欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • LTC2153CUJ-14#TRPBF
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • LTC2153CUJ-14#TRPBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LTC2153CUJ-14#TRPBF 现货库存
  • 数量
  • 厂家ADI 
  • 封装40-Lead QFN (6mm x 6mm x 0.75mm w/ EP) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • LTC2153CUJ-14#TRPBF图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • LTC2153CUJ-14#TRPBF
  • 数量6000 
  • 厂家LT 
  • 封装40-QFN(6x6) 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • LTC2153CUJ-14#TRPBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LTC2153CUJ-14#TRPBF
  • 数量
  • 厂家ADI 
  • 封装40-Lead QFN (6mm x 6mm x 0.75mm w/ EP) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • LTC2153CUJ-14#TRPBF图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • LTC2153CUJ-14#TRPBF
  • 数量5000 
  • 厂家LINEAR TECHNOLOGY 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • LTC2153CUJ-14#TRPBF图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • LTC2153CUJ-14#TRPBF
  • 数量2000 
  • 厂家ADI/LT 
  • 封装QFN-40 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:2241元
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • LTC2153CUJ-14#TRPBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LTC2153CUJ-14#TRPBF
  • 数量
  • 厂家ADI 
  • 封装40-Lead QFN (6mm x 6mm x 0.75mm w/ EP) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • LTC2153CUJ-14#TRPBF图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • LTC2153CUJ-14#TRPBF
  • 数量98622 
  • 厂家ADI/亚德诺 
  • 封装QFN-40 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • LTC2153CUJ-14#TRPBF图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • LTC2153CUJ-14#TRPBF
  • 数量10389 
  • 厂家Linear Technology/Analog Devices 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号LTC2153IUJ-12#PBF的Datasheet PDF文件预览

LTC2153-12  
12-Bit 310Msps ADC  
FeaTures  
DescripTion  
The LTC®2153-12 is a 310Msps 12-bit A/D converter  
designed for digitizing high frequency, wide dynamic  
rangesignals.Itisperfectfordemandingcommunications  
applications with AC performance that includes 67.6dB  
SNR and 88dB spurious free dynamic range (SFDR). The  
1.25GHz input bandwidth allows the ADC to undersample  
high frequencies with good performance. The latency is  
only six clock cycles.  
n
67.6dBFS SNR  
n
88dB SFDR  
n
Low Power: 378mW Total  
n
Single 1.8V Supply  
n
DDR LVDS Outputs  
n
1.32V Input Range  
P-P  
n
n
n
n
n
n
1.25GHz Full Power Bandwidth S/H  
Optional Clock Duty Cycle Stabilizer  
Low Power Sleep and Nap Modes  
Serial SPI Port for Configuration  
Pin-Compatible 12-Bit Versions  
40-Lead (6mm × 6mm) QFN Package  
DC specs include 0.6LSB INL (typ), 0.1LSB DNL (typ)  
and no missing codes over temperature. The transition  
noise is 0.6LSB  
.
RMS  
The digital outputs are double data rate (DDR) LVDS.  
applicaTions  
+
The ENC and ENC inputs can be driven differentially with  
asinewave,PECL,LVDS,TTL,orCMOSinputs.Anoptional  
clock duty cycle stabilizer allows high performance at full  
speed for a wide range of clock duty cycles.  
n
Communications  
n
Cellular Basestations  
n
Software Defined Radios  
n
Medical Imaging  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
High Definition Video  
n
Testing and Measurement Instruments  
Typical applicaTion  
LTC2153-12 32K Point 2-Tone FFT,  
fIN = 71MHz and 69MHz, 310Msps  
V
DD  
0
OV  
DD  
–20  
–40  
D10_11  
12-BIT  
PIPELINED  
ADC  
CORRECTION  
LOGIC  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
DDR  
LVDS  
S/H  
D0_1  
–60  
OGND  
CLOCK/DUTY  
CYCLE  
CONTROL  
–80  
CLOCK  
GND  
–100  
–120  
215312 TA01a  
0
20 40 60 80 100 120 140  
FREQUENCY (MHz)  
215312 TA01b  
215312fa  
For more information www.linear.com/LTC2153-12  
1
LTC2153-12  
absoluTe MaxiMuM raTings pin conFiguraTion  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage  
V , OV ................................................ –0.3V to 2V  
DD  
DD  
Analog Input Voltage  
+
40 39 38 37 36 35 34 33 32 31  
A
, A , PAR/SER,  
IN  
IN  
V
V
1
2
3
4
5
6
7
8
9
30  
29  
28  
OV  
DD  
DD  
DD  
+
SENSE (Note 3)........................ –0.3V to (V + 0.2V)  
DD  
D6_7  
D6_7  
Digital Input Voltage  
GND  
+
+
ENC , ENC (Note 3)................ –0.3V to (V + 0.3V)  
+
DD  
A
27 CLKOUT  
IN  
CS, SDI, SCK (Note 4)........................... –0.3V to 3.9V  
41  
GND  
A
26 CLKOUT  
+
IN  
SDO (Note 4)............................................. –0.3V to 3.9V  
GND  
SENSE  
VREF  
25  
D4_5  
+
24 D4_5  
23  
Digital Output Voltage................ –0.3V to (OV + 0.3V)  
DD  
D2_3  
22 D2_3  
Operating Temperature Range  
VCM  
LTC2153C ................................................ 0°C to 70°C  
LTC2153I .............................................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
GND 10  
21  
OGND  
11 12 13 14 15 16 17 18 19 20  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
T
= 150°C, θ = 33°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2153CUJ-12#PBF  
LTC2153IUJ-12#PBF  
TAPE AND REEL  
LTC2153CUJ-12#TRPBF LTC2153UJ-12  
LTC2153IUJ-12#TRPBF LTC2153UJ-12  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
215312fa  
For more information www.linear.com/LTC2153-12  
2
LTC2153-12  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
PARAMETER  
CONDITIONS  
MIN  
12  
TYP  
MAX  
UNITS  
Bits  
l
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
Differential Analog Input (Note 6)  
Differential Analog Input  
(Note 7)  
–1.8  
0.7  
–12  
0.6  
0.1  
5
1.8  
0.7  
12  
LSB  
LSB  
mV  
Gain Error  
Internal Reference  
External Reference  
1.5  
1
%FS  
%FS  
l
–4  
3
Offset Drift  
20  
µV/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
30  
10  
ppm/°C  
ppm/°C  
Transition Noise  
0.6  
LSB  
RMS  
analog inpuT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
1.74V < V < 1.9V  
MIN  
TYP  
MAX  
UNITS  
+
V
V
V
Analog Input Range (A – A  
)
1.32  
V
P-P  
IN  
IN  
IN  
DD  
+
l
l
l
l
l
Analog Input Common Mode (A + A )/2 Differential Analog Input (Note 8)  
V
– 20mV  
V
CM  
V + 20mV  
CM  
V
IN(CM)  
SENSE  
IN  
IN  
CM  
External Voltage Reference Applied to SENSE External Reference Mode  
1.230  
–1  
1.250  
1.270  
V
µA  
µA  
µA  
ns  
+
I
I
I
t
t
Analog Input Leakage Current  
0 < A , A < V , No Encode  
1
1
1
IN1  
IN  
IN  
DD  
DD  
PAR/SER Input Leakage Current  
SENSE Input Leakage Current  
0 < PAR/SER < V  
–1  
IN2  
1.23V < SENSE < 1.27V  
–1  
IN3  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Jitter  
Analog Input Common Mode Rejection Ratio  
Full-Power Bandwidth  
1
AP  
0.15  
75  
ps  
RMS  
JITTER  
CMRR  
BW-3B  
dB  
1250  
MHz  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
65.8  
70  
TYP  
MAX  
UNITS  
SNR  
Signal-to-Noise Ratio  
15MHz Input  
70MHz Input  
140MHz Input  
67.6  
67.1  
67.0  
dBFS  
dBFS  
dBFS  
l
l
l
l
SFDR  
Spurious Free Dynamic Range 2nd or 3rd  
Harmonic  
15MHz Input  
70MHz Input  
140MHz Input  
88  
85  
80  
dBFS  
dBFS  
dBFS  
Spurious Free Dynamic Range 4th Harmonic  
or Higher  
15MHz Input  
70MHz Input  
140MHz Input  
98  
95  
90  
dBFS  
dBFS  
dBFS  
80  
S/(N+D) Signal-to-Noise Plus Distortion Ratio  
15MHz Input  
70MHz Input  
140MHz Input  
67.1  
67.0  
66.9  
dBFS  
dBFS  
dBFS  
65  
215312fa  
For more information www.linear.com/LTC2153-12  
3
LTC2153-12  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
MAX  
UNITS  
V
CM  
Output Voltage  
I
0.439 •  
– 18mV  
0.439 •  
0.439 •  
V
OUT  
V
DD  
V
DD  
V
+ 18mV  
DD  
V
V
V
V
V
V
Output Temperature Drift  
Output Resistance  
Output Voltage  
37  
4
ppm/°C  
Ω
CM  
–1mA < I  
< 1mA  
CM  
OUT  
I
= 0  
1.225  
1.250  
30  
1.275  
V
REF  
REF  
REF  
REF  
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400µA < I  
< 1mA  
7
OUT  
1.74V < V < 1.9V  
0.6  
mV/V  
DD  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
(Note 9)  
MIN  
1.74  
1.74  
TYP  
1.8  
MAX  
1.9  
UNITS  
l
l
l
V
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
Digital Supply Current  
V
V
DD  
OV  
DD  
(Note 9)  
1.8  
1.9  
I
I
182  
205  
mA  
VDD  
OVDD  
l
l
1.75mA LVDS Mode  
3.5mA LVDS Mode  
28  
48.5  
34  
52  
mA  
mA  
l
l
P
P
P
Power Dissipation  
Sleep Mode Power  
Nap Mode Power  
1.75mA LVDS Mode  
3.5mA LVDS Mode  
378  
415  
430  
463  
mW  
mW  
DISS  
SLEEP  
NAP  
Clock Disabled  
<5  
<5  
mW  
mW  
Clocked at f  
S(MAX)  
Clocked at f  
124  
mW  
S(MAX)  
DigiTal inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
l
l
V
V
Differential Input Voltage  
(Note 8)  
0.2  
1.1  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set (Note 8)  
1.2  
V
V
ICM  
1.5  
R
Input Resistance  
Input Capacitance  
(See Figure 2)  
(Note 8)  
10  
2
kΩ  
pF  
IN  
C
IN  
DIGITAL INPUTS (CS, SDI, SCK)  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
= 1.8V  
1.3  
V
V
IH  
IL  
DD  
DD  
IN  
= 1.8V  
0.6  
10  
I
IN  
= 0V to 3.6V  
–10  
µA  
pF  
C
Input Capacitance  
(Note 8)  
3
200  
4
IN  
SDO OUTPUT (Open-Drain Output. Requires 2k Pull-Up Resistor if SDO Is Used)  
R
Logic Low Output Resistance to GND  
Logic High Output Leakage Current  
Output Capacitance  
V
= 1.8V, SDO = 0V  
DD  
Ω
µA  
pF  
OL  
l
I
SDO = 0V to 3.6V  
(Note 8)  
–10  
10  
OH  
C
OUT  
215312fa  
For more information www.linear.com/LTC2153-12  
4
LTC2153-12  
DigiTal inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
DIGITAL DATA OUTPUTS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
OD  
Differential Output Voltage  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
125  
350  
175  
454  
250  
mV  
mV  
l
l
V
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.125  
1.250  
1.250  
100  
1.375  
1.375  
V
V
Ω
OS  
R
Termination Enabled, OV = 1.8V  
TERM  
DD  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
f
t
Sampling Frequency  
ENC Low Time (Note 8)  
(Note 9)  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
10  
1.5  
1.2  
310  
50  
50  
MHz  
ns  
ns  
S
L
l
l
1.61  
1.61  
l
l
t
H
ENC High Time (Note 8)  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
1.5  
1.2  
1.61  
1.61  
50  
50  
ns  
ns  
DIGITAL DATA OUTPUTS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
t
t
t
ENC to Data Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Pipeline Latency  
C = 5pF (Note 8)  
1.7  
2
2.3  
ns  
D
L
C = 5pF (Note 8)  
L
1.3  
0.3  
6
1.6  
0.4  
2
0.55  
6
ns  
ns  
C
t – t (Note 8)  
SKEW  
D
C
Cycles  
SPI Port Timing (Note 8)  
l
l
t
SCK Period  
Write Mode  
Readback Mode C = 20pF, R  
40  
250  
ns  
ns  
SCK  
= 2k  
PULLUP  
SDO  
l
l
l
l
l
t
t
t
t
t
CS to SCK Set-Up Time  
SCK to CS Hold Time  
SDI Set-Up Time  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK Falling to SDO Valid  
Readback Mode, C  
= 20pF, R  
= 2k  
125  
SDO  
PULLUP  
+
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to GND with GND and OGND  
shorted (unless otherwise noted).  
Note 5: V = OV = 1.8V, f  
= 310MHz, differential ENC /ENC =  
P-P  
DD  
DD  
SAMPLE  
2V sine wave, input range = 1.32V with differential drive, unless  
P-P  
otherwise noted.  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 7: Offset error is the offset voltage measured from –0.5LSB when the  
output code flickers between 0000 0000 0000 and 1111 1111 1111 in 2’s  
complement output mode.  
Note 3: When these pin voltages are taken below GND or above V , they  
DD  
will be clamped by internal diodes. This product can handle input currents  
of greater than 100mA below GND or above V without latchup.  
DD  
Note 4: When these pin voltages are taken below GND they will be  
clamped by internal diodes. When these pin voltages are taken above V  
they will not be clamped by internal diodes. This product can handle input  
currents of greater than 100mA below GND without latchup.  
Note 8: Guaranteed by design, not subject to test.  
Note 9: Recommended operating conditions.  
DD  
215312fa  
For more information www.linear.com/LTC2153-12  
5
LTC2153-12  
Typical perForMance characTerisTics  
LTC2153-12: Integral Nonlinearity  
(INL)  
LTC2153-12: Differential  
Nonlinearity (DNL)  
LTC2153-12: 32K Point FFT,  
fIN = 15MHz, –1dBFS, 310Msps  
0.50  
0.25  
0
2.0  
1.5  
0
–20  
1.0  
–40  
0.5  
0
–60  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–0.25  
–0.50  
–100  
–120  
0
20 40 60 80 100 120 140  
FREQUENCY (MHz)  
0
4095  
0
4095  
OUTPUT CODE  
OUTPUT CODE  
215312 G02  
215312 G01  
215312 G03  
LTC2153-12: 32K Point FFT,  
fIN = 70MHz, –1dBFS, 310Msps  
LTC2153-12: 32K Point FFT,  
fIN = 150MHz, –1dBFS, 310Msps  
LTC2153-12: 32K Point FFT,  
fIN = 185MHz, –1dBFS, 310Msps  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
20 40 60 80 100 120 140  
FREQUENCY (MHz)  
0
20 40 60 80 100 120 140  
FREQUENCY (MHz)  
0
20 40 60 80 100 120 140  
FREQUENCY (MHz)  
215312 G05  
215312 G04  
215312 G06  
LTC2153-12: 32K Point FFT,  
fIN = 223MHz, –1dBFS, 310Msps  
LTC2153-12: 32K Point FFT,  
fIN = 383MHz, –1dBFS, 310Msps  
LTC2153-12: 32K Point FFT,  
fIN = 421MHz, –1dBFS, 310Msps  
0
–20  
0
0
–20  
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
20 40 60 80 100 120 140  
FREQUENCY (MHz)  
0
20 40 60 80 100 120 140  
FREQUENCY (MHz)  
0
20 40 60 80 100 120 140  
FREQUENCY (MHz)  
215312 G08  
215312 G09  
215312 G07  
215312fa  
For more information www.linear.com/LTC2153-12  
6
LTC2153-12  
Typical perForMance characTerisTics  
LTC2153-12: 32K Point FFT,  
fIN = 907MHz, –1dBFS, 310Msps  
LTC2153-12: 32K Point 2-Tone FFT,  
fIN = 71MHz and 69MHz, 310Msps  
LTC2153-12: 32K Point FFT,  
fIN = 567MHz, –1dBFS, 310Msps  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
20 40 60 80 100 120 140  
FREQUENCY (MHz)  
20 40 60 80 100 120 140  
FREQUENCY (MHz)  
20 40 60 80 100 120 140  
FREQUENCY (MHz)  
0
0
215312 G10  
215312 G11  
215312 G12  
LTC2153-12: SNR vs Input Level,  
fIN = 70MHz, 1.32V Range,  
310Msps  
LTC2153-12: SFDR vs Input Level,  
fIN = 70MHz, 1.32V Range, 310Msps  
LTC2153-12: Shorted Input Histogram  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
dBFS  
120  
100  
80  
60  
40  
20  
0
70  
60  
50  
40  
30  
20  
10  
0
dBFS  
dBc  
dBc  
–50 –40 –30 –20 –10  
0
–50 –40 –30 –20 –10  
AMPLITUDE (dBFS)  
0
–90 –80 –70 –60  
–70 –60  
2052  
2056  
2060  
2064  
AMPLITUDE (dBFS)  
OUTPUT CODE  
215312 G13  
215312 G14  
215312 G15  
LTC2153-12: SFDR vs Input  
Frequency, –1dBFS, 1.32V Range,  
310Msps  
LTC2153-12: SNR vs Input  
Frequency, –1dBFS, 1.32V Range,  
310Msps  
75  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
65  
60  
55  
50  
45  
40  
0
200 300 400 500 600 700 800 900 1000  
100  
0
200 300 400 500 600 700 800 900 1000  
100  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
215312 G17  
215312 G16  
215312fa  
For more information www.linear.com/LTC2153-12  
7
LTC2153-12  
Typical perForMance characTerisTics  
LTC2153-12: IOVDD vs Sample Rate,  
15MHz Sine Wave Input, –1dBFS  
LTC2153-12: IVDD vs Sample Rate,  
15MHz Sine Wave Input, –1dBFS  
LTC2153-12: Frequency Response  
200  
190  
180  
170  
160  
150  
140  
130  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
LVDS CURRENT  
3.5mA  
LVDS CURRENT  
1.75mA  
62  
124  
186  
248  
310  
50  
100 150 200 250 300  
0
0
100  
1000  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
INPUT FREQUENCY (MHz)  
215312 G18  
215312 G19  
215312 G20  
pin FuncTions  
DD  
ground with 0.1µF ceramic capacitor. Pins 1, 2 can share  
a bypass capacitor.  
V
(Pins 1, 2): 1.8V Analog Power Supply. Bypass to  
ENC (Pin 12): Encode Complement Input. Conversion  
starts on the falling edge.  
NC (Pins 16, 17): Not Connected.  
GND (Pins 3, 6, 10, 13, 35, Exposed Pad Pin 41): ADC  
Power Ground. The exposed pad must be soldered to the  
PCB ground.  
OV (Pins 20, 30): 1.8V Output Driver Supply. Bypass  
DD  
eachpintogroundwithseparate0.1µFceramiccapacitors.  
OGND (Pin 21): LVDS Driver Ground.  
+
A
IN  
A
IN  
(Pin 4): Positive Differential Analog Input.  
(Pin 5): Negative Differential Analog Input.  
SDO (Pin 36): Serial Interface Data Output. In serial  
programming mode, (PAR/SER = 0V), SDO is the optional  
serialinterfacedataoutput. DataonSDOisreadbackfrom  
themodecontrolregistersandcanbelatchedonthefalling  
edge of SCK. SDO is an open-drain N-channel MOSFET  
output that requires an external 2k pull-up resistor from  
1.8V to 3.3V. If readback from the mode control registers  
is not needed, the pull-up resistor is not necessary and  
SDO can be left unconnected.  
SENSE (Pin 7): Reference Programming Pin. Connecting  
SENSE to V selects the internal reference and a 0.66V  
DD  
input range. An external reference between 1.23V and  
1.27V applied to SENSE selects an input range of 0.528  
V  
.
SENSE  
V
(Pin 8): Reference Voltage Output. Bypass to ground  
REF  
with a 2.2µF ceramic capacitor. Nominally 1.25V.  
SDI (Pin 37): Serial Interface Data Input. In serial pro-  
gramming mode, (PAR/SER = 0V), SDI is the serial  
interface data input. Data on SDI is clocked into the mode  
control registers on the rising edge of SCK. In parallel  
V
(Pin 9): Common Mode Bias Output; nominally equal  
CM  
to 0.439 • V . V should be used to bias the common  
DD CM  
mode of the analog inputs. Bypass to ground with a 0.1µF  
ceramic capacitor.  
programming mode (PAR/SER = V ), SDI selects 3.5mA  
DD  
+
ENC (Pin 11): Encode Input. Conversion starts on the  
rising edge.  
or 1.75mA LVDS output current (see Table 2).  
215312fa  
For more information www.linear.com/LTC2153-12  
8
LTC2153-12  
pin FuncTions  
SCK (Pin 38): Serial Interface Clock Input. In serial  
programming mode, (PAR/SER = 0V), SCK is the se-  
rial interface clock input. In parallel programming mode  
LVDS Outputs (DDR LVDS)  
The following pins are differential LVDS outputs. The  
output current level is programmable. There is an optional  
internal 100Ω termination resistor between the pins of  
each LVDS output pair.  
(PAR/SER = V ), SCK controls the sleep mode (see  
DD  
Table 2).  
CS (Pin 39): Serial Interface Chip Select Input. In serial  
programming mode, (PAR/SER = 0V), CS is the serial  
interfacechipselectinput. WhenCSislow, SCKisenabled  
for shifting data on SDI into the mode control registers.  
+
+
D
0_1  
/D  
0_1  
toD  
/D  
10_11  
(Pins18/19,22/23,24/25,  
10_11  
28/29, 31/32, 33/34): Double-Data Rate Digital Outputs.  
Two data bits are multiplexed onto each differential output  
pair. The even data bits (D0, D2, D4, D6, D8, D10) appear  
when CLKOUT is low. The odd data bits (D1, D3, D5, D7,  
D9, D11) appear when CLKOUT is high.  
In parallel programming mode (PAR/SER = V ), CS  
+
DD  
controls the clock duty cycle stabilizer (see Table 2).  
+
PAR/SER (Pin 40): Programming Mode Selection Pin.  
Connect to ground to enable the serial programming  
mode. CS, SCK, SDI and SDO become a serial interface  
+
CLKOUT , CLKOUT (Pins 26, 27): Data Output Clock.  
The digital outputs normally transition at the same time  
+
as the falling and rising edges of CLKOUT . The phase of  
that control the A/D operating modes. Connect to V to  
DD  
+
CLKOUT canalsobedelayedrelativetothedigitaloutputs  
enabletheparallelprogrammingmodewhereCS,SCKand  
SDI become parallel logic inputs that control a reduced  
set of the A/D operating modes. PAR/SER should be con-  
by programming the mode control registers.  
+
+
OF , OF (Pins 14, 15): Over/Underflow Digital Output.  
OF is high when an overflow or underflow has occurred.  
nected directly to ground or the V of the part and not  
DD  
+
This underflow is valid only when CLKOUT is low. In the  
be driven by a logic signal.  
second half clock cycle, the overflow is set to 0.  
FuncTional block DiagraM  
V
DD  
OV  
DD  
D10_11  
12-BIT  
PIPELINED  
ADC  
CORRECTION  
LOGIC  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
DDR  
LVDS  
S/H  
D0_1  
V
CM  
V
CM  
0.1µF  
OGND  
BUFFER  
BUFFER  
GND  
CLOCK  
CS  
CLOCK/DUTY  
CYCLE CONTROL  
SCK  
SDI  
SPI  
SDO  
PAR/SER  
V
REF  
2.2µF  
1.25V  
REFERENCE  
GND  
GND  
RANGE  
SELECT  
SENSE  
215312 F01  
Figure 1. Functional Block Diagram  
215312fa  
For more information www.linear.com/LTC2153-12  
9
LTC2153-12  
TiMing DiagraMs  
Double Data Rate Output Timing, All Outputs Are Differential LVDS  
t
AP  
N
N + 3  
N + 2  
N + 1  
t
H
t
L
+
ENC  
ENC  
+
CLKOUT  
CLKOUT  
t
C
+
D0_1  
D0_1  
D0  
N-6  
D1  
N-6  
D0  
N-5  
D1  
D0  
N-4  
D1  
N-4  
N-5  
t
D
+
D10_11  
D10_11  
D10  
N-6  
D11  
N-6  
D10  
D11  
N-5  
D10  
N-4  
D11  
N-4  
N-5  
+
OF  
OF  
N-6  
INVALID OF  
INVALID OF  
INVALID  
N-5  
N-4  
OF  
215312 TD01  
t
SKEW  
SPI Port Timing (Readback Mode)  
t
S
t
DS  
t
DH  
t
t
H
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
D3  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDO  
215312 TD02  
HIGH IMPEDANCE  
215312fa  
For more information www.linear.com/LTC2153-12  
10  
LTC2153-12  
applicaTions inForMaTion  
CONVERTER OPERATION  
INPUT DRIVE CIRCUITS  
Input Filtering  
The LTC2153-12 is a 12-bit 310Msps A/D converter  
powered by a single 1.8V supply. The analog inputs must  
be driven differentially. The encode inputs should be  
driven differentially for optimal performance. The digital  
outputsaredoubledatarateLVDS. Additionalfeaturescan  
be chosen by programming the mode control registers  
through a serial SPI port.  
If possible, there should be an RC lowpass filter right at  
the analog inputs. This lowpass filter isolates the drive  
circuitryfromtheA/Dsample-and-holdswitching,andalso  
limits wide band noise from the drive circuitry. Figure 3  
shows an example of an input RC filter. The RC compo-  
nent values should be chosen based on the application’s  
specific input frequency.  
ANALOG INPUT  
The analog input is a differential CMOS sample-and-  
hold circuits (Figure 2). The inputs must be driven differ-  
Transformer-Coupled Circuits  
Figure 3 shows the analog input being driven by an RF  
transformer with the common mode supplied through a  
entially around a common mode voltage set by the V  
CM  
output pin, which is nominally 0.439 • V . For the 1.32V  
DD  
pair of resistors via the V pin.  
CM  
input range, the input should swing from V – 0.33V to  
CM  
At higher input frequencies a transmission line balun  
transformer(Figures4and5)hasbetterbalance,resulting  
in lower A/D distortion.  
V
+ 0.33V. There should be 180° phase difference  
CM  
between the inputs.  
10Ω  
V
CM  
0.1µF  
10pF  
LTC2153-12  
+
0.1µF  
T1  
1:1  
4.7Ω  
LTC2153-12  
IN  
A
A
IN  
V
DD  
25Ω  
25Ω  
R
ON  
2pF  
2pF  
20Ω  
0.1µF  
4.7Ω  
+
A
A
IN  
2pF  
2pF  
IN  
V
DD  
T1: MACOM ETC1-1T  
215312 F03  
R
20Ω  
ON  
Figure 3. Analog Input Circuit Using a Transformer.  
Recommended for Input Frequencies from 5MHz to 70MHz  
IN  
V
DD  
10Ω  
V
CM  
1.2V  
10k  
0.1µF  
LTC2153-12  
0.1µF  
4.7Ω  
+
IN  
A
IN  
+
ENC  
45Ω  
45Ω  
100Ω  
ENC  
0.1µF  
4.7Ω  
0.1µF  
A
IN  
215312 F02  
T2: MABA  
007159-000000  
T1: WBC1-1L  
215312 F04  
Figure 2. Equivalent Input Circuit. Only One  
of Two Analog Channels Is Shown  
Figure 4. Recommended Front-End Circuit for  
Input Frequencies from 15MHz to 150MHz  
215312fa  
For more information www.linear.com/LTC2153-12  
11  
LTC2153-12  
applicaTions inForMaTion  
Amplifier Circuits  
V
CM  
0.1µF  
Figure 6 shows the analog input being driven by a high  
speed differential amplifier. The output of the amplifier is  
AC coupled to the A/D so the amplifier’s output common  
mode voltage can be optimally set to minimize distortion.  
10Ω  
LTC2153-12  
0.1µF  
4.7Ω  
+
IN  
A
IN  
45Ω  
45Ω  
100Ω  
0.1µF  
At very high frequencies an RF gain block will often have  
lower distortion than a differential amplifier. If the gain  
block is single-ended, then a transformer circuit (Figures  
3 and 5) should convert the signal to differential before  
driving the A/D. The A/D cannot be driven single-ended.  
0.1µF  
4.7Ω  
A
IN  
T1: MABA  
007159-000000  
215312 F05  
Figure 5. Recommended Front-End Circuit for  
Input Frequencies from 150MHz to 900MHz  
Reference  
The LTC2153-12 has an internal 1.25V voltage reference.  
For a 1.32V input range with internal reference, connect  
SENSE to V . For a 1.32V input range with an external  
DD  
reference, apply a 1.25V reference voltage to SENSE  
(Figure 7).  
V
CM  
0.1µF  
Encode Input  
50Ω  
50Ω  
LTC2153-12  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should  
be treated as analog signals—do not route them next to  
digital traces on the circuit board.  
3pF  
0.1µF  
4.7Ω  
+
INPUT  
A
A
IN  
3pF  
3pF  
0.1µF  
4.7Ω  
IN  
The encode inputs are internally biased to 1.2V through  
10k equivalent resistance (Figure 8). If the common mode  
of the driver is within 1.1V to 1.5V, it is possible to drive  
the encode inputs directly. Otherwise a transformer or  
coupling capacitors are needed (Figures 9 and 10). The  
maximum (peak) voltage of the input signal should never  
215312 F06  
Figure 6. Front-End Circuit Using a High  
Speed Differential Amplifier  
exceed V +0.1V or go below –0.1V.  
DD  
LTC2153-12  
V
DD  
LTC2153-12  
5Ω  
V
REF  
1.25V  
1.2V  
2.2µF  
10k  
+
ENC  
ENC  
SCALER/  
BUFFER  
ADC  
REFERENCE  
SENSE  
SENSE  
DETECTOR  
215312 F07  
215312 F08  
Figure 8. Equivalent Encode Input Circuit  
Figure 7. Reference Circuit  
215312fa  
For more information www.linear.com/LTC2153-12  
12  
LTC2153-12  
applicaTions inForMaTion  
Clock Duty Cycle Stabilizer  
DIGITAL OUTPUTS  
For good performance the encode signal should have a  
50% ( 5%) duty cycle. If the optional clock duty cycle  
stabilizer circuit is enabled, the encode duty cycle can  
vary from 30% to 70% and the duty cycle stabilizer will  
maintainaconstant50%internaldutycycle.Thedutycycle  
stabilizer is enabled via SPI Register A2 (see Table 3) or  
by CS in parallel programming mode.  
ThedigitaloutputsaredoubledatarateLVDSsignals.Two  
data bits are multiplexed and output on each differential  
+
output pair. There are six LVDS output pairs, D0_1 /  
+
+
+
D0_1 through D10_11 /D10_11 . Overflow (OF /OF )  
and the data output clock (CLKOUT /CLKOUT ) each have  
an LVDS output pair.  
By default the outputs are standard LVDS levels: 3.5mA  
outputcurrentanda1.25Voutputcommonmodevoltage.  
Forapplicationswherethesamplerateneedstobechanged  
quickly, the clock duty cycle stabilizer can be disabled. In  
this case, care should be taken to make the clock a 50%  
( 5%) duty cycle.  
LTC2153-12  
V
DD  
1.2V  
10k  
0.1µF  
50Ω  
100Ω  
0.1µF  
50Ω  
T1: MACOM  
ETC1-1-13  
215312 F09  
Figure 9. Sinusoidal Encode Drive  
LTC2153-12  
V
DD  
1.2V  
10k  
0.1µF  
+
ENC  
PECL OR  
LVDS INPUT  
100Ω  
0.1µF  
ENC  
215312 F10  
Figure 10. PECL or LVDS Encode Drive  
215312fa  
For more information www.linear.com/LTC2153-12  
13  
LTC2153-12  
applicaTions inForMaTion  
Programmable LVDS Output Current  
bits. When CLKINV is set to 0 in the SPI register A2, the  
+
OF signal is valid when CLKOUT is low, as shown in the  
The default output driver current is 3.5mA. This current  
can be adjusted by serially programming mode control  
register A3 (see Table 3). Available current levels are  
1.75mA, 2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA.  
Timing Diagram.  
Phase Shifting the Output Clock  
To allow adequate set-up and hold time when latching the  
+
Optional LVDS Driver Internal Termination  
output data, the CLKOUT signal may need to be phase  
shifted relative to the data output bits. Most FPGAs have  
this feature; this is generally the best place to adjust the  
timing.  
In most cases, using just an external 100Ω termination  
resistor will give excellent LVDS signal integrity. In addi-  
tion, an optional internal 100Ω termination resistor can  
beenabledbyseriallyprogrammingmodecontrolregister  
A3. The internal termination helps absorb any reflections  
caused by imperfect termination at the receiver. When the  
internal termination is enabled, the output driver current  
is doubled to maintain the same output voltage swing.  
+
Alternatively, the ADC can also phase shift the CLKOUT /  
CLKOUT signals by serially programming mode control  
register A2. The output clock can be shifted by 0°, 45°,  
90°, or 135°. To use the phase shifting feature the clock  
duty cycle stabilizer must be turned on. Another con-  
+
trol register bit can invert the polarity of CLKOUT and  
Overflow Bit  
CLKOUT , independently of the phase shift. The combina-  
tion of these two features enables phase shifts of 45° up  
to 315° (Figure 11).  
The overflow output bit (OF) outputs a logic high when  
the analog input is either overranged or underranged.  
The overflow bit has the same pipeline latency as the data  
+
ENC  
D0-D13, OF  
MODE CONTROL BITS  
PHASE  
SHIFT  
CLKINV  
0
CLKPHASE1 CLKPHASE0  
0°  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
45°  
90°  
0
0
0
1
1
1
1
135°  
180°  
225°  
270°  
315°  
+
CLKOUT  
215312 F11  
Figure 11. Phase Shifting CLKOUT  
215312fa  
For more information www.linear.com/LTC2153-12  
14  
LTC2153-12  
applicaTions inForMaTion  
DATA FORMAT  
output before it is transmitted off chip, these unwanted  
tones can be randomized which reduces the unwanted  
tone amplitude.  
Table 1 shows the relationship between the analog input  
voltage, the digital data output bits and the overflow bit.  
By default the output data format is offset binary. The 2’s  
complement format can be selected by serially program-  
ming mode control register A4.  
The digital output is randomized by applying an exclu-  
sive-OR logic operation between the LSB and all other  
data output bits. To decode, the reverse operation is  
applied—an exclusive-OR operation is applied between  
the LSB and all other bits. The LSB, OF and CLKOUT out-  
puts are not affected. The output randomizer is enabled  
by serially programming mode control register A4.  
Table 1. Output Codes vs Input Voltage  
+
A
– A  
D11-D0  
(OFFSET BINARY)  
D11-D0  
(2’s COMPLEMENT)  
IN  
IN  
(1.32V Range) OF  
>0.66V  
1
0
0
0
0
0
0
0
0
1
1111 1111 1111  
1111 1111 1111  
1111 1111 1110  
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
0111 1111 1111  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1111 1111 1110  
1000 0000 0001  
1000 0000 0000  
1000 0000 0000  
+0.66V  
Alternate Bit Polarity  
+0.6596777V  
+0.0003222V  
+0.000000V  
–0.0003222V  
–0.0006445V  
–0.6596777V  
–0.66V  
Another feature that may reduce digital feedback on the  
circuit board is the alternate bit polarity mode. When this  
mode is enabled, all of the odd bits (D1, D3, D5, D7, D9,  
D11) are inverted before the output buffers. The even  
bits (D0, D2, D4, D6, D8, D10), OF and CLKOUT are not  
affected. This can reduce digital currents in the circuit  
board ground plane and reduce digital noise, particularly  
for very small analog input signals.  
< –0.66V  
Digital Output Randomizer  
The digital output is decoded at the receiver by inverting  
the odd bits (D1, D3, D5, D7, D9, D11). The alternate bit  
polaritymodeisindependentofthedigitaloutputrandom-  
izer—either both or neither function can be on at the same  
time. The alternate bit polarity mode is enabled by serially  
programming mode control register A4.  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones  
in the ADC output spectrum. By randomizing the digital  
PC BOARD  
CLKOUT  
CLKOUT  
OF  
FPGA  
CLKOUT  
OF  
OF  
D11  
D11/D0  
D11/D0  
D10/D0  
LTC2153-12  
D11  
D10  
D10  
D10/D0  
D1/D0  
D0  
RANDOMIZER  
ON  
D1  
D1/D0  
D0  
D1  
D0  
D0  
215312 F13  
215312 F12  
Figure 13. Decoding a Randomized Digital Output Signal  
Figure 12. Functional Equivalent of Digital Output Randomizer  
215312fa  
For more information www.linear.com/LTC2153-12  
15  
LTC2153-12  
applicaTions inForMaTion  
Digital Output Test Patterns  
Nap Mode  
To allow in-circuit testing of the digital interface to the  
A/D, there are several test modes that force the A/D data  
outputs (OF, D11 to D0) to known values:  
In nap mode the A/D core is powered down while the  
internal reference circuits stay active, allowing faster  
wake-up. Recovering from nap mode requires at least  
100 clock cycles.  
All 1s: All outputs are 1  
All 0s: All outputs are 0  
Wake-up time from nap mode is guaranteed only if the  
clock is kept running, otherwise sleep mode wake-up  
conditions apply.  
Alternating: Outputs change from all 1s to all 0s on  
alternating samples  
Nap mode is enabled by setting register A1 in the serial  
programming mode.  
Checkerboard: Outputs change from 1010101010101  
to 0101010101010 on alternating samples.  
DEVICE PROGRAMMING MODES  
The digital output test patterns are enabled by serially  
programming mode control register A4. When enabled,  
the test patterns override all other formatting modes:  
2’s complement, randomizer, alternate-bit polarity.  
The operating modes of the LTC2153-12 can be pro-  
grammed by either a parallel interface or a simple serial  
interface. The serial interface has more flexibility and  
can program all available modes. The parallel interface  
is more limited and can only program some of the more  
commonly used modes.  
Output Disable  
The digital outputs may be disabled by serially program-  
ming mode control register A3. All digital outputs includ-  
ing OF and CLKOUT are disabled. The high impedance  
disabled state is intended for long periods of inactivity,  
it is not designed for multiplexing the data bus between  
multiple converters.  
Parallel Programming Mode  
To use the parallel programming mode, PAR/SER should  
be tied to V . The CS, SCK and SDI pins are binary logic  
DD  
inputs that set certain operating modes. These pins can  
be tied to V or ground, or driven by 1.8V, 2.5V, or 3.3V  
DD  
Sleep Mode  
CMOS logic. Table 2 shows the modes set by CS, SCK  
and SDI.  
The A/D may be placed in sleep mode to conserve power.  
In sleep mode the entire A/D converter is powered down,  
resulting in < 5mW power consumption. If the encode  
input signal is not disabled, the power consumption will  
behigher(upto5mWat310Msps).Sleepmodeisenabled  
by mode control register A1 (serial programming mode),  
or by SCK (parallel programming mode).  
Table 2. Parallel Programming Mode Control Bits (PAR/SER = VDD  
)
PIN  
DESCRIPTION  
CS  
Clock Duty Cycle Stabilizer Control Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
Power Down Control Bit  
SCK  
SDI  
0 = Normal Operation  
The amount of time required to recover from sleep mode  
1 = Sleep Mode (entire ADC is powered down)  
LVDS Current Selection Bit  
depends on the size of the bypass capacitor on V . For  
REF  
the suggested value in Figure 1, the A/D will stabilize after  
0 = 3.5mA LVDS Current Mode  
1 = 1.75mA LVDS Current Mode  
0.1ms + 2500 • t where t is the period of the sampling  
p
p
clock.  
215312fa  
For more information www.linear.com/LTC2153-12  
16  
LTC2153-12  
applicaTions inForMaTion  
Serial Programming Mode  
GROUNDING AND BYPASSING  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become  
a serial interface that program the A/D control registers.  
Data is written to a register with a 16-bit serial word. Data  
can also be read back from a register to verify its contents.  
The LTC2153-12 requires a printed circuit board with a  
clean unbroken ground plane in the first layer beneath the  
ADC. A multilayer board with an internal ground plane is  
recommended. Layoutforthe printed circuit board should  
ensure that digital and analog signal lines are separated as  
much as possible. In particular, care should be taken not  
to run any digital track alongside an analog signal track  
or underneath the ADC.  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first sixteen rising edges  
of SCK. Any SCK rising edges after the first sixteen are  
ignored.ThedatatransferendswhenCSistakenhighagain.  
High quality ceramic bypass capacitors should be used at  
theV ,OV ,V ,V pins.Bypasscapacitorsmustbe  
DD  
DD CM REF  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
located as close to the pins as possible. Size 0402 ceramic  
capacitors are recommended. The traces connecting the  
pins and bypass capacitors must be kept short and should  
be made as wide as possible.  
If the R/W bit is low, the serial data (D7:D0) will be writ-  
ten to the register set by the address bits (A6:A0). If the  
R/W bit is high, data in the register set by the address bits  
(A6:A0) will be read back on the SDO pin (see the Timing  
Diagrams). During a readback command the register is  
not updated and data on SDI is ignored.  
The analog inputs, encode signals, and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
The SDO pin is an open-drain output that pulls to ground  
with a 200Ω impedance. If register data is read back  
through SDO, an external 2k pull-up resistor is required.  
If serial data is only written and readback is not needed,  
then SDO can be left floating and no pull-up resistor is  
needed.Table 3showsamapofthemodecontrolregisters.  
HEAT TRANSFER  
Most of the heat generated by the LTC2153-12 is trans-  
ferred from the die through the bottom-side exposed pad  
and package leads onto the printed circuit board. For good  
electricalandthermalperformance,theexposedpadmust  
be soldered to a large grounded pad on the PC board. This  
pad should be connected to the internal ground planes by  
an array of vias.  
Software Reset  
If serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset it is neces-  
sary to write 1 in register A0 (Bit D7). After the reset is  
complete, Bit D7 is automatically set back to zero. This  
register is write-only.  
215312fa  
For more information www.linear.com/LTC2153-12  
17  
LTC2153-12  
applicaTions inForMaTion  
Table 3. Serial Programming Mode Register Map (PAR/SER = GND). X indicates an unused bit that is read back as 0  
REGISTER A0: RESET REGISTER (ADDRESS 00h) Write Only  
D7  
D6  
X
D5  
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
RESET  
X
Bit 7  
RESET  
0 = Reset Disabled  
Software Reset Bit  
1 = Software Reset. All mode control registers are reset to 00h. This bit is automatically set back to zero after the reset is complete.  
Bits 6-0  
Unused Bits  
REGISTER A1: POWER-DOWN REGISTER (ADDRESS 01h)  
D7  
X
D6  
X
D5  
X
D4  
X
D3  
D2  
D1  
0
D0  
0
SLEEP  
NAP  
Bits 7-4  
Unused Bit  
SLEEP  
Bit 3  
0 = Normal Operation  
1 = Power Down Entire ADC  
Bit 2  
NAP  
0 = Normal Mode  
1 = Low Power Mode  
Bit 1-0  
Must be set to 0  
REGISTER A2: TIMING REGISTER (ADDRESS 02h)  
D7  
X
D6  
X
D5  
X
D4  
X
D3  
D2  
D1  
D0  
CLKINV  
CLKPHASE1  
CLKPHASE0  
DCS  
Bits 7-4  
Unused Bit  
CLKINV  
Bit 3  
Output Clock Invert Bit  
0 = Normal CLKOUT Polarity (as shown in the Timing Diagrams)  
1 = Inverted CLKOUT Polarity  
Bits 2-1  
CLKPHASE1:CLKPHASE0  
Output Clock Phase Delay Bits  
00 = No CLKOUT Delay (as shown in the Timing Diagrams)  
+
+
+
01 = CLKOUT /CLKOUT delayed by 45° (Clock Period • 1/8)  
10 = CLKOUT /CLKOUT delayed by 90° (Clock Period • 1/4)  
11 = CLKOUT /CLKOUT delayed by 135° (Clock Period • 3/8)  
Note: If the CLKOUT phase delay feature is used, the clock duty cycle stabilizer must also be turned on.  
Bit 0  
DCS  
Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
215312fa  
For more information www.linear.com/LTC2153-12  
18  
LTC2153-12  
applicaTions inForMaTion  
REGISTER A3: OUTPUT MODE REGISTER (ADDRESS 03h)  
D7  
X
D6  
X
D5  
X
D4  
D3  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
Bits 7-5  
Unused Bit  
Bits 4-2  
ILVDS2:ILVDS0 LVDS Output Current Bits  
000 = 3.5mA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.5mA LVDS Output Driver Current  
011 = Not Used  
100 = 3.0mA LVDS Output Driver Current  
101 = 2.5mA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.75mA LVDS Output Driver Current  
Bit 1  
Bit 0  
TERMON  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS output driver current is 2× the current set by ILVDS2:ILVDS0  
LVDS Internal Termination Bit  
OUTOFF  
Digital Output Mode Control Bits  
0 = Digital Outputs Are Enabled  
1 = Digital Outputs Are Disabled (High Impedance)  
REGISTER A4: DATA FORMAT REGISTER (ADDRESS 04h)  
D7  
D6  
D5  
D4  
D3  
0
D2  
D1  
D0  
OUTTEST2  
OUTTEST1  
OUTTEST0  
ABP  
DTESTON  
RAND  
TWOSCOMP  
Bits 7-5  
OUTTEST2:OUTTEST0  
000 = All Digital Outputs = 0  
001 = All Digital Outputs = 1  
Digital Output Test Pattern Bits  
010 = Alternating Output Pattern. OF, D11-D0 alternate between 0 0000 0000 0000 and 1 1111 1111 1111  
100 = Checkerboard Output Pattern. OF, D11-D0 alternate between 1 0101 0101 0101 and 0 1010 1010 1010  
Note 1: Other bit combinations are not used.  
Bit 4  
ABP  
Alternate Bit Polarity Mode Control Bit  
0 = Alternate Bit Polarity Mode Off  
1 = Alternate Bit Polarity Mode On  
Bit 3  
Bit 2  
Must Be Set to 0  
DTESTON  
0 = Normal Mode  
1 = Enable the Digital Output Test Patterns  
Enable the digital output test patterns (set by Bits 7-5)  
Bit 1  
Bit 0  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP Two’s Complement Mode Control Bit  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
215312fa  
For more information www.linear.com/LTC2153-12  
19  
LTC2153-12  
applicaTions inForMaTion  
215312 F15  
215312 F16  
215312 F14  
Silkscreen Top  
Inner Layer 1  
Inner Layer 2  
215312 F17  
215312 F18  
Inner Layer 3  
Inner Layer 4  
215312 F19  
215312 F20  
Inner Layer 5  
Bottom Layer  
215312fa  
For more information www.linear.com/LTC2153-12  
20  
LTC2153-12  
Typical applicaTions  
2153-12 Schematic  
SDO  
SDI  
SCK  
CS  
PAR/SER  
V
DD  
0.2µF  
R9  
1k  
OV  
DD  
TP3  
0.1µF  
SENSE  
C13  
2.2µF  
1
2
V
V
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
DD  
DD  
OV  
DD  
+
+
D6_7  
D6_7  
D6_7  
D6_7  
R14  
10Ω  
3
GND  
+
+
+
4
+
+
A
A
A
A
INA  
INA  
INA  
INA  
+
CLKOUT  
CLKOUT  
D4_5  
CLKOUT  
CLKOUT  
5
R16  
100Ω  
LTC2153-12  
6
GND  
R19  
10Ω  
+
SENSE  
C16  
D4_5  
7
SENSE  
D4_5  
D4_5  
8
V
REF  
+
D2_3  
D2_3  
9
V
CM  
D2_3  
D2_3  
2.2µF  
10  
41  
GND  
GND  
10Ω  
OGND  
V
CM  
C21  
0.1µF  
OV  
DD  
0.1µF  
215312 TA02  
0.1µF  
100Ω  
0.1µF  
+
CLK  
CLK  
215312fa  
For more information www.linear.com/LTC2153-12  
21  
LTC2153-12  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UJ Package  
40-Lead Plastic QFN (6mm × 6mm)  
(Reference LTC DWG # 05-08-1728 Rev Ø)  
0.70 0.05  
6.50 0.05  
5.10 0.05  
4.42 0.05  
4.50 0.05  
(4 SIDES)  
4.42 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.115  
TYP  
6.00 0.10  
(4 SIDES)  
R = 0.10  
TYP  
39 40  
0.40 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1 NOTCH  
R = 0.45 OR  
0.35 ¥ 45  
CHAMFER  
4.42 0.10  
4.50 REF  
(4-SIDES)  
4.42 0.10  
(UJ40) QFN REV Ø 0406  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
BOTTOM VIEW—EXPOSED PAD  
1. DRAWING IS A JEDEC PACKAGE OUTLINE VARIATION OF (WJJD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
215312fa  
For more information www.linear.com/LTC2153-12  
22  
LTC2153-12  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
12/14 Changed the pipeline latency to 6  
Updated G15  
5 and 10  
7
215312fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2153-12  
Typical applicaTion  
LTC2153-12: 32K Point 2-Tone FFT,  
V
DD  
fIN = 71MHz and 69MHz, 310Msps  
OV  
DD  
0
D10_11  
12-BIT  
PIPELINED  
ADC  
–20  
–40  
–60  
–80  
CORRECTION  
LOGIC  
DDR  
LVDS  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
S/H  
D0_1  
OGND  
CLOCK/DUTY  
CYCLE  
CONTROL  
CLOCK  
GND  
215312 TA03a  
–100  
–120  
0
40  
60  
80  
100 120  
20  
FREQUENCY (MHz)  
215312 TA03b  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC2208  
16-Bit, 130Msps, 3.3V ADC, LVDS Outputs  
14-Bit, 310Msps, 1.8V Dual ADC, DDR LVDS Outputs  
1250mW, 77.7dB SNR, 100dB SFDR, 64-Lead QFN Package  
724mW, 68.8dB SNR, 88dB SFDR, 64-Lead QFN Package  
LTC2158-14  
LTC2157-14/LTC2156-14/ 14-Bit Dual, 250Msps/210Msps/170Msps,  
LTC2155-14 1.8V Dual ADC, DDR LVDS Outputs  
605mW/565mW/511mW, 70dB SNR, 90dB SFDR, 9mm × 9mm  
64-Lead QFN Package  
LTC2152-14/LTC2151-14/ 14-Bit, 250Msps/210Msps/170Msps,  
338mW/316mW/290mW, 70dB SNR, 90dB SFDR, 6mm × 6mm  
40-Lead QFN Package  
LTC2150-14  
1.8V Single ADC, DDR LVDS Outputs  
LTC2153-14  
14-Bit, 310Msps 1.8V Single ADC, DDR LVDS Outputs  
401mW, 68.8dB SNR, 88dB SFDR, 6mm × 6mm 40-Lead  
QFN Package  
RF Mixers/Demodulators  
LT5517  
40MHz to 900MHz Direct Conversion Quadrature  
Demodulator  
High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator  
LT5527  
LT5575  
400MHz to 3.7GHz High Linearity Downconverting Mixer 24.5dBm IIP3 at 900MHz, 23.5dBm IIP3 at 3.5GHz, NF = 12.5dB,  
50Ω Single-Ended RF and LO Ports  
800MHz to 2.7GHz Direct Conversion Quadrature  
Demodulator  
High IIP3: 28dBm at 900MHz, Integrated LO Quadrature Generator,  
Integrated RF and LO Transformer  
Amplifiers/Filters  
LTC6409  
10GHz GBW, 1.1nV/√Hz Differential Amplifier/ADC Driver 88dB SFDR at 100MHz, Input Range Includes Ground 52mA  
Supply Current, 3mm × 2mm QFN Package  
LTC6412  
800MHz, 31dB Range, Analog-Controlled Variable  
Gain Amplifier  
Continuously Adjustable Gain Control, 35dBm OIP3 at 240MHz,  
10dB Noise Figure, 4mm × 4mm QFN-24 Package  
LTC6420-20  
1.8GHz Dual Low Noise, Low Distortion Differential ADC Fixed Gain 10V/V, 1nV/√Hz Total Input Noise, 80mA Supply  
Drivers for 300MHz IF  
Current per Amplifier, 3mm × 4mm QFN-20 Package  
Receiver Subsystems  
LTM9002  
14-Bit Dual Channel IF/Baseband Receiver Subsystem  
12-Bit Digital Predistortion Receiver  
Integrated High Speed ADC, Passive Filters and Fixed Gain  
Differential Amplifiers  
LTM9003  
Integrated 12-Bit ADC Down-Converter Mixer with 0.4GHz to  
3.8GHz Input Frequency Range  
215312fa  
LT 1214 REV A • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2012  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2153-12  
配单直通车
LTC2153IUJ-12#PBF产品参数
型号:LTC2153IUJ-12#PBF
Brand Name:Linear Technology
是否Rohs认证:符合
生命周期:Transferred
IHS 制造商:LINEAR TECHNOLOGY CORP
零件包装代码:QFN
包装说明:HVQCCN, LCC40,.24SQ,20
针数:40
制造商包装代码:UJ
Reach Compliance Code:compliant
ECCN代码:3A001.A.5.A.3
HTS代码:8542.39.00.01
风险等级:4.45
Is Samacsys:N
最大模拟输入电压:1.32 V
最小模拟输入电压:-1.32 V
转换器类型:ADC, PROPRIETARY METHOD
JESD-30 代码:S-PQCC-N40
JESD-609代码:e3
长度:6 mm
最大线性误差 (EL):1.8%
湿度敏感等级:1
模拟输入通道数量:1
位数:12
功能数量:1
端子数量:40
最高工作温度:85 °C
最低工作温度:-40 °C
输出位码:OFFSET BINARY, 2'S COMPLEMENT BINARY
输出格式:PARALLEL, WORD
封装主体材料:PLASTIC/EPOXY
封装代码:HVQCCN
封装等效代码:LCC40,.24SQ,20
封装形状:SQUARE
封装形式:CHIP CARRIER, HEAT SINK/SLUG, VERY THIN PROFILE
峰值回流温度(摄氏度):NOT SPECIFIED
电源:1.8 V
认证状态:Not Qualified
采样速率:310 MHz
采样并保持/跟踪并保持:SAMPLE
座面最大高度:0.8 mm
子类别:Analog to Digital Converters
标称供电电压:1.8 V
表面贴装:YES
技术:CMOS
温度等级:INDUSTRIAL
端子面层:Matte Tin (Sn)
端子形式:NO LEAD
端子节距:0.5 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:6 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!