欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • LB11923VMPBE图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • LB11923VMPBE
  • 数量13880 
  • 厂家ON Semiconductor 
  • 封装44SSOP 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • LB11923图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • LB11923
  • 数量2881 
  • 厂家SANYO/三洋 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • LB11923V-TLM图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • LB11923V-TLM
  • 数量28000 
  • 厂家SANYO/三洋 
  • 封装SSOP44 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • LB11923V-A-TLM-E图
  • 集好芯城

     该会员已使用本站13年以上
  • LB11923V-A-TLM-E
  • 数量1068 
  • 厂家ON Semiconductor 
  • 封装 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • LB11923V-TLM图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • LB11923V-TLM
  • 数量1111 
  • 厂家SANYO 
  • 封装SSOP44 
  • 批号03+ 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • LB11923V-TLM-E图
  • 首天国际(深圳)集团有限公司

     该会员已使用本站17年以上
  • LB11923V-TLM-E
  • 数量5000 
  • 厂家Sanyo 
  • 封装原厂封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807088 QQ:528164397QQ:1318502189
  • LB11923V-A-TLM-E图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • LB11923V-A-TLM-E
  • 数量2000 
  • 厂家SANYO 
  • 封装SSOP 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • LB11923M图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • LB11923M
  • 数量4925 
  • 厂家SANYO 
  • 封装SOP 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • LB11923V图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • LB11923V
  • 数量11530 
  • 厂家SANYO 
  • 封装原厂封装 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • LB11923V-TLM-E图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • LB11923V-TLM-E
  • 数量5000 
  • 厂家Sanyo 
  • 封装原厂封装 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • LB11923V图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • LB11923V
  • 数量5000 
  • 厂家SANYO 
  • 封装SOP 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • LB11923V-TLM-E图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • LB11923V-TLM-E
  • 数量9328 
  • 厂家ON-安森美 
  • 封装TSSOP-44 
  • 批号▉▉:2年内 
  • ▉▉¥9.9元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • LB11923V-TLM图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • LB11923V-TLM
  • 数量13860 
  • 厂家SANYO 
  • 封装SSOP44 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • LB11923V-TLM图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • LB11923V-TLM
  • 数量6000 
  • 厂家SANYO 
  • 封装SOP 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • LB11923图
  • 北京耐芯威科技有限公司

     该会员已使用本站13年以上
  • LB11923
  • 数量5000 
  • 厂家SANYO 
  • 封装SSOP44 
  • 批号21+ 
  • 原装正品,公司现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 86-010-010-62104931 QQ:2880824479QQ:1344056792
  • LB11923V-A-TLM-E图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • LB11923V-A-TLM-E
  • 数量6328 
  • 厂家ON-安森美 
  • 封装TSSOP-44 
  • 批号▉▉:2年内 
  • ▉▉¥21.6元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • LB11923V-TLM-E图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • LB11923V-TLM-E
  • 数量41981 
  • 厂家SANYO 
  • 封装SSOP 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • LB11923V-TLM-E图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • LB11923V-TLM-E
  • 数量6500 
  • 厂家SANYO 
  • 封装SOP44 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • LB11923V-TLM图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • LB11923V-TLM
  • 数量52431 
  • 厂家SANYO 
  • 封装SSOP44 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • LB11923图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • LB11923
  • 数量2881 
  • 厂家SANYO/三洋 
  • 封装TSSOP 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • LB11923V-TLM图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • LB11923V-TLM
  • 数量53040 
  • 厂家 
  • 封装SOP 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872561 QQ:1484215649QQ:729272152
  • LB11923V-A-TLM-E图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • LB11923V-A-TLM-E
  • 数量7430 
  • 厂家ON Semiconductor 
  • 封装 
  • 批号20+ 
  • 进口原装,公司现货
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • LB11923V-TLM图
  • 深圳市凯睿晟科技有限公司

     该会员已使用本站10年以上
  • LB11923V-TLM
  • 数量2000 
  • 厂家SANYO/三洋 
  • 封装SSOP44 
  • 批号24+ 
  • 百域芯优势 实单必成 可开13点增值税发票
  • QQ:2885648621QQ:2885648621 复制
  • 0755-23616725 QQ:2885648621
  • LB11923V-TLM-E图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • LB11923V-TLM-E
  • 数量30000 
  • 厂家MURATA 
  • 封装O201 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • LB11923V-TLM图
  • 深圳市顺兴源微电子商行

     该会员已使用本站7年以上
  • LB11923V-TLM
  • 数量6890000 
  • 厂家SANYO 
  • 封装SSOP44 
  • 批号16+ 
  • 原装现货,低价出售
  • QQ:3475025894QQ:3475025894 复制
    QQ:3504055308QQ:3504055308 复制
  • 0755-82723655 QQ:3475025894QQ:3504055308
  • LB11923V-MPB-E图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • LB11923V-MPB-E
  • 数量1001 
  • 厂家ON 
  • 封装SSOP-44 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • LB11923V-A-TLM-E图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • LB11923V-A-TLM-E
  • 数量167 
  • 厂家ON 
  • 封装SSOP 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • LB11923V-ALM-E图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • LB11923V-ALM-E
  • 数量5800 
  • 厂家SANYO 
  • 封装SOP44 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • LB11923V-TLM-E图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • LB11923V-TLM-E
  • 数量12000 
  • 厂家ON 
  • 封装SSOP-44 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • LB11923V-A-TLM-E图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • LB11923V-A-TLM-E
  • 数量20000 
  • 厂家ON 
  • 封装SSOP 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • LB11923V-TLM-E图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • LB11923V-TLM-E
  • 数量11500 
  • 厂家SANYO/三洋 
  • 封装TSSOP44 
  • 批号23+ 
  • 原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • LB11923图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • LB11923
  • 数量8000 
  • 厂家SANYO/三洋 
  • 封装TSSOP 
  • 批号21+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • LB11923V-TLM图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • LB11923V-TLM
  • 数量12000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • LB11923M图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • LB11923M
  • 数量12000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • LB11923V-A-TLM-E图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • LB11923V-A-TLM-E
  • 数量8500 
  • 厂家ON Semiconductor 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号LB11923V的Datasheet PDF文件预览

Ordering number : ENN7498  
Monolithic Digital IC  
LB11923V  
Three-Phase Brushless Motor Driver  
Overview  
Package Dimensions  
unit: mm  
The LB11923V is a pre-driver IC designed for variable-  
speed control of 3-phase brushless motors. It can be used  
to implement a motor drive circuit with the desired output  
capacity (voltage, current) by using discrete transistors for  
the output stage. It implements direct PWM drive for  
minimal power loss. Since the LB11923V includes a built-  
in VCO circuit, applications can control the motor speed  
arbitrarily by varying the external clock frequency.  
3277-SSOP44  
[LB11923V]  
15.0  
23  
44  
Features  
• Direct PWM drive output  
22  
1
• Speed discriminator + PLL speed control circuit  
• Speed lock detection output  
0.65  
0.22  
0.2  
(0.68)  
• Built-in crystal oscillator circuit  
• Forward/reverse switching circuit  
• Braking circuit (short braking)  
• Full complement of on-chip protection circuits,  
including lock protection, current limiter, and  
thermal shutdown protection circuits.  
SANYO: SSOP44 (275 mil)  
Specifications  
Absolute Maximum Ratings at Ta = 25°C  
Parameter  
Maximum supply voltage  
Symbol  
Conditions  
Ratings  
Unit  
V
VCC max  
8
2
Maximum input current  
Output current  
I
REG max VREG pin  
mA  
mA  
W
IO max  
UH, VH, WH, UL, VL, and WL outputs  
Independent IC  
30  
Allowable power dissipation 1  
Pd max1  
0.62  
When mounted on the specified PCB  
(114.3 × 76.1 × 1.6 mm glass epoxy PCB)  
Allowable power dissipation 2  
Pd max2  
1.79  
W
Operating temperature  
Storage temperature  
Topr  
Tstg  
–20 to +80  
°C  
°C  
–55 to +150  
Any and all SANYO products described or contained herein do not have specifications that can handle  
applications that require extremely high levels of reliability, such as life-support systems, aircraft’s  
control systems, or other applications whose failure can be reasonably expected to result in serious  
physical and/or material damage. Consult with your SANYO representative nearest you before using  
any SANYO products described or contained herein in such applications.  
SANYO assumes no responsibility for equipment failures that result from using products at values that  
exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other  
parameters) listed in products specifications of any and all SANYO products described or contained  
herein.  
SANYO Electric Co.,Ltd. Semiconductor Company  
TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN  
21604TN (OT) No. 7498-1/19  
LB11923V  
Allowable Operating Ranges at Ta = 25°C  
Parameter  
Symbol  
VCC  
Conditions  
Ratings  
4.4 to 7.0  
0.2 to 1.5  
0 to 7  
Unit  
V
Supply voltage  
Input current range  
IREG  
VFGS  
IFGS  
VLD  
VREG pin (7 V)  
mA  
V
FG Schmitt output applied voltage  
FG Schmitt output current  
Lock detection applied voltage  
Lock detection output current  
0 to 5  
mA  
V
0 to 7  
ILD  
0 to 20  
mA  
Electrical Characteristics at Ta = 25°C, V = 6.3 V  
CC  
Ratings  
typ  
21  
Parameter  
Symbol  
Conditions  
Unit  
min  
max  
29.5  
ICC1  
ICC2  
ICC3  
mA  
mA  
mA  
mA  
V
In stop mode  
VCC = 5 V  
2.3  
20  
3.3  
28  
Supply current  
ICC4  
VCC = 5 V, In stop mode  
2.1  
2.9  
0.3  
1.2  
Output saturation voltage 1-1  
Output saturation voltage 1-2  
Output saturation voltage 2  
[Hall Amplifier]  
V
V
O sat1-1 At low level: IO = 400 µA  
O sat1-2 At low level: IO = 10 mA  
0.1  
0.8  
V
V
O sat2 At high level: IO = –20 mA  
VCC – 1.2  
VCC – 0.9  
V
Input bias current  
IHB(HA)  
ICM1  
–2  
–0.1  
µA  
V
Common-mode input voltage range 1  
V
When Hall-effect sensors are used  
0.5  
VCC – 2.0  
VCC  
When one-side biased inputs are used  
(Hall-effect IC applications)  
Common-mode input voltage range 2  
VICM2  
0
V
Hall input sensitivity  
Hysteresis  
Sine wave  
100  
25  
mVp-p  
mV  
VIN(HA)  
VSLH  
35  
17  
52  
29  
–9  
Input voltage low high  
Input voltage high low  
[PWM Oscillator]  
9
mV  
VSHL  
–29  
–18  
mV  
Output high-level voltage 1  
Output high-level voltage 2  
Output low-level voltage 1  
Output low-level voltage 2  
Oscillator frequency  
Amplitude 1  
V
OH(PWM)1  
3.5  
2.75  
1.8  
3.8  
3.0  
4.1  
3.25  
2.4  
V
V
VOH(PWM)2 VCC = 5 V  
V
OL(PWM)1  
2.1  
V
V
OL(PWM)2 VCC = 5 V  
1.45  
1.65  
22  
1.9  
V
f(PWM)  
(PWM)1  
C = 560 pF  
kHz  
Vp-p  
Vp-p  
V
1.4  
1.1  
1.7  
2.0  
1.6  
Amplitude 2  
V
(PWM)2 VCC = 5 V  
1.35  
[CSD Oscillator]  
Output high-level voltage 1  
Output high-level voltage 2  
Output low-level voltage 1  
Output low-level voltage 2  
External capacitor charge current  
External capacitor discharge current  
Oscillator frequency  
Amplitude 1  
V
V
OH(CSD)1  
3.95  
3.15  
1.1  
0.9  
–13  
8
4.4  
3.5  
1.4  
1.1  
–9  
4.85  
3.85  
1.7  
1.3  
–6  
V
V
OH(CSD)2 VCC = 5 V  
V
OL(CSD)1  
V
V
OL(CSD)2 VCC = 5 V  
V
I
I
CHG1  
CHG2  
f(RK)  
µA  
µA  
Hz  
Vp-p  
Vp-p  
12  
16  
C = 0.068 µF  
VCC = 5 V  
22  
V
V
(RK)1  
(RK)2  
2.65  
2.1  
3.0  
2.4  
3.35  
2.65  
Amplitude 2  
[VCO Oscillator C pin]  
Output high-level voltage 1  
Output high-level voltage 2  
Output low-level voltage 1  
Output low-level voltage 2  
Oscillator frequency  
Amplitude 1  
V
OH(C)1  
OH(C)2 VCC = 5 V  
2.10  
2.00  
1.60  
1.55  
2.40  
2.30  
1.90  
1.80  
2.65  
2.55  
2.10  
2.05  
1.0  
V
V
V
V
V
OL(C)1  
V
OL(C)2 VCC = 5 V  
f(C)  
V
MHz  
Vp-p  
Vp-p  
V
(C)1  
(C)2  
0.3  
0.3  
0.5  
0.5  
0.7  
Amplitude 2  
V
VCC = 5 V  
0.7  
Continued on next page.  
*Note: Not tested  
No. 7498-2/19  
LB11923V  
Continued from preceding page.  
Ratings  
typ  
Parameter  
Symbol  
VRF  
Conditions  
Unit  
V
min  
max  
[Current Limiter Operation]  
Limiter  
0.235  
150  
0.260  
0.285  
[Thermal Shutdown Operation]  
Thermal shutdown operating temperature  
Hysteresis  
TTSD  
Design target value *  
Design target value *  
180  
30  
°C  
°C  
TSD  
[VREG Pin]  
V
REG pin voltage  
VREG  
I = 500 µA  
6.6  
7.0  
7.4  
V
[Low-voltage Protection Circuit]  
Operating voltage  
VSDL  
VSDH  
VSD  
3.55  
3.85  
0.18  
3.75  
4.03  
0.28  
4.00  
4.25  
0.38  
V
V
V
Release voltage  
Hysteresis  
[FG Amplifier]  
Input offset voltage  
VIO(FG)  
IB(FG)  
–10  
–1  
+10  
+1  
mV  
µA  
V
Input bias current  
Output high-level voltage 1  
Output high-level voltage 2  
Output low-level voltage 1  
Output low-level voltage 2  
FG input sensitivity  
VOH(FG)1 IFGI = –0.1 mA, No load  
4.2  
3.6  
1.3  
0.7  
3
4.6  
3.95  
1.7  
5.0  
4.3  
2.1  
1.4  
V
OH(FG)2 IFGI = –0.1 mA, No load, VCC = 5 V  
V
V
V
OL(FG)1 IFGI = 0.1 mA, No load  
OL(FG)2 IFGI = 0.1 mA, No load, VCC = 5 V  
Gain: 100×  
V
1.05  
V
mV  
mV  
kHz  
dB  
V
Schmitt amplitude for the next stage  
Operating frequency range  
Open-loop gain  
100  
180  
250  
2
f
(FG) = 2 kHz  
45  
51  
Reference voltage  
VB(FG)  
–5%  
VCC/2  
5%  
[FGS Output]  
Output saturation voltage  
Output leakage current  
[Speed Discriminator Output]  
Output high-level voltage  
Output low-level voltage  
[Speed Control PLL Output]  
VO(FGS) IO(FGS) = 2 mA  
0.2  
0.4  
10  
V
IL(FGS)  
VO = VCC  
µA  
VOH(D)  
VOL(D)  
VCC – 1.0  
VCC – 0.7  
0.8  
V
V
1.1  
V
OH(P)1  
4.05  
3.25  
1.85  
1.25  
4.30  
3.50  
2.15  
1.60  
4.65  
3.85  
2.45  
1.85  
V
V
V
V
Output high-level voltage  
Output low-level voltage  
V
OH(P)2 VCC = 5 V  
V
V
OL(P)1  
OL(P)2 VCC = 5 V  
[Lock Detection]  
Output saturation voltage  
Output leakage current  
Lock range  
VOL(LD) ILD = 10 mA  
0.25  
0.4  
10  
V
µA  
%
IL(LD)  
VO = VCC  
–6.25  
+6.25  
[Integrator]  
Input offset voltage  
Input bias current  
VIO(INT)  
IB(INT)  
–10  
–0.4  
4.1  
+10  
+0.4  
4.7  
mV  
µA  
V
Output high-level voltage 1  
Output high-level voltage 2  
Output low-level voltage 1  
Output low-level voltage 2  
Open-loop gain  
V
V
OH(INT)1 IINTI = –0.1 mA, No load  
4.4  
3.7  
OH(INT)2 IINTI = –0.1 mA, No load, VCC = 5 V  
3.45  
1.2  
3.95  
1.65  
1.5  
V
VOL(INT)1 IINTI = 0.1 mA, No load  
1.4  
V
VOL(INT)  
2
IINTI = 0.1 mA, No load, VCC = 5 V  
1.1  
1.3  
V
45  
51  
dB  
MHz  
V
Gain-bandwidth product  
Reference voltage  
[FIL Output]  
Design target value *  
1.0  
VB(INT)  
–5%  
VCC/2  
5%  
Output source current  
Output sink current  
IOH(FIL)  
IOL(FIL)  
–17  
7
–13  
12  
–7  
17  
µA  
µA  
Continued on next page.  
*Note: Not tested  
No. 7498-3/19  
LB11923V  
Continued from preceding page.  
Ratings  
typ  
Parameter  
Symbol  
Conditions  
Unit  
min  
max  
[S/S Pin]  
Input high-level voltage  
Input low-level voltage  
Input open voltage  
Hysteresis  
VIH(S/S) VCC = 6.3 V, 5 V  
VIL(S/S) VCC = 6.3 V, 5 V  
VIO(S/S)  
2.0  
VCC  
V
V
0
VCC – 0.5  
0.13  
1.0  
VCC  
0.31  
+10  
V
VIN(S/S) VCC = 6.3 V, 5 V  
0.22  
0
V
Input high-level current  
Input low-level current  
Pull-up resistance  
[F/R Pin]  
IIH(S/S)  
IIL(S/S)  
RU(S/S)  
VS/S = VCC  
VS/S = 0 V  
–10  
µA  
µA  
kΩ  
–170  
–118  
53.5  
37  
70  
Input high-level voltage  
Input low-level voltage  
Input open voltage  
Hysteresis  
VIH(F/R) VCC = 6.3 V, 5 V  
VIL(F/R) VCC = 6.3 V, 5 V  
VIO(F/R)  
2.0  
0
VCC  
1.0  
V
V
VCC – 0.5  
0.13  
VCC  
0.31  
+10  
V
VIN(F/R) VCC = 6.3 V, 5 V  
0.22  
0
V
Input high-level current  
Input low-level current  
Pull-up resistance  
[BR Pin]  
IIH(F/R)  
IIL(F/R)  
RU(F/R)  
VF/R = VCC  
VF/R = 0 V  
–10  
µA  
µA  
kΩ  
–170  
37  
–118  
53.5  
70  
Input high-level voltage  
Input low-level voltage  
Input open voltage  
Hysteresis  
VIH(BR) VCC = 6.3 V, 5 V  
VIL(BR) VCC = 6.3 V, 5 V  
VIO(BR)  
VIN(BR) VCC = 6.3 V, 5 V  
2.0  
0
VCC  
1.0  
V
V
VCC – 0.5  
0.13  
VCC  
0.31  
+10  
V
0.22  
0
V
Input high-level current  
Input low-level current  
Pull-up resistance  
[CLK Pin]  
IIH(BR)  
IIL(BR)  
RU(BR)  
VBR = VCC  
VBR = 0 V  
–10  
µA  
µA  
kΩ  
–170  
37  
–118  
53.5  
70  
Input high-level voltage  
Input low-level voltage  
Input open voltage  
Hysteresis  
VIH(CLK) VCC = 6.3 V, 5 V  
VIL(CLK) VCC = 6.3 V, 5 V  
VIO(CLK)  
2.0  
0
VCC  
1.0  
V
V
VCC – 0.5  
0.13  
VCC  
0.31  
+10  
V
VIN(CLK) VCC = 6.3 V, 5 V, design target value *  
0.22  
0
V
Input high-level current  
Input low-level current  
Input frequency  
IIH(CLK) VCLK = VCC  
–10  
µA  
µA  
kHz  
kΩ  
IIL(CLK)  
f(CLK)  
VCLK = 0 V  
–170  
–118  
3.9  
70  
Pull-up resistance  
[N1 Pin]  
RU(CLK)  
37  
53.5  
Input high-level voltage  
Input low-level voltage  
Input open voltage  
Hysteresis  
VIH(N1)  
VIL(N1)  
VIO(N1)  
VCC = 6.3 V, 5 V  
VCC = 6.3 V, 5 V  
2.0  
0
VCC  
1.0  
V
V
VCC – 0.5  
0.13  
VCC  
0.31  
+10  
V
VIN(N1) VCC = 6.3 V, 5 V, design target value *  
0.22  
0
V
Input high-level current  
Input low-level current  
Pull-up resistance  
[N2 Pin]  
IIH(N1)  
IIL(N1)  
RU(N1)  
VN1 = VCC  
VN1 = 0 V  
–10  
µA  
µA  
kΩ  
–170  
37  
–118  
53.5  
70  
Input high-level voltage  
Input low-level voltage  
Input open voltage  
Hysteresis  
VIH(N2)  
VIL(N2)  
VIO(N2)  
VCC = 6.3 V, 5 V  
VCC = 6.3 V, 5 V  
2.0  
0
VCC  
1.0  
V
V
VCC – 0.5  
0.13  
VCC  
0.31  
+10  
V
VIN(N2) VCC = 6.3 V, 5 V, design target value *  
0.22  
0
V
Input high-level current  
Input low-level current  
Pull-up resistance  
IIH(N2)  
IIL(N2)  
RU(N2)  
VN2 = VCC  
VN2 = 0 V  
–10  
µA  
µA  
kΩ  
–170  
37  
–118  
53.5  
70  
*Note: Not tested  
No. 7498-4/19  
LB11923V  
Pd max – Ta  
2.0  
1.5  
1.0  
Mounted on the specified PCB  
(114.3 × 76.1 × 1.6 mm glass epoxy PCB)  
1.79 W  
1.002 W  
0.62 W Independent IC  
0.5  
0
0.347 W  
–20  
0
20  
40  
60  
80  
100  
Ambient temperature, Ta – °C  
ILB01550  
Pin Assignment  
44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23  
LB11923V  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
Top view  
Speed Discriminator Count and VCO Divisor  
N1  
High or open  
High or open  
Low  
N2  
High or open  
Low  
Count  
1024  
1024  
256  
Divisor  
1024  
512  
High or open  
Low  
256  
Low  
512  
512  
f
FG  
= (divisor ÷ count) × f  
CLK  
No. 7498-5/19  
LB11923V  
Three-Phase Logic Truth Table (A high (H) input is the state where IN+ > IN.)  
F / R = L  
F / R = H  
Output  
PWM  
Item  
IN1  
H
H
H
L
IN2  
L
IN3  
H
L
IN1  
L
IN2  
H
H
L
IN3  
L
UL  
UL  
VL  
VL  
WL  
WL  
1
2
3
4
5
6
VH  
WH  
WH  
UH  
UH  
VH  
L
L
H
H
H
L
H
H
H
L
L
L
L
H
H
H
L
L
H
H
L
L
H
L
S/S Pin  
BRK Pin  
High or open  
Low  
Stop  
Start  
High or open  
Low  
Brake  
Released  
Pin Functions  
Pin No.  
Pin  
Functions  
Equivalent circuit  
1
V
1
CC  
1
VREG  
7-V shunt regulator output  
V
1
CC  
Start/stop control  
Low: 0 V to 1.0 V  
High: 2.0 V to VCC  
Goes high when left open.  
Low for start.  
3.5 k  
2
2
S/S  
High or open for stop.  
The hysteresis is about 0.22 V.  
V
1
CC  
External clock signal input  
Low: 0 V to 1.0 V  
High: 2.0 V to VCC  
3.5 kΩ  
3
CLK  
3
Goes high when left open.  
The hysteresis is about 0.22 V.  
f = 16 kHz, maximum  
Continued on next page.  
No. 7498-6/19  
LB11923V  
Continued from preceding page.  
Pin No.  
Pin  
Functions  
Equivalent circuit  
V
1
CC  
Forward/reverse control  
Low: 0 V to 1.0 V  
High: 2.0 V to VCC  
Goes high when left open.  
Low for forward.  
3.5 kΩ  
4
4
F/R  
High or open for reverse.  
The hysteresis is about 0.22 V.  
V
1
CC  
Brake control (short braking operation)  
Low: 0 V to 1.0 V  
High: 2.0 V to VCC  
3.5 kΩ  
5
5
BR  
Goes high when left open.  
High or open for brake mode operation.  
The hysteresis is about 0.22 V.  
V
1
CC  
Switches the speed discriminator VCO divisor count.  
Low: 0 V to 1.0 V  
High: 2.0 V to VCC  
3.5 kΩ  
6
6
N1  
Goes high when left open.  
The hysteresis is about 0.22 V.  
V
1
CC  
The speed discriminator count switching.  
Low: 0 V to 1.0 V  
High: 2.0 V to VCC  
3.5 k  
7
N2  
7
Goes high when left open.  
The hysteresis is about 0.22 V.  
V
1
CC  
8
FG amplifier output (after the Schmitt circuit)  
This is an open collector output.  
8
FGS  
Continued on next page.  
No. 7498-7/19  
LB11923V  
Continued from preceding page.  
Pin No.  
Pin  
Functions  
Equivalent circuit  
V
1
CC  
9
Speed lock detection output  
This is an open collector output.  
Goes low when the motor speed is within the speed lock  
range (±6.25%).  
9
LD  
V
1
CC  
Speed discriminator output  
Acceleration high, deceleration low  
10  
DOUT  
10  
V
1
CC  
Speed control system PLL output  
Outputs the phase comparison result for  
CLK and FG.  
11  
11  
POUT  
V
1
CC  
Integrating amplifier non-inverting input (1/2 VCC potential)  
13  
14  
INT REF  
500 Ω  
500 Ω  
INT IN  
Integrating amplifier inverting input  
13  
14  
V
1
CC  
15  
INT OUT  
Integrating amplifier output (speed control)  
15  
Continued on next page.  
No. 7498-8/19  
LB11923V  
Continued from preceding page.  
Pin No.  
Pin  
Functions  
Equivalent circuit  
V
1
CC  
Torque command input  
Normally, this pin is connected to the INT.OUT pin. The  
PWM duty is increased when the TOC pin voltage falls.  
Do not apply a voltage that exceeds VCC – 0.5 V to this pin.  
(An input from a normal operational amplifier is desirable.)  
16  
TOC  
300 Ω  
16  
V
1
CC  
PWM oscillator frequency setting.  
Connect a capacitor between this pin and ground.  
17  
19  
20  
PWM  
FIL  
R
300 Ω  
17  
V
1
CC  
VCO PLL filter connection  
300 Ω  
19  
V
1
CC  
Sets the value of the charge current from the VCO circuit C  
pin.  
Insert a resistor between this pin and ground.  
300 Ω  
20  
Continued on next page.  
No. 7498-9/19  
LB11923V  
Continued from preceding page.  
Pin No.  
Pin  
Functions  
Equivalent circuit  
V
1
CC  
VCO oscillator connection  
This pin sets the VCO frequency.  
C
300 Ω  
21  
Insert a capacitor between this pin and ground.  
Set the value of the capacitor so that the oscillator  
frequency does not exceed 1 MHz.  
21  
Reset circuit  
V
1
CC  
Sets the operating time of the constrained-rotor protection  
circuit.  
Reference signal oscillator used when the clock signal is cut  
off and to prevent malfunctions.  
The protection function operating time can be set by  
connecting a capacitor between this pin and ground.  
This pin also functions as the logic circuit block power-on  
reset pin.  
300 Ω  
22  
22  
CSD  
500 Ω  
FGOUT  
V
1
CC  
FGIN+  
FGIN–  
23  
24  
FG amplifier input  
500 Ω  
500 Ω  
23  
24  
V
1
CC  
FG amplifier output  
This pin is connected to the FG Schmitt comparator circuit  
internally in the IC.  
25  
25  
FGOUT  
FG Schmitt comparator  
V
1
CC  
Output current detection  
Connect a resistor between this pin and ground.  
27  
27  
RF GND  
Continued on next page.  
No. 7498-10/19  
LB11923V  
Continued from preceding page.  
Pin No.  
Pin  
Functions  
Equivalent circuit  
V
1
CC  
Output current detection  
Connect a resistor between this pin and ground.  
The output limitation maximum current, IOUT, is set to be  
0.26/Rf by this resistor.  
28  
28  
RF  
29  
30  
GND1  
GND2  
Control block ground  
Output block ground  
V
2
CC  
31  
32  
33  
34  
35  
36  
UL  
UH  
VL  
VH  
WL  
WH  
Outputs (that are used to drive external transistors).  
The PWM duty is controlled on the UH, VH, and WH side of  
these outputs.  
31 33 35  
32 34 36  
Output block power supply  
VCC  
VCC  
2
1
37  
38  
Control block power supply  
Short VCC1 to VCC2 and, for stability, insert a capacitor  
between these pins and ground.  
V
1
CC  
Hall-effect device inputs.  
The input is seen as a high-level input when IN+ > IN, and  
as a low-level input for the opposite state.  
If noise on the Hall-effect device signals is a problem, insert  
capacitors between the corresponding IN+ and INinputs.  
IN3–  
IN3+  
IN2–  
IN2+  
IN1–  
IN1+  
39  
40  
41  
42  
43  
44  
500  
500 Ω  
40 42 44  
39 41 43  
The logic high state indicates that VIN+ > VIN  
12  
18  
26  
NC  
These are unconnected pins, and can be used for wiring.  
No. 7498-11/19  
LB11923V  
Sample Application Circuit 1 (P-channel + n-channel, Hall-effect sensor application)  
1
2
VREG  
S/S  
IN1+  
44  
IN1– 43  
IN2+ 42  
IN2– 41  
IN3+ 40  
IN3– 39  
S/S  
CLK  
F/R  
BR  
3
CLK  
F/R  
4
5
BR  
6
N1  
N1  
+
7
N2  
V
V
1
2
38  
37  
N2  
CC  
8
FGS  
LD  
FGS  
LD  
CC  
9
WH 36  
WL 35  
VH 34  
10  
11  
DOUT  
POUT  
LB11923V  
12 NC  
13  
VL  
UH  
UL  
33  
32  
31  
INT.REF  
14  
15  
16  
17  
18  
19  
20  
21  
22  
INT.IN  
INT.OUT  
TOC  
PWM  
NC  
GND2 30  
GND1 29  
RF 28  
RFGND 27  
NC 26  
FIL  
R
FGOUT 25  
FGIN– 24  
FGIN+ 23  
+
C
24 V  
CSD  
Top view  
No. 7498-12/19  
LB11923V  
Sample Application Circuit 2 (PNP + NPN, Hall-effect sensor application)  
VREG  
S/S  
IN1+  
44  
1
2
IN1– 43  
IN2+ 42  
IN2– 41  
IN3+ 40  
IN3– 39  
S/S  
CLK  
F/R  
BR  
CLK  
F/R  
3
4
BR  
5
N1  
6
N1  
+
N2  
V
1 38  
2 37  
7
N2  
CC  
FGS  
LD  
V
8
FGS  
LD  
CC  
WH 36  
WL 35  
VH 34  
9
DOUT  
POUT  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
LB11923V  
VL  
UH  
UL  
33  
32  
31  
INT.REF  
INT.IN  
INT.OUT  
TOC  
PWM  
NC  
GND2 30  
GND1 29  
RF 28  
RFGND 27  
NC 26  
FIL  
R
FGOUT 25  
FGIN– 24  
FGIIN+ 23  
C
CSD  
+
24 V  
Top view  
No. 7498-13/19  
LB11923V  
Equivalent Circuit Block Diagram  
WH  
VH  
UH  
WL  
VL  
HALL  
HYS  
AMP  
CSD  
OSC  
LOGIC  
FR  
F/R  
PRI  
DRIVER  
V
CC  
BR  
UL  
LOGIC  
BR  
TSD  
TOC  
RF  
S/S  
S/S  
INT  
OUT  
CURR  
LIM  
COMP  
RFGND  
RES  
INT  
IN  
1.3VREF  
PWM  
OSC  
V
CC  
PWM  
GND  
LVSD  
INT  
REF  
POUT  
LD  
LD  
N2  
N1  
N2  
N1  
SPEED  
DISCRI  
SPEED  
PLL  
1/N  
DOUT  
FG  
FGS  
FILTER  
R
C
VCO  
VCO  
PLL  
FIL  
FGO  
FIL  
VREG  
CLK  
V
CC  
No. 7498-14/19  
LB11923V  
IC Operation Description  
1. Speed Control Circuit  
This IC implements speed control using the combination of a speed discriminator circuit and a PLL circuit. The speed  
discriminator circuit outputs (This counts a single FG period.) an error signal once every two FG periods. The PLL  
circuit outputs an error signal once every one FG Period. As compared to the earlier technique in which only a speed  
discriminator circuit was used, the combination of a speed discriminator and a PLL circuit allows variations in motor  
speed to be better suppressed when a motor that has large load variations is used. The FG servo frequency (fFG) is  
determined by the frequency relationship shown below and by the clock signal (fCLK) input to the CCLK pin.  
f
FG  
= (VCO divisor ÷ speed discriminator count) × f  
CLK  
N1  
High or open  
High or open  
Low  
N2  
High or open  
Low  
Count  
1024  
1024  
256  
Divisor  
1024  
512  
High or open  
Low  
256  
Low  
512  
512  
Therefore it is possible to implement half-speed control without switching the clock frequency by using combinations  
of the N1 = high, N2 = low state and other setting states.  
2. VCO Circuit  
The LB11923V includes a built-in VCO circuit to generate the speed discriminator circuit reference signal. The  
reference signal frequency is given by the following formula.  
f
= f  
× divisor  
f : Reference signal frequency  
VCO  
VCO  
CLK  
f : Externally input clock frequency  
CLK  
The range over which the reference signal frequency can be varied is determined by the resistor and capacitor  
components connected to the R and C pins (pins 20 and 21) and by the VCO loop filter constant (the values of the  
external components connected to pin 19).  
Supply voltage  
When VCC is 5 V  
When VCC is 6.3 V  
R (k)  
7.5  
C (pF)  
200  
11  
200  
To acquire the widest possible range, it is better to use 6.3 V than 5 V as the supply voltage. It is also possible to  
handle an even wider range than is possible with fixed counts by making the speed discriminator count and the VCO  
divisor switchable.  
The components connected to the R, C, and FIL pins must be connected with lines to their ground pins (pins 29 and  
30) that are as short as possible.  
3. Output Drive Circuit  
To reduce power loss in the output, this IC adopts the direct PWM drive technique. The output transistors (which are  
external to the IC) are always saturated when on, and the motor drive output is adjusted by changing the duty with  
which the output is on. The PWM switching is performed on the high side for each phase (UH, VH, and WH). The  
PWM switching side in the output can be selected to be either the high or low side depending on how the external  
transistors are connected.  
4. Current Limiter Circuit  
The current limiter circuit limits the (peak) current at the value I = V /R (V = 0.26 V (typical), R : current  
RF  
f
RF  
f
detection resistor). The current limitation operation consists of reducing the output duty to suppress the current.  
High accuracy detection can be achieved by connecting the RF and RFGND pin lines near the ends of the current  
detection resistor (Rf).  
5. Speed Lock Range  
The speed lock range is ±6.25% of the fixed speed. When the motor speed is in the lock range, the LD pin (an open  
collector output) goes low. If the motor speed goes out of the lock range, the motor on duty is adjusted according to  
the speed error to control the motor speed to be within the lock range.  
No. 7498-15/19  
LB11923V  
6. Notes on the PWM Frequency  
The PWM frequency is determined by the capacitor (F) connected to the PWM pin.  
When V = 6.3 V: f  
1/(82000 × C)  
1/(66000 × C)  
CC  
PWM  
PWM  
When V = 5.0 V: f  
CC  
A PWM frequency of between 15 and 25 kHz is desirable. If the PWM frequency is too low, the motor may resonate  
at the PWM frequency during motor control, and if that frequency is in the audible range, that resonation may result  
in audible noise. If the PWM frequency is too high, the output transistor switching loss will increase. To make the  
circuit less susceptible to noise, the connected capacitors must be connected to the GND pin (pin 29 and pin 30) with  
lines that are as short as possible.  
7. Hall effect sensor input signals  
An input amplitude of over 100 mV p-p is desirable in the Hall effect sensor inputs. The closer the input waveform is  
to a square wave, the lower the required input amplitude. Inversely, a higher input amplitude is required the closer the  
input waveform is to a triangular wave. Also note that the input DC voltage must be set to be within the common-  
mode input voltage range.  
If noise on the Hall inputs is a problem, that noise must be excluded by inserting capacitors across the inputs. Those  
capacitors must be located as close as possible to the input pins.  
When the Hall inputs for all three phases are in the same state, all the outputs will be in the off state.  
If a Hall sensor IC is used to provide the Hall inputs, those signals can be input to one side (either the + or - side) of  
the Hall effect sensor signal inputs as 0 to VCC level signals if the other side is held fixed at a voltage within the  
common-mode input voltage range that applies when a Hall effect sensors are used.  
8. Forward/Reverse Switching  
The motor rotation direction can be switched using the F/R pin. However, the following notes must be observed if the  
motor direction is switched while the motor is turning.  
• This IC is designed to avoid through currents when switching directions. However, increases in the motor supply  
voltage (due to instantaneous return of motor current to the power supply) during direction switching may cause  
problems. The values of the capacitors inserted between power and ground must be increased if this increase is  
excessive.  
• If the motor current after direction switching exceeds the current limit value, the PWM drive side outputs will be  
turned off, but the opposite side output will be in the short-circuit braking state, and a current determined by the  
motor back EMF voltage and the coil resistance will flow. Applications must be designed so that this current does  
not exceed the ratings of the output transistors used. (The higher the motor speed at which the direction is  
switched, the more severe this problem becomes.)  
9. Brake Switching  
The LB11923V provides short-circuit braking implemented by turning the output transistors for the high side for all  
phases (UH, VH, and WH) on. (The opposite side transistors are turned off for all phases.) Note that the current  
limiter does not operate during braking. During braking, the duty is set to 100%, regardless of the motor speed. The  
current that flows in the output transistors during braking is determined by the motor back EMF voltage and the coil  
resistance. Applications must be designed so that this current does not exceed the ratings of the output transistors  
used. (The higher the motor speed at which braking is applied, the more severe this problem becomes.)  
The braking function can be applied and released with the IC in the start state. This means that motor startup and stop  
control can be performed using the brake pin with the S/S pin held at the low level (the start state). If the startup time  
becomes excessive, it can be reduced by controlling motor startup and stop with the brake pin rather than with the S/S  
pin. (Since the IC goes to the power saving state when stopped, enough time for the VCO circuit to stabilize will be  
required at the beginning of the motor start operation.)  
10. Constraint Protection Circuit  
The LB11923V includes an on-chip constraint protection circuit to protect the IC and the motor in motor constraint  
mode. If the LD output remains high (indicating the locked state) for a fixed period in the start state, the upper side  
(external) transistors are turned off. This time is set by the capacitance of the capacitor attached to the CROCK pin. A  
time of a few seconds can be set with a capacitance of under 0.1 µF.  
No. 7498-16/19  
LB11923V  
When V = 6.3 V: The set time (in seconds) is 37 × C (µF)  
CC  
When V = 5.0 V: The set time (in seconds) is 30 × C (µF)  
CC  
To clear the rotor constrained protection state, the application must either switch to the stop state for a fixed period  
(about 1 ms or longer) or turn off and reapply power.  
If the rotor constrained protection circuit is not used, a 220 kresistor and a 1500 pF capacitor must be connected in  
parallel between the CSD pin and ground. However, in that case, the clock disconnect protection circuit described  
below will no longer function. Since the CSD pin also functions as the power-on reset pin, if the CSD pin were  
connected directly to ground, the IC would go to the power-on reset state and motor drive operation would remain  
off. The power-on reset state is cleared when the CSD pin voltage rises above a level of about 0.64 V.  
11. Clock Disconnect Protection Circuit  
If the clock input goes to the no input state when the IC is in the start state, this protection circuit will operate and  
turn off the PWM output. If the clock is resupplied before the motor constraint protection circuit operates, the IC will  
return to the drive state, but if the motor constraint protection circuit does operate, the IC must either be set  
temporarily (approximately 1 ms or over) to the stop or brake state, or the power must be turned off and reapplied.  
12. Low-Voltage Protection Circuit  
The LB11923V includes a low-voltage protection circuit to protect against incorrect operation when power is first  
applied or if the power-supply voltage (V ) falls. The (external) upper side output transistors are turned off if V  
CC  
CC  
falls under about 3.75 volts, and this function is cleared at about 4.0 volts.  
13. Power Supply Stabilization  
Since this IC is used in applications that draw large output currents, the power-supply line is subject to fluctuations.  
Therefore, capacitors with capacitances adequate to stabilize the power-supply voltage must be connected between  
the V pin and ground. If diodes are inserted in the power-supply line to prevent IC destruction due to reverse  
CC  
power supply connection, since this makes the power-supply voltage even more subject to fluctuations, even larger  
capacitors will be required.  
14. Ground Lines  
The signal system ground and the output system ground must be separated and a single ground point must be taken at  
the connector. Since the output system ground carries large currents, this ground line must be made as short as  
possible.  
Output system ground ... Ground for R and the output diodes  
f
Signal system ground ... Ground for the IC and the IC external components  
15. V  
Pin  
REG  
If a motor drive system is formed from a single power supply, the V  
pin (pin 1) can be used to create the power-  
REG  
supply voltage (about 6.3 V) for this IC. The V  
pin is a shunt regulator and generates a voltage of about 7 volts by  
REG  
passing a current through an external resistor. A stable voltage can be generated by setting the current to value in the  
range 0.2 to 1.5 mA. The external transistors must have current capacities of at least 80 mA (to cover the I + Hall  
CC  
bias current + output current <source> requirements) and they must have voltage handling capacities in excess of the  
motor power-supply voltage. Since the heat generated by these transistor may be a problem, heat sinks may be  
required depending on the packages used. If the IC power-supply voltage (4.4 to 7.0 V) is provided from an external  
circuit, apply that voltage directly to the V pin(pin 37 and pin 38). In that case, the V  
pin must either be left  
CC  
REG  
open or connected to ground.  
16. FG Amplifier  
The FG amplifier is normally implemented as a filter amplifier such as that shown in the application circuits to reject  
noise. Since a clamp circuit has been added at the FG amplifier output, the output amplitude is clamped at about  
3 V p-p, even if the gain is increased.  
Since a Schmitt comparator is inserted after the FG amplifier, applications must set the gain so that the amplifier  
output amplitude is at least 250 mV p-p. (It is desirable that the gain be set so that the amplitude is over 0.5 V p-p at  
the lowest controlled speed to be used.)  
+
The capacitor inserted between the FGIN pin (pin 23) and ground is required for bias voltage stabilization. To make  
the connected capacitor as immune from noise as possible, connect this capacitor to the GND pin (pin 29 and pin 30)  
with a line that is as short as possible.  
No. 7498-17/19  
LB11923V  
17. Integrating Amplifier  
The integrating amplifier integrates the speed error pulses and the phase error pulses and converts them to a speed  
command voltage. At the same time it also sets the control loop gain and frequency characteristics using external  
components.  
The integrating amplifier output (pin 15) is normally connected to the TOC pin (pin 16) using external wiring. In  
cases where it is necessary to switch the integration constant in an application that uses a wide speed range by  
isolating the integrating amplifier output and the PWM control circuit, this type of constant switching application can  
be implemented by adding external operational amplifier, analog switch, and other components.  
In either case, the basic idea is that the operational amplifier output is connected to the TOC pin. (Note that voltages  
in excess of V – 0.5 V must not be applied to the TOC pin.)  
CC  
18. FIL Pin External Components  
The capacitor inserted between the FIL pin and ground is used to suppress ripple on the FIL pin voltage. Therefore,  
application designers must select a capacitance value that provides fully adequate smoothing of the FIL pin voltage  
even at the lowest external clock input frequency used. Also, the FIL pin voltage convergence time (the time until the  
reference signal stabilizes) when the input clock frequency is switched is shortened by connecting a resistor and a  
capacitor in series between the FIL pin and ground. Therefore, designers must select values for the resistor and  
capacitor that give the required convergence time.  
19. R and C Pin External Components  
The maximum range over which the reference signal frequency f  
supply voltage is about a factor of three.  
can be varied when 5 V is used as the V  
CC  
VCO  
When it is desirable to make this range as wide as possible, since the values of the R pin external resistor (R) and the  
C pin external capacitor (C) are determined by the maximum value of the reference signal frequency (f 1) and the  
VCO  
minimum value (V L) of the V power supply due to unit-to-unit variations, R and C can be determined using the  
CC  
CC  
following procedure as a reference.  
(1) Calculate R1 and C1 using the following formulas and determine values for R and C such that the conditions R ≤  
R1 and C C1 will hold taking the sample-to-sample variations (including other issues such as temperature  
characteristics) into account.  
R1 = (V L – 2.2 V) / 280 µA  
CC  
C1 = (280 µA / 0.9 V) × (1/f  
1) × 0.7  
VCO  
(2) The minimum value (f  
2) for the reference signal frequency that can be set for the R and C values determined  
VCO  
in step (1) can be calculated from the following formula if we let R2 and C2 be the smallest values for R and C  
due to the sample-to-sample variations (including other issues such as temperature characteristics). Therefore, the  
range over which the reference signal frequency can be set is f  
1 to f 2.  
VCO  
VCO  
f 2 = 0.38 / (R2 × C2)  
VCO  
(3) The following are the conditions that must be met and the points that require care when determining the values of  
the external components connected to the R and C pins.  
1. The maximum value of the set reference signal frequency must not exceed 1 MHz.  
2. The R pin voltage and the FIL pin voltage must be in the range 0.3 V to (V L – 2.2 V). (V L is the lowest  
CC  
CC  
value of the V supply voltage given the unit-to-unit variations. V L is always greater than or equal to 4.4  
CC  
CC  
V.) However, the lower the R pin voltage, the more susceptible the system will be to ground line noise, and the  
reference signal frequency may become unstable as a result. Therefore the lower end of the R pin voltage range  
must not be used if there is much ground line noise in the system.  
3. Set the value of the R pin external resistor to a value in the range 6.8 kto 15 k. Also, assure that the R pin  
current remains under 280 µA.  
4. Set the value of the C pin external capacitor to a value in the range 150 pF to 1000 pF.  
5. When it is desirable to make the range of the reference signal frequency as wide as possible, set the values of R  
and C to the largest possible values. (However, those values must be lower than the calculated values R1 and  
C1.) Use components with the smallest sample-to-sample variations possible. The V voltage must be made  
CC  
as much higher than 5 V as possible by, for example, using this IC’s VREG pin (7 V shunt regulator), to  
acquire the widest possible range for the reference signal frequency.  
No. 7498-18/19  
LB11923V  
20. NC pin  
Since the NC pins are electrically open with respect to the IC itself, they can be used as intermediate connection  
points for lines in the PCB pattern.  
Specifications of any and all SANYO products described or contained herein stipulate the performance,  
characteristics, and functions of the described products in the independent state, and are not guarantees  
of the performance, characteristics, and functions of the described products as mounted in the customer’s  
products or equipment. To verify symptoms and states that cannot be evaluated in an independent device,  
the customer should always evaluate and test devices mounted in the customer’s products or equipment.  
SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all  
semiconductor products fail with some probability. It is possible that these probabilistic failures could  
give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire,  
or that could cause damage to other property. When designing equipment, adopt safety measures so  
that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective  
circuits and error prevention circuits for safe design, redundant design, and structural design.  
In the event that any and all SANYO products described or contained herein fall under strategic  
products (including services) controlled under the Foreign Exchange and Foreign Trade Control Law of  
Japan, such products must not be exported without obtaining export license from the Ministry of  
International Trade and Industry in accordance with the above law.  
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or  
mechanical, including photocopying and recording, or any information storage or retrieval system,  
or otherwise, without the prior written permission of SANYO Electric Co., Ltd.  
Any and all information described or contained herein are subject to change without notice due to  
product/technology improvement, etc. When designing equipment, refer to the “Delivery Specification”  
for the SANYO product that you intend to use.  
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not  
guaranteed for volume production. SANYO believes information herein is accurate and reliable, but  
no guarantees are made or implied regarding its use or any infringements of intellectual property rights  
or other rights of third parties.  
This catalog provides information as of February, 2004. Specifications and information herein are subject  
to change without notice.  
PS No. 7498-19/19  
配单直通车
LB11923V产品参数
型号:LB11923V
生命周期:Transferred
IHS 制造商:SANYO ELECTRIC CO LTD
零件包装代码:SSOP
包装说明:LSSOP, SSOP44,.3
针数:44
Reach Compliance Code:unknown
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.36
Is Samacsys:N
模拟集成电路 - 其他类型:BRUSHLESS DC MOTOR CONTROLLER
JESD-30 代码:R-PDSO-G44
长度:15 mm
功能数量:1
端子数量:44
最高工作温度:80 °C
最低工作温度:-20 °C
最大输出电流:0.03 A
封装主体材料:PLASTIC/EPOXY
封装代码:LSSOP
封装等效代码:SSOP44,.3
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, LOW PROFILE, SHRINK PITCH
电源:6.3 V
认证状态:Not Qualified
座面最大高度:1.7 mm
子类别:Motion Control Electronics
最大供电电流 (Isup):29500 mA
最大供电电压 (Vsup):7 V
最小供电电压 (Vsup):4.4 V
标称供电电压 (Vsup):6.3 V
表面贴装:YES
技术:BIPOLAR
温度等级:COMMERCIAL EXTENDED
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
宽度:5.6 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!