATION INFORMATION  
Quasi-resonant operation in offline flyback converters lies in synchronizing MOSFET's turn-on to the transform-  
er's demagnetization. Detecting the resulting negative-going edge of the voltage across any winding of the  
transformer can do this. The L6565 is provided with a dedicated pin that allows doing the job with a very simple  
interface, just one resistor.  
Variable frequency operation - as a result of different operating conditions in terms of input voltage and output  
current - is inherent in such functionality. The system always works close to the boundary between DCM (Dis-  
continuous Conduction Mode) and CCM (Continuous Conduction Mode) operation of the transformer. The op-  
eration is then identical to that of the so-called self-oscillating or Ringing Choke Converter (RCC).  
Detailed Device Description  
Internal Supply Block (see fig. 12)  
A linear voltage regulator supplied by V (pin 8) generates an internal 7V rail used for supplying the entire IC,  
cc  
except for the gate driver that is supplied directly from Vcc. In addition, a bandgap circuit generates a precise  
internal reference (2.5V±1% @ 25°C) used by the control loop to ensure a good regulation with primary feed-  
back technique.  
In figure 12 it is also shown the undervoltage lockout (UVLO) comparator with hysteresis used to enable the  
chip as long as the Vcc voltage is high enough to ensure a reliable operation.  
Figure 12. L6565 internal supply block  
+Vin  
Vcc  
8
-
+
UVLO  
LIN.  
REG.  
REF.  
2.5V  
7V bus  
7/17  
L6565  
Zero Current Detection and Triggering Block (see fig. 13):  
The Zero Current Detection (ZCD) block switches on the external MOSFET if a negative-going edge falling be-  
low 1.6 V is applied to the input (pin 5, ZCD). However, to ensure high noise immunity, the triggering block must  
be armed first: prior to falling below 1.6V, the voltage on pin 5 must experience a positive-going edge exceeding  
2.1 V.  
This feature is typically used to detect transformer demagnetization for QR operation, where the signal for the  
ZCD input is obtained from the transformer's auxiliary winding used also to supply the IC. Alternatively, this can  
be used to synchronize MOSFET's turn-on to the negative-going edge of an external clock signal, in case the  
device is not required to work in QR mode but as a standard PWM controller in a synchronized system (e.g.  
monitor SMPS).  
The triggering block is blanked for a certain time after the MOSFET has been turned off. This has two goals:  
first, to prevent any negative-going edge that follows leakage inductance demagnetization from triggering the  
ZCD circuit erroneously; second, to realize the Frequency Foldback function (see the relevant description).  
Figure 13. Zero Current Detection and Triggering Block; Disable and Frequency Foldback Blocks  
COMP  
INV  
-
L6565  
E/A  
+
2.5V  
+Vin  
ZCD  
R
5
PWM  
to line  
FFWD  
BLANKING  
TIME  
5.2V  
ZCD  
blanking  
START  
7
R
S
GD  
-
Q
DRIVER  
MONO  
STABLE  
+
1.6V  
2.1V  
starter STOP  
Q
STARTER  
-
DISABLE  
0.2V  
0.3V  
+
A circuit is needed that turns on the external MOSFET at start-up since no signal is coming from the ZCD pin.  
This is realized with an internal starter, which forces the driver to deliver a pulse to the gate of the MOSFET.  
To minimize the external interface with the synchronization source (either the auxiliary winding or an external  
clock), the voltage at the pin is both top and bottom limited by a double clamp, as illustrated in the internal dia-  
gram of the ZCD block of figure 13. The upper clamp is typically located at 5.2 V, while the lower clamp is at  
one V above ground. The interface will then be made by just one resistor that has to limit the current sourced  
BE  
by and sunk from the pin within the rated capability of the internal clamps.  
Disable Block (see fig. 13):  
The ZCD pin is used also to activate the Disable Block. If the voltage on the pin is taken below 150 mV the de-  
vice will be shut down. To do so, it is necessary to override the source capability (10 mA max.) of the internal  
lower clamp. While in disable, the current consumption of the IC will be reduced. To re-enable device operation,  
the pull-down on the pin must be released.  
Frequency Foldback Block (see fig. 13):  
To prevent the switching frequency from reaching too high values, which is a typical drawback of QR operation,  
8/17  
L6565  
the L6565 puts a limit on the minimum OFF-time of the switch. This is done by blanking the triggering block of  
the ZCD circuit as mentioned before. The duration of the blanking time (3.5µs min.) is a function of the error  
amplifier output VCOMP, as shown in the diagram of figure 6.  
If the load current and the input voltage are such that the switch OFF-time falls below the minimum blanking  
time of 3.5µs, the system will enter the "Frequency Foldback" mode, a sort of "ringing cycle skipping" illustrated  
schematically in figure 14.  
Figure 14. Frequency foldback: ringing cycle skipping as the load is progressively reduced  
VDS  
VDS  
VDS  
t
t
t
TFW  
TV  
TBLANKmin  
TBLANK  
TBLANK  
Pin = Pin'  
(limit condition)  
Pin = Pin'' < Pin'  
Pin = Pin''' < Pin''  
In this mode, uneven switching cycles may be observed under some line/load conditions, due to the fact that  
the OFF-time of the MOSFET is allowed to change with discrete steps (2·Tv), while the OFF-time needed for  
cycle-by-cycle energy balance may fall in between. Thus one or more longer switching cycles will be compen-  
sated by one or more shorter ones and vice versa. However, this mechanism is absolutely normal and there is  
no appreciable effect on the performance of the converter or on its output voltage.  
Figure 15. Frequency Foldback: qualitative  
frequency dependence on power  
throughput  
Voltage Feedforward block (see fig. 17b):  
The power that QR flyback converters with a fixed  
overcurrent setpoint (like fixed-frequency systems)  
are able to deliver changes with the input voltage  
considerably. With wide-range mains, at maximum  
line it can be more than twice the value at minimum  
line, as shown by the upper curve in the diagram of  
figure 16. The L6565 has the Line Feedforward func-  
tion available to solve this issue.  
fsw  
without frequency foldback  
Vin fixed  
Figure 16. Typical power capability change vs.  
input voltage in ZVS QR flyback  
converters  
with frequency foldback  
2.5  
system not  
Pin  
compensated  
2
Further load reductions involve lower values for  
VCOMP, which increases the blanking time. There-  
fore, more and more ringing cycles will be skipped.  
When the load is low enough, so many ringing cycles  
need to be skipped that their amplitude becomes  
very small and they can no longer trigger the ZCD cir-  
cuit. In that case the internal starter of the IC will be  
activated, resulting in burst-mode operation: a series  
of few switching cycles spaced out by long periods  
where the MOSFET is in OFF state.  
1.5  
1
system optimally  
compensated  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Vin  
Vinmin  
9/17  
L6565  
It acts on the clamp level of the control voltage V , that is on the overcurrent setpoint, so that it is a function  
csx  
of the converter's input voltage sensed through a dedicated pin (#3, VFF): the higher the input voltage, the lower  
the setpoint. This is illustrated in the diagram of figure 17a that shows the relationship between the voltage at  
the pin VFF and V (with the error amplifier saturated high in the attempt of keeping output voltage regulation).  
csx  
The schematic in figure 17b shows also how the function is included in the control loop. With a proper selection  
of the external divider R1-R2 it is possible to achieve the optimum compensation described by the lower curve  
in the diagram of figure 16.  
In applications where this function is not wanted, e.g. because of a narrow input voltage range, the VFF pin can  
be simply grounded, thus saving the resistor divider. The overcurrent setpoint will be then fixed at the maximum  
value of about 1.4V (1.5V max.).  
Line Feedforward is also beneficial to other characteristics of quasi-resonant converters: it improves their input  
ripple rejection ability and limits the variation of the power stage's small-signal gain versus the line voltage.  
Figure 17. a) Overcurrent setpoint vs. VFF voltage; b) Line Feedforward function block  
Vcsx [V]  
1.5  
VCOMP = Upper clamp  
1
a)  
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VVFF [V]  
+Vin  
R1  
R2  
Rs  
COMP  
2
VFF  
CS  
4
ZCD  
5
starter STOP  
3
STARTER  
S
ZCD  
+
7
INV  
VOLTAGE  
FEED  
FORWARD  
Q
R
DRIVER  
1
-
GD  
PWM  
-
E/A  
(reset-dominant)  
+
+
DISABLE  
2.5V  
Hiccup  
-
2 V  
L6565  
b)  
10/17  
L6565  
Error Amplifier Block (see fig. 17b):  
The Error Amplifier (E/A) inverting input is used in primary feedback technique to compare a partition of the volt-  
age generated by the auxiliary winding with the internal reference, to achieve converter's output voltage regu-  
lation (see "Application Ideas", fig. 24). With secondary feedback (typically using a TL431 at the secondary side  
and an optocoupler to transfer output voltage information to the primary side through the isolation barrier) the  
E/A can be used as an inverting level-shifter to achieve negative feedback and shape the loop gain (see "Ap-  
plication Ideas", fig. 23).  
The E/A output is used typically for control loop compensation, realized with an RC network connected to the  
inverting input. With other secondary feedback techniques, the output is driven directly by an emitter-grounded  
optocoupler to modulate the duty cycle (the inverting input will be grounded in that case - see figure 23 in "Ap-  
plication Ideas").  
Current Comparator, PWM Latch and Hiccup-mode OCP (see fig. 17b):  
The current comparator senses the voltage across the current sense resistor (Rs) and, by comparing it with the  
programming signal delivered by the feedforward block, determines the exact time when the external MOSFET  
is to be switched off. The PWM latch avoids spurious switching of the MOSFET, which might result from the  
noise generated ("double-pulse suppression").  
A comparator senses the voltage on the current sense input and disables the gate driver if the voltage at the pin  
exceeds 2 V. Such anomalous condition is typically generated by a short circuit on the secondary rectifier or on  
the secondary winding. To re-enable the driver, first the IC must be turned off and then can be restarted, that is  
the Vcc voltage must fall below the UVLO threshold.  
When the gate driver is disabled the quiescent current of the IC is unchanged and, since no energy is coming  
from the self-supply circuit, the Vcc capacitor will be discharged below the UVLO threshold after some time.  
Then the device will initiate a new start-up cycle. In case of failure of the secondary diode the resulting behavior  
will be a low-frequency intermittent operation (Hiccup-mode operation), with very low stress on the power circuit.  
Gate Driver (see fig. 18):  
A totem pole buffer, with 400mA source and sink capability, drives the external MOSFET. It is made up of a  
high-side NPN Darlington and a low-side MOSFET. In this way there is no need of an external diode clamp to  
prevent the voltage at the gate drive output (pin 7, GD) from being pulled too negative.  
An internal pull-down circuit holds the output low when the device is in UVLO conditions, to ensure that the ex-  
ternal MOSFET cannot be turned on accidentally (e.g. at power-on).  
Figure 18. Gate driver with UVLO pull-down  
Vcc  
8
L6565  
7
GD  
Q
DRIVER  
UVLO  
6
GND  
11/17  
L6565  
TYPICAL APPLICATIONS  
Figure 19. 50W Wide Range Mains SMPS for 14" TV  
C6 4700pF/ 4KV  
C7 4700pF/ 4KV  
F1  
2A fuse  
NTC1  
16R  
D1  
1N4148  
R9  
R10  
4.7M  
4.7M  
C22  
100 pF  
C25  
1nF  
B1 2KBP04M  
3
Vin  
88 to  
264 Vac  
T1  
C23  
100nF  
C24  
100nF  
105 V  
0.35 A  
C1  
R1  
75k  
C8  
C2  
N1  
L1  
15mH  
µ
150  
F
R5  
100 k  
8.2 nF 180 pF  
250 V 630V  
C9  
400 V  
D5  
BYT01-400  
C26  
1nF  
µ
220  
F
R2  
75k  
8
160 V  
1
D6  
BYW98-100  
N2  
N3  
14 V  
1 A  
D3 STTA106  
9
R8 22  
4
C10  
µ
470  
F
C4  
47µF  
25V  
25 V  
D4  
1N4148  
Naux  
10  
R20 22 k  
5
ZCD  
5
7
R6 100  
D2  
GD  
R3  
3 M  
Q1  
STP7NB80FI  
IC1  
R7 10 1N4148  
CS  
L6565  
4
8
VFF  
Vcc  
3
R11  
0.47  
2
1
6
C27  
220nF  
+5 V  
50 mA  
COMP  
INV  
GND  
1
2
IC4  
R4  
C3  
1 nF  
L7805  
16 K  
C12  
100 µF 25V  
R15  
1.8 k  
C11  
47 µF  
25V  
3
IC3 PC817  
R12  
47 k  
1
4
R14  
1.5 k  
DZ1  
15 V  
R13  
3.3 k  
P1  
100 k  
C5  
2.2 nF  
R16  
220 k  
3
2
R18  
150 k  
C13  
100 nF  
1
TRANSFORMER SPECS:  
CORE: ETD29x16x10, N67 material or equivalent  
1 mm air gap for a primary inductance of 285 µH  
N1: 48 T (24T+24T series connected), 2xAWG28 ( 0.37 mm)  
N2: 31 T, AWG28  
3
IC2 TL431  
R17  
4.7 k  
2
N3: 5 T, AWG28  
Naux: 5 T, AWG32 ( 0.24 mm)  
Figure 20. 40W Wide Range Mains SMPS for inkjet printer  
2200pF 4KV  
16R  
2A fuse  
1N4148  
1nF  
2KBP04M  
BYW100-200  
Vin  
88 to  
264 Vac  
100nF  
100nF  
28V / 0.7A  
µ
F
2 x 470  
35V  
10 nF  
250V  
75 k  
15mH  
N2  
N3  
BYW98-100  
2 x 1000µF  
2 W  
56 k  
12V / 1.5A  
GND  
1nF  
N1  
75 k  
STTA106  
16V  
BYW100-50  
10  
47 k  
5V / 0.5A  
µ
F
47  
1N4148  
µ
470 F  
N5  
N4  
16V  
5
8
3 M  
STP4NA80FP  
10  
7
4
220  
L6565  
3
10 nF  
PC817A  
100 nF  
16 k  
270 k  
3.9 k  
2
1
6
0.39 Ω  
1/2 W  
5.1 k  
PC817  
TL431  
3.3 nF  
2.7 k  
TRANSFORMER SPECS:  
CORE: ETD29x16x10, 3C85 material or equivalent  
1 mm air gap for a primary inductance of 700 µH  
N1: 75 T, AWG25 ( 0.51 mm)  
N2: 8 T, AWG25  
N3: 7 T, AWG20 ( 0.89 mm)  
N4: 3 T, AWG25  
N5: 7 T, AWG32 ( 0.24 mm)  
12/17  
L6565  
APPLICATION IDEAS  
Here follows a series of ideas/suggestions aimed at either improving performance or solving common applica-  
tion issues of L6565-based power supplies.  
Figure 21. Enhanced turn-off for big MOSFET's drive  
Vcc  
8
7
GD  
Q
DRIVER  
BC327  
Rs  
6
L6565  
GND  
Figure 22. Latched shutdown on: a) feedback disconnection; b) overload or short circuit  
Vcc  
Vcc  
8
8
L6565  
L6565  
2
2
COMP  
COMP  
BC327  
1N4148  
BC327  
1N4148  
BC337  
BC337  
a)  
b)  
Figure 23. Secondary Feedback loop configurations  
Vout  
Vout  
Vout  
L6565  
2
1
Vcc  
8
INV  
COMP  
L6565  
2
1
Vcc  
INV  
COMP  
8
R
A
R
B
ICOMP  
L6565  
TL431  
TL431  
TL431  
4
1
CS  
Roff  
Rs  
INV  
a)  
b)  
c)  
13/17  
L6565  
Figure 24. Primary Feedback loop configurations  
Vcc  
Vcc  
8
COMP  
COMP  
8
2
1
2
1
H
H
R
R
R
R
-
-
to VFF  
block  
to VFF  
block  
INV  
INV  
E/A  
E/A  
+
+
L
L
2.5V  
2.5V  
GND  
GND  
6
6
L6565  
L6565  
a)  
b)  
Figure 25. Protection against secondary  
Figure 27. Remote ON/OFF control  
feedback disconnection by primary  
regulation take-over  
L6565  
5
Vcc  
15 V  
ZCD  
8
1
INV  
OFF  
L6565  
BC337  
2
ON  
COMP  
2.2 kΩ  
Figure 28. Low-consumption start-up circuit  
Figure 26. Leading edge blanking circuit for  
enhanced primary regulation  
+Vin  
Vac  
BC327 1N4148  
R
CSTART  
1N4148  
Vcc  
Vcc  
CSUPPLY  
8
470 pF  
L6565  
1N4148  
L6565  
2.7 k  
6
GND  
GND  
RELATED DOCUMENTATION  
[1] "L6565, QUASI-RESONANT CONTROLLER” (AN1326)  
[2] “25W QUASI-RESONANT FLYBACK CONVERTER FOR SET-TOP BOX APPLICATIONS USING THE  
L6565” (AN1376)  
[3] “EVAL6565N, 30W AC-DC ADAPTER WITH THE L6565 QUASI-RESONANT PWM CONTROLLER”  
(AN1439).  
14/17  
L6565  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN.  
TYP. MAX. MIN.  
3.32  
TYP. MAX.  
0.131  
A
a1  
B
0.51  
1.15  
0.020  
1.65 0.045  
0.55 0.014  
0.304 0.008  
10.92  
0.065  
0.022  
b
0.356  
0.204  
b1  
D
E
0.012  
0.430  
7.95  
9.75 0.313  
2.54  
0.384  
e
0.100  
e3  
e4  
F
7.62  
0.300  
7.62  
0.300  
6.6  
0.260  
I
5.08  
0.200  
L
3.18  
3.81 0.125  
1.52  
0.150  
Minidip  
Z
0.060  
15/17  
L6565  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN. TYP. MAX.  
A
a1  
a2  
a3  
b
1.75  
0.069  
0.010  
0.065  
0.033  
0.019  
0.010  
0.020  
0.1  
0.25 0.004  
1.65  
0.65  
0.35  
0.19  
0.25  
0.85 0.026  
0.48 0.014  
0.25 0.007  
b1  
C
0.5  
0.010  
c1  
D (1)  
E
45° (typ.)  
4.8  
5.8  
5.0  
6.2  
0.189  
0.228  
0.197  
0.244  
e
1.27  
3.81  
0.050  
0.150  
e3  
F (1)  
L
3.8  
0.4  
4.0  
0.15  
0.157  
0.050  
0.024  
1.27 0.016  
0.6  
M
SO8  
S
8° (max.)  
(1) D and F do not include mold flash or protrusions. Mold flash or  
potrusions shall not exceed 0.15mm (.006inch).  
16/17  
L6565  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
http://www.st.com  
17/17  

    L6565A相关文章


    Fatal error: Uncaught PDOException: SQLSTATE[HY000]: General error: 145 mroonga: repair: can't recover from crash while updating in /www/wwwroot/website_ic37/s.ic37.com/index.php:504 Stack trace: #0 /www/wwwroot/website_ic37/s.ic37.com/index.php(504): PDO->query() #1 /www/wwwroot/website_ic37/www.ic37.com/s_index.php(3): include('...') #2 {main} thrown in /www/wwwroot/website_ic37/s.ic37.com/index.php on line 504