欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • M51996A图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • M51996A 现货库存
  • 数量13500 
  • 厂家RENESAS/瑞萨 
  • 封装SOP16 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • M51996FP-35NC图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • M51996FP-35NC 现货库存
  • 数量3550 
  • 厂家MIT 
  • 封装SOP16 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • M51996AFP图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • M51996AFP 现货库存
  • 数量26800 
  • 厂家RENESAS 
  • 封装SOP16 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • M51996AP图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • M51996AP 现货库存
  • 数量6800 
  • 厂家MIT进口 
  • 封装DIP 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • M51996AFP图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • M51996AFP 现货库存
  • 数量1446 
  • 厂家RENESAS 
  • 封装SOP16 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • M51996图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • M51996
  • 数量3761 
  • 厂家MIT有批量 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • M51996图
  • 北京耐芯威科技有限公司

     该会员已使用本站12年以上
  • M51996
  • 数量3500 
  • 厂家 
  • 封装 
  • 批号21+ 
  • 原装正品,公司现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • M51996图
  • 北京耐芯威科技有限公司

     该会员已使用本站12年以上
  • M51996
  • 数量3500 
  • 厂家 
  • 封装 
  • 批号21+ 
  • 原装正品,公司现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 96-010-62104931 QQ:2880824479QQ:1344056792
  • M51996A图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • M51996A
  • 数量13500 
  • 厂家RENESAS/瑞萨 
  • 封装SOP16 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • M51996P图
  • 集好芯城

     该会员已使用本站13年以上
  • M51996P
  • 数量15981 
  • 厂家MIT 
  • 封装DIP 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • M51996P图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • M51996P
  • 数量55000 
  • 厂家MITSUBISH 
  • 封装DIP 
  • 批号23+ 
  • 只做原装正品假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • M51996图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • M51996
  • 数量4500 
  • 厂家MIT 
  • 封装DIP 
  • 批号23+ 
  • 全新原装现货特价销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • M51996AFP 其他被动元件图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • M51996AFP 其他被动元件
  • 数量7500 
  • 厂家RENESAS/瑞萨 
  • 封装SOP16 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • M51996P图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • M51996P
  • 数量39118 
  • 厂家MITSUBISH 
  • 封装DIP 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • M51996图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • M51996
  • 数量10000 
  • 厂家MIT 
  • 封装 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • M51996A图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • M51996A
  • 数量3200 
  • 厂家MITSUBISHI 
  • 封装QFP 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • M51996P图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • M51996P
  • 数量5000 
  • 厂家MIT 
  • 封装原厂封装 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • M51996  SO14图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • M51996 SO14
  • 数量5000 
  • 厂家
  • 封装SOPDIP 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • M51996图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • M51996
  • 数量3000 
  • 厂家MITSUBIS 
  • 封装SOP16 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • M51996AFP图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • M51996AFP
  • 数量1446 
  • 厂家RENESAS 
  • 封装SOP16 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • M51996AFP图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • M51996AFP
  • 数量12245 
  • 厂家RENESAS/瑞萨 
  • 封装SOP16 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • M51996图
  • 北京耐芯威科技有限公司

     该会员已使用本站13年以上
  • M51996
  • 数量5000 
  • 厂家 
  • 封装 
  • 批号21+ 
  • 原装正品,公司现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 86-010-010-62104931 QQ:2880824479QQ:1344056792
  • M51996图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • M51996
  • 数量8354 
  • 厂家MITSUBISH 
  • 封装SOP 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • M51996AFP图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • M51996AFP
  • 数量3850 
  • 厂家Renesas(瑞萨) 
  • 封装原装原封REEL 
  • 批号23+ 
  • ▉原装现货▉可含税可订货
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • M51996图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • M51996
  • 数量3000 
  • 厂家MITSUBIS 
  • 封装SOP16 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • M51996AFP图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • M51996AFP
  • 数量5000 
  • 厂家RENESAS 
  • 封装SOP 
  • 批号24+ 
  • 原装假一赔十!可提供正规渠道证明!
  • QQ:3007947169QQ:3007947169 复制
    QQ:3007947210QQ:3007947210 复制
  • 755-83950895 QQ:3007947169QQ:3007947210
  • M51996图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • M51996
  • 数量3000 
  • 厂家MIT 
  • 封装SOP 
  • 批号2023 
  • 上海原装现货库存!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • M51996AFP图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • M51996AFP
  • 数量5000 
  • 厂家RENESAS 
  • 封装SOP 
  • 批号24+ 
  • 原装假一赔十!可提供正规渠道证明!
  • QQ:3003818780QQ:3003818780 复制
    QQ:3003819484QQ:3003819484 复制
  • 0755-83950895 QQ:3003818780QQ:3003819484
  • M51996AFP图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • M51996AFP
  • 数量45000 
  • 厂家Renesas(瑞萨) 
  • 封装 
  • 批号2年内 
  • 全新原装 货源稳定 长期供应 提供配单
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • M51996图
  • 北京顺科电子科技有限公司

     该会员已使用本站8年以上
  • M51996
  • 数量5500 
  • 厂家MIT 
  • 封装DIP 
  • 批号21+ 
  • 进口品牌//国产品牌代理商18911556207
  • QQ:729566152QQ:729566152 复制
    QQ:1138731127QQ:1138731127 复制
  • 18911556207 QQ:729566152QQ:1138731127
  • M51996AP图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • M51996AP
  • 数量265 
  • 厂家RENESAS 
  • 封装DIP14 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • M51996图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • M51996
  • 数量1811 
  • 厂家MIT有批量 
  • 封装SOP-16 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • M51996A图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • M51996A
  • 数量3450 
  • 厂家RENESAS 
  • 封装SOP16 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872561 QQ:1484215649QQ:729272152
  • M51996FP图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • M51996FP
  • 数量1285 
  • 厂家MITSUBISHI 
  • 封装 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872153 QQ:1484215649QQ:729272152
  • M51996AFP图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • M51996AFP
  • 数量183 
  • 厂家MIT 
  • 封装SMD 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872561 QQ:1484215649QQ:729272152

产品型号M51996的概述

芯片M51996的概述 M51996是一种集成电路芯片,主要用于音频处理和音频增强应用。此芯片以其出色的音质处理能力和高效率而受到广泛欢迎,广泛应用于音响设备、电视、车载音响和其他电子音频产品。M51996的设计考虑到噪声抑制和音频信号的处理,适用于需要高保真音频和良好动态范围的设备。 芯片M51996的详细参数 M51996芯片具有多项关键参数,这些参数直接影响其性能和应用场景: - 电源电压范围:通常在5V至15V之间,兼容性强。 - 功耗:在工作状态下最低功耗约为100 mW,确保在高效能的同时保持低热量输出。 - 信噪比(SNR):典型值为80 dB,能够有效抑制背景噪声,提升音质。 - 总谐波失真(THD):小于0.05%,保证了音频信号的完整性。 - 工作温度范围:-20°C 至 +70°C,适用于各种环境条件。 此外,M51996还具有多种功能,如可调增益、低频和高频处理...

产品型号M51996AP的Datasheet PDF文件预览

MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
DESCRIPTION  
M51996A is the primary switching regulator controller which is  
PIN CONFIGURATION (TOP VIEW)  
especially designed to get the regulated DC voltage from AC power  
supply.  
This IC can directly drive the MOS-FET with fast rise and fast fall  
output pulse and with a large-drive totempole output.  
Type M51996A has the functions of not only high frequency OSC  
and fast output drive but also current limit with fast response and  
high sensibility so the true "fast switching regulator" can be  
realized.  
Vcc  
COLLECTOR  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VOUT  
CLM+  
GND  
T-OFF  
CF  
EMITTER  
OVP  
F/B  
DET  
T-ON  
The M51996A is equivalent to the M51978 with externally re-  
settable OVP(over voltage protection)circuit.  
8
REG  
SOFT  
Outline 14P4  
FEATURES  
500kHz operation to MOS FET  
Output current...............................................................±1A  
Output rise time 60ns,fall time 40ns  
Vcc  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
COLLECTOR  
Modified totempole output method with small through current  
Compact and light-weight power supply  
CLM+  
VOUT  
•Small start-up current............................................100µA typ.  
•Big difference between "start-up voltage" and "stop voltage"  
makes the smoothing capacitor of the power input section small.  
Start-up threshold 16V,stop voltage 10V  
GND  
EMITTER  
HEAT SINK PIN  
HEAT SINK PIN  
OVP  
F/B  
12 T-OFF  
CF  
10 T-ON  
SOFT  
11  
•Packages with high power dissipation are used to with-stand the  
heat generated by the gate-drive current of MOS FET.  
14-pin DIP,16-pin SOP 1.5W(at 25°C)  
DET  
REG  
9
Simplified peripheral circuit with protection circuit and built-in  
large-capacity totempole output  
Outline 16P2N-A  
•High-speed current limiting circuit using pulse-by-pulse  
method(CLM+pin)  
•Over-voltage protection circuit with an externally re-settable  
latch(OVP)  
Connect the heat sink pin to GND.  
•Protection circuit for output miss action at low supply  
voltage(UVLO)  
High-performance and highly functional power supply  
•Triangular wave oscillator for easy dead time setting  
•SOFT start function by expanding period  
APPLICATION  
Feed forward regulator,fly-back regulator  
RECOMMENDED OPERATING CONDITIONS  
Supply voltage range............................................12 to 30V  
Operating frequency.................................less than 500kHz  
Oscillator frequency setting resistance  
•T-ON pin resistance RON...........................10k to 75kW  
•T-OFF pin resistance ROFF..........................2k to 30kW  
1
(
/ 22 )  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
BLOCK DIAGRAM  
F/B  
REG(7.8V)  
VCC  
7.1V  
5.8V  
500  
3K  
VOLTAGE  
REGULATOR  
15.2K  
6S  
1S  
DET  
OP AMP  
UNDER  
VOLTAGE  
LOCK OUT  
1S  
1S  
2.5V  
LATCH  
OVP  
PWM  
COMPARATOR  
PWM  
LATCH  
COLLECTOR  
VOUT  
EMITTER  
CF  
T-ON  
CURRENT LIMIT  
DETECTION  
OSCILLATOR  
(TRIANGLE)  
T-OFF  
SOFT  
GND  
CLM+  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
VCC  
Parameter  
Conditions  
Ratings  
Unit  
V
Supply voltage  
31  
31  
Collector voltage  
VC  
V
Peak  
±1  
±0.15  
IO  
Output current  
A
Continuous  
VREG terminal output current  
SOFT terminal voltage  
CLM+ terminal voltage  
DET terminal voltage  
OVP terminal current  
F/B terminal current  
mA  
V
IVREG  
-6  
VSOFT  
VREG +0.2  
-0.3 to +3  
VCLM+  
VDET  
IOVP  
IFB  
V
V
6
8
mA  
mA  
mA  
mA  
-10  
ITON  
-1  
-2  
T-ON terminal input current  
T-OFF terminal input current  
Power dissipation  
ITOFF  
Pd  
1.5  
W
mW/˚C  
Ta=25˚C  
Ta>25˚C  
12  
Thermal derating  
K
-30 to +85  
-40 to +125  
Topr  
Tstg  
Operating temperature  
Storage temperature  
˚C  
˚C  
Note 1."+" sign shows the direction of current flowing into the IC and "-" sign shows the current flowing out from the IC.  
2.The low impedance voltage supply should not be applied to the OVP terminal.  
(
2 / 22 )  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
ELECTRICAL CHARACTERISTICS (VCC=18V, Ta=25°C, unless otherwise noted)  
Limits  
Typ.  
Block  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Vcc(STOP)  
Max.  
30  
Operating supply voltage range  
V
V
V
VCC  
VCC(START) Operation start up voltage  
16.2  
9.9  
17.2  
10.9  
15.2  
9.0  
Operation stop voltage  
VCC(STOP)  
5.0  
6.3  
7.6  
V
DVcc=Vcc(START) -Vcc(STOP)  
DVcc  
Vcc(START),Vcc(STOP) difference  
65  
50  
100  
100  
150  
200  
Vcc=14.5V,Ta=25°C  
Vcc=14.5V,-30£Ta£85°C  
Vcc=15V,f=188kHz  
Stand-by current  
IccL  
IccO  
µA  
mA  
7.3  
8
1.3  
11  
12  
17  
19  
3.0  
320  
-1.0  
-0.4  
-0.70  
Operating circuit current  
Vcc=30V,f=188kHz  
Vcc=25V  
mA  
µA  
mA  
2.0  
Circuit current in OVP state  
Current at 0% duty  
IccOVP  
210  
-1.5  
-0.6  
-0.99  
140  
-2.1  
-0.9  
-1.35  
Vcc=9.5V  
IFBMIND  
IFBMAXD  
DIFB  
F/B terminal input current  
F/B terminal input current  
DIFB=IFBMIND-IFBMAXD  
Current at maximum duty  
Current difference between max and 0% duty  
mA  
mA  
V
5.9  
4.9  
420  
540  
7.1  
F/B terminal voltage  
VFB  
F/B terminal input current=0.95mA  
OVP terminal resistance  
W
mV  
mV  
RFB  
600  
750  
780  
960  
VTHOVPH  
DVTHOVP  
ITHOVP  
IINOVP  
OVP terminal H threshold voltage  
OVP terminal hysteresis voltage  
OVP terminal threshold current  
OVP terminal input current  
OVP reset supply voltage  
30  
150  
150  
9.0  
DVTHOVP=VTHOVPH-VTHOVPL  
250  
250  
80  
80  
µA  
VOVP=400mV  
µA  
V
7.5  
10.0  
VCCOVPC  
OVP terminal is open.  
(high impedance)  
VCC(STOP)  
-VCCOVPC  
Difference supply voltage between  
operation stop and OVP reset  
1.20  
V
0.55  
-480  
-210  
-320  
-140  
-213  
-93  
Vcc=30V  
Vcc=18V  
Current from OVP terminal for  
OVP reset  
ITHOVPC  
µA  
CLM+ terminal threshold voltage  
CLM+ terminal current  
180  
-280  
200  
-200  
mV  
µA  
ns  
VTHCLM+  
IINCLM+  
220  
-140  
VCLM+=0V  
TPDCLM+  
Delay time from CLM+ to VOUT  
100  
188  
RON=20kW,ROFF=17kW  
CF=220pF,-5£Ta£85°C  
Oscillating frequency  
170  
207  
kHz  
fOSC  
47  
50  
53  
%
V
TDUTY  
VOSCH  
VOSCL  
Maximum ON duty  
Upper limit voltage of oscillation waveform  
3.97  
1.76  
4.37  
1.96  
4.77  
2.16  
RON=20kW,ROFF=17kW  
CF=220pF  
Lower limit voltage of oscillation waveform  
V
Voltage difference between upper limit and  
lower limit of OSC waveform  
2.11  
2.41  
2.71  
DVOSC  
V
VT-ON  
4.5  
3.5  
5.4  
RON=20kW  
ROFF=17kW  
3.8  
T-ON terminal voltage  
T-OFF terminal voltage  
VSOFT=5.5V  
V
V
VT-OFF  
2.9  
170  
111  
19.0  
-0.5  
4.2  
207  
151  
27.0  
188  
131  
23.3  
-0.1  
RON=20kW,ROFF=17kW  
CF=220pF  
Oscillating frequency during  
fOSCSOFT  
VSOFT=2.5V  
kHz  
SOFT operation  
VSOFT=0.2V  
ISOFTIN  
ISOFDIS  
VSOFT=1V  
SOFT terminal input current  
µA  
Discharge current of SOFT terminal at  
Vcc less than Vcc(STOP)  
SOFT terminal discharging current  
Regulator output voltage  
1
3.3  
7.8  
mA  
6.8  
8.8  
0.4  
1.4  
1.0  
2.0  
VREG  
V
V
V
V
V
V
Vcc=18V,Io=10mA  
Vcc=18V,Io=100mA  
Vcc=5V,Io=1mA  
0.04  
0.7  
VOL1  
VOL2  
VOL3  
VOL4  
Output low voltage  
0.85  
1.3  
Vcc=5V,Io=100mA  
Vcc=18V,Io=-10mA  
Vcc=18V,Io=-100mA  
16.0  
15.5  
VOH1  
VOH2  
TRISE  
TFALL  
16.7  
16.5  
60  
Output high voltage  
V
ns  
ns  
V
Output voltage rise time  
Output voltage fall time  
Detection voltage  
40  
2.5  
2.4  
30  
2.6  
3.0  
VDET  
IINDET  
µA  
dB  
DET terminal input current  
Voltage gain of detection amp  
VDET=2.5V  
1.0  
40  
GAVDET  
(
/ 22 )  
3
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
TYPICAL CHARACTERISTICS  
THERMAL DERATING  
(MAXIMUM RATING)  
CIRCUIT CURRENT VS.SUPPLY VOLTAGE  
(NORMAL OPERATION)  
1800  
16m  
14m  
12m  
10m  
fOSC=500kHz  
RON=18kW  
ROFF=20kW  
1500  
1200  
fOSC=100kHz  
900  
150m  
100µ  
50µ  
600  
300  
Ta=-30°C  
Ta=25°C  
Ta=85°C  
0
10  
15  
25  
35  
0
5
20  
30  
40  
85  
100  
0
25  
50  
75  
125  
150  
SUPPLY VOLTAGE Vcc(V)  
AMBIENT TEMPERATURE Ta(°C)  
SOFT TERMINAL INPUT VOLTAGE VS.  
EXPANSION RATE OF PERIOD  
SOFT TERMINAL INPUT VOLTAGE VS.  
EXPANSION RATE OF PERIOD  
5.0  
5.0  
4.5  
(fOSC=100kHz)  
(fOSC=500kHz)  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
4.0  
3.5  
RON=15k,ROFF=27k  
RON=18k,ROFF=24k  
RON=22k,ROFF=22k  
RON=24k,ROFF=20k  
RON=22k,ROFF=12k  
RON=36k,ROFF=6.2k  
1
2
3
RON=15k,ROFF=27k  
RON=18k,ROFF=24k  
RON=22k,ROFF=22k  
RON=24k,ROFF=20k  
RON=22k,ROFF=12k  
RON=36k,ROFF=6.2k  
1
2
3
4
5
3.0  
2.5  
4
5
6
6
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
4
2
6
1
3
5
4
2
6
1
3
5
0
0
2
4
6
8
10 12 14 16 18 20  
EXPANSION RATE OF PERIOD(TIMES)  
0
2
4
6
8
10 12 14 16 18 20  
EXPANSION RATE OF PERIOD(TIMES)  
CLM+ TERMINAL THRESHOLD VOLTAGE  
VS. AMBIENT TEMPERATURE  
SOFT TERMINAL INPUT VOLTAGE VS.  
INPUT VOLTAGE  
-100  
-90  
-80  
-70  
205  
200  
195  
-60  
-50  
-40  
Ta=-30°C  
Ta=25°C  
Ta=85°C  
-30  
-20  
-10  
0
10  
SOFT TERMINAL INPUT VOLTAGE VSOFT(V)  
100  
0
2
3
4
5
6
7
9
-40 -20  
0
20  
40 60 80  
1
8
-60  
AMBIENT TEMPERATURE Ta(°C)  
( 4  
/ 22 )  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
CLM+ TERMINAL CURRENT  
REG OUTPUT VOLTAGE  
VS. CLM+ TERMINAL VOLTAGE  
VS. AMBIENT TEMPERATURE  
-400  
-300  
-200  
-100  
0
8.5  
8.0  
Rc=¥  
Rc=3.6k  
Rc=1.5k  
Ta=-30°C  
Ta=25°C  
Ta=85°C  
7.5  
7.0  
100  
-60 -40 -20  
0
20  
40 60 80  
0
0.3  
1.0  
0.4 0.5 0.6 0.7 0.8 0.9  
0.1 0.2  
AMBIENT TEMPERATURE Ta(°C)  
CLM+ TERMINAL VOLTAGE VCLM+(V)  
OUTPUT HIGH VOLTAGE VS.  
SOURCE CURRENT  
OUTPUT LOW VOLTAGE  
VS. SINK CURRENT  
4.5  
4.2  
3.9  
3.6  
3.3  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
5.0  
Ta=25°C  
4.5  
4.0  
Vcc=18V  
Ta=25°C  
3.5  
3.0  
2.5  
2.0  
Vcc=18V  
Vcc=5V  
1.5  
1.0  
0.5  
0
100  
101  
101  
3
3
2
5
2
5
2
3
5
2
3
5
10-2  
10-1  
2
3
5
2
3
5
2
3
5
10-3  
10-2  
10-1  
2
3
5
10-3  
100  
SINK CURRENT IOL(A)  
SOURCE CURRENT IOH(A)  
DETECTION TERMINAL INPUT CURRENT  
VS. AMBIENT TEMPERATURE  
DETECTION VOLTAGE  
VS. AMBIENT TEMPERATURE  
1.4  
1.3  
2.55  
2.50  
1.2  
1.1  
1.0  
0.9  
0.8  
2.45  
2.40  
0.7  
0
100  
-40 -20  
0
20  
40 60 80  
-60  
100  
-40 -20  
0
20  
40 60 80  
-60  
AMBIENT TEMPERATURE Ta(°C)  
AMBIENT TEMPERATURE Ta(°C)  
(
/ 22 )  
5
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
VOLTAGE GAIN OF DETECTION AMP  
VS. FREQUENCY  
ON duty  
VS. F/B TERMINAL INPUT CURRENT  
50  
45  
50  
(fOSC=100kHz)  
RON=18kW  
ROFF=20kW  
45  
40  
40  
35  
35  
30  
30  
25  
20  
15  
10  
Ta=-30°C  
25  
20  
15  
Ta=25°C  
Ta=85°C  
10  
5
5
0
106  
103  
104  
0
2
3
5
2
3
5
2
3
5
2
3
5
102  
105  
0
0.4  
1.0  
2.0  
1.2 1.4 1.6 1.8 2.2  
0.6 0.8  
F/B TERMINAL INPUT CURRENT IF/B (mA)  
FREQUENCY f(Hz)  
ON duty VS.  
F/B TERMINAL INPUT CURRENT  
ON duty  
VS. F/B TERMINAL INPUT CURRENT  
50  
50  
40  
(fOSC=500kHz)  
RON=18kW  
ROFF=20kW  
(fOSC=200kHz)  
RON=18kW  
ROFF=20kW  
40  
30  
20  
10  
30  
20  
Ta=-30°C  
Ta=25°C  
Ta=-30°C  
Ta=25°C  
Ta=85°C  
Ta=85°C  
10  
0
0
0.4  
2.0  
2.2  
0
0.6 0.8 1.0 1.2 1.4 1.6 1.8  
0
0.4  
1.0  
2.0  
1.2 1.4 1.6 1.8 2.2  
0.6 0.8  
F/B TERMINAL INPUT CURRENT IF/B (mA)  
F/B TERMINAL INPUT CURRENT IF/B(mA)  
UPPER & LOWER LIMIT VOLTAGE OF OSC  
VS. AMBIENT TEMPERATURE  
OSCILLATING FREQUENCY VS. CF  
TERMINAL CAPACITANCE  
10 4  
5
RON=18kW  
ROFF=20kW  
5.2  
4.8  
RON=22kW  
ROFF=12kW  
3
2
10 3  
5
4.4  
4.0  
fOSC=500kHz  
fOSC=200kHz  
fOSC=100kHz  
3
2
102  
RON=36kW  
ROFF=6.2kW  
5
3
2
RON=24kW  
ROFF=20kW  
fOSC=100kHz  
fOSC=200kHz  
fOSC=500kHz  
2.2  
2.0  
1.8  
101  
5
3
2
100  
2
3
5
2
3
5
3
2
2
3
5
5
100  
101  
10 4  
10 3  
10 2  
100  
-40 -20  
0
20  
40 60 80  
-60  
AMBIENT TEMPERATURE Ta(°C)  
CF TERMINAL CAPACITANCE(pF)  
(
6 / 22 )  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
OSCILLATOR FREQUENCY VS.  
AMBIENT TEMPERATURE  
ON duty VS. ROFF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
RON=24kW  
ROFF=20kW  
CF=330pF  
RON=75kW  
51kW  
36kW  
100  
90  
24kW  
22kW  
18kW  
15kW  
10kW  
80  
100  
10 1  
ROFF(kW)  
10 2  
5
7
5
7
3
3
100  
-40 -20  
0
20  
40 60 80  
-60  
AMBIENT TEMPERATURE Ta(°C)  
OSCILLATOR FREQUENCY VS.  
AMBIENT TEMPERATURE  
ON duty VS. AMBIENT TEMPERATURE  
700  
600  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
(fOSC=100kHz)  
RON=24kW  
ROFF=20kW  
CF=47pF  
RON=36k,ROFF=6.2k  
RON=22k,ROFF=12k  
500  
RON=24k,ROFF=20k  
RON=22k,ROFF=22k  
400  
300  
200  
RON=18k,ROFF=24k  
RON=15k,ROFF=27k  
100  
-40 -20  
0
20  
40 60 80  
-60  
100  
-40 -20  
0
20  
40 60 80  
-60  
AMBIENT TEMPERATURE Ta(°C)  
AMBIENT TEMPERATURE Ta(°C)  
ON duty VS. AMBIENT TEMPERATURE  
ON duty VS. AMBIENT TEMPERATURE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
(fOSC=200kHz)  
(fOSC=500kHz)  
RON=36k,ROFF=6.2k  
RON=22k,ROFF=12k  
RON=36k,ROFF=6.2k  
RON=22k,ROFF=12k  
RON=24k,ROFF=20k  
RON=22k,ROFF=22k  
RON=24k,ROFF=20k  
RON=22k,ROFF=22k  
RON=18k,ROFF=24k  
RON=18k,ROFF=24k  
RON=15k,ROFF=27k  
RON=15k,ROFF=27k  
100  
-40 -20  
0
20  
40 60 80  
-60  
100  
-40 -20  
0
20  
40 60 80  
-60  
AMBIENT TEMPERATURE Ta(°C)  
AMBIENT TEMPERATURE Ta(°C)  
(
/ 22 )  
7
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
OVP TERMINAL THRESHOLD VOLTAGE  
VS.AMBIENT TEMPERATURE  
OVP TERMINAL INPUT VOLTAGE VS.  
INPUT CURRENT  
1.1  
1m  
100µ  
10µ  
Vcc=18V  
Ta=85°C  
Ta=25°C  
Ta=-30°C  
1.0  
0.9  
H threshold voltage  
(VTHOVPH)  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
L threshold voltage  
(VTHOVPL)  
1µ  
-40 -20  
0
20 40  
60  
80 100  
0.2  
0.4  
0.6  
0.8  
1.0  
AMBIENT TEMPERATURE Ta(°C)  
OVP TERMINAL INPUT VOLTAGE VOVP(V)  
CURRENT FROM OVP TERMINAL FOR  
OVP RESET VS.SUPPLY VOLTAGE  
CIRCUIT CURRENT VS.SUPPLY VOLTAGE  
(OVP OPERATION)  
800  
700  
600  
500  
400  
300  
200  
100  
0
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
OVP RESET POINT  
8.87V(-30°C)  
8.94V(25°C)  
9.23V(85°C)  
Ta=-30°C  
Ta=25°C  
Ta=85°C  
Ta=-30°C  
Ta=25°C  
Ta=85°C  
15  
25  
35  
5
40  
40.0  
10  
20  
30  
0
10.0  
20.0  
30.0  
0
SUPPLY VOLTAGE Vcc(V)  
SUPPLY VOLTAGE Vcc(V)  
OUTPUT THRUGH CURRENT WAVEFORM  
AT RISING EDGE OF OUTPUT PULSE  
AT FALLING EDGE OF OUTPUT PULSE  
Horizontal-axis : 20ns/div  
Vertical-axis : 5mA/div  
Horizontal-axis : 20ns/div  
Vertical-axis : 50mA/div  
(
/ 22 )  
8
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
FUNCTION DESCRIPTION  
parts can be reduced and also parts can be replaced by  
reasonable one.  
In the following circuit diagram,MOS-FIT is used for output  
transistor,however bipolar transistor can be replaced with no  
problem.  
Type M51996AP and M51996AFP are especially designed for  
off-line primary PWM control IC of switching mode power supply  
to get DC voltage from AC power supply.  
Using this IC,smart SMPS can be realized with reasonable  
cost and compact size as the number of external electric  
RUSH CURRENT  
PREVENTION CIRCUIT  
DC OUTPUT  
R1  
Vcc  
COLLECTOR  
VOUT  
REG  
CLM+  
EMITTER  
GND  
R2  
CVcc  
M51996AP/FP  
AC  
INPUT  
CFIN  
SOFT  
DET  
OVP F/B  
T-ON  
T-OFF  
CF  
CF  
ROFF  
RON  
FEEDBACK  
OVP  
(TL431)  
Fig.1 Application example for feed forward regulator  
RUSH CURRENT  
PREVENTION CIRCUIT  
DC OUTPUT  
R1  
Vcc  
COLLECTOR  
VOUT  
F/B  
CLM+  
EMITTER  
GND  
DET  
REG  
M51996AP/FP  
AC  
INPUT  
CVcc  
CFIN  
SOFT  
DET  
T-ON  
T-OFF  
CF  
CF  
ROFF  
RON  
Fig.2 Application example for fly-back regulator  
( 9  
/ 22 )  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
Start-up circuit section  
~
where VOSCH  
VOSCL  
4.4V  
2.0V  
The start-up current is such low current level as typical 100µ  
A,as shown in Fig.3,when the Vcc voltage is increased  
from low level to start-up voltage Vcc(START).  
In this voltage range,only a few parts in this IC,which has the  
function to make the output voltage low level,is alive and  
Icc current is used to keep output low level.The large voltage  
difference between Vcc(START) and Vcc(STOP) makes start-up  
easy,because it takes rather long duration from Vcc(START) to  
Vcc(STOP).  
~
CF is discharged by the summed-up of ROFF current and one  
sixteenth (1/16) of RON current by the function of Q2,Q3 and Q4  
when SW1,SW2 are switched to "discharge side".  
5.8V  
Q4  
Q1  
1/16  
T-ON  
CHARGING  
SW1  
Q3  
RON  
Icco  
11mA  
T-OFF  
CF  
~
FROM  
SWITCHED BY  
VF SIGNAL  
CHARGING AND  
DISCHARGING  
SIGNAL  
ROFF  
~
Vz 4.2V  
CF  
SW2  
IccL  
~
Q2  
DISCHARGING  
100µA  
Vcc  
(STOP)  
Vcc  
(START)  
M51996A  
~
~
9.9V  
16.2V  
Fig.4 Schematic diagram of charging and discharging  
control circuit for OSC.capacitor CF  
SUPPLY VOLTAGE Vcc(V)  
Fig.3 Circuit current vs.supply voltage  
VOSCH  
~
4.4V  
Oscillator section  
VOSCL  
The oscillation waveform is the triangle one.The ON-duration  
of output pulse depends on the rising duration of the triangle  
waveform and dead-time is decided by the falling duration.  
The rising duration is determined by the product of external  
resistor RON and capacitor CF and the falling duration is mainly  
determined by the product of resistor ROFF and capacitor CF.  
~
2.0V  
(1)Oscillator operation when SOFT circuit does  
not operate  
VOH  
VOL  
Fig.4 shows the equivalent charging and discharging circuit  
diagram of oscillator.  
The current flows through RON from the constant voltage source  
of 5.8V.CF is charged up by the same amplitude as RON  
current,when internal switch SW1,SW2 is switched to "charging  
side".The rise rate of CF terminal is given as  
Fig.5 OSC.waveform at normal condition (no-  
operation of intermittent action and OSC.control  
circuit)  
VT - ON  
RON X CF  
~
(V/s)  
................................................(1)  
So fall rate of CF terminal is given as  
VT - OFF  
ROFF X CF  
VT - ON  
16 X RON X CF  
~
where VT - ON  
~
4.5V  
+
(V/s)  
.....................(3)  
The maximum on duration is approximately given as  
The minimum off duration approximately is given as  
(VOSCH-VOSCL) X RON X CF  
~
(s)  
........................(2)  
(VOSCH-VOSCL) X CF  
VT-OFF  
ROFF  
~
VT - ON  
(s)  
.....................................(4)  
VT-ON  
+
16 X RON  
~
where VT - OFF  
3.5V  
The cycle time of oscillation is given by the summation of  
Equations 2 and 4.  
The frequency including the dead-time is not influenced by the  
temperature because of the built-in temperature compensating  
circuit.  
10  
(
/ 22 )  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
(2)Oscillator operation when the SOFT(soft  
start) circuit is operating.  
START FROM 0V  
VOSCH  
Output transistor is protected from rush current by CLM function  
at the start time of power on.SOFT terminal is used to improve  
the rising response of the output voltage of power  
supply(prevention of overshooting).  
VOSCL  
The ON duration of output is kept constant,and the OFF  
duration is extended as the SOFT terminal voltage becomes  
lower by the soft start circuit of this IC.  
0
The maximum value of extension is set internally at  
approximately sixteen times of the maximum ON duartion.  
The features of this method are as follows:  
1 It is ideal for primary control as IC driving current is supplied  
from the third widing of the main transformer at the start-up  
because constant ON duration is obtained from start-up.  
2 It is possible to get a wide dynamic range for ON/OFF ratio  
by pulse-by-pulse current limit circuit.  
3 The response characteristics at power-on is not affected by  
input voltage as the pulse-by-pulse limit current value is not  
affected by the input voltage.  
Fig.6 shows the circuit diagram of the soft start.If SOFT terminal  
voltage is low,T-OFF terminal voltage bocomes low and VT-OFF  
in equations (3) and (4) become low.  
THE FIRST  
OUTPUT PULSE  
VOH  
NO OUTPUT  
PULSE  
VOL  
0
t
Fig.8 Relationship between oscillator waveform and  
output waveform at start-up  
Fig.7 shows the relationship between oscillator waveform and  
output pulse.  
If the SOFT terminal voltage is VSOFT,the rise rate of CF  
terminal given as  
TO REG  
TERMINAL  
TO REG  
TERMINAL  
RSOFT  
VT - ON  
~
(V/S)  
..............................................................(5)  
SOFT  
TERMINAL  
RON • CF  
The fall rate of oscillation waveform is given as  
CSOFT  
T-OFF  
TERMINAL  
VT - ON  
VSOFT - VBE  
RON • CF  
~
+
.............................(6)  
(V/S)  
16 • RON • CF  
~
Vz 4.2V  
GND  
TERMINAL  
DISCHARGING TRANSISTOR*  
IC's INTERNAL CIRCUIT  
where  
VSOFT;SOFT terminal applied voltage  
VBE ~ 0.65V  
*Active when operation stops.  
If VSOFT - VBE < 0, VSOFT - VBE = 0  
If VSOFT - VBE > VT - OFF (~3.5V), VSOFT - VBE =VT - OFF  
Fig.6 Circuit diagram of SOFT terminal section and T-  
OFF terminal section  
VOSCH  
~
4.4V  
PWM comparator, PWM latch and current limit  
latch section  
Fig.9 shows the scematic diagram of PWM comparator and  
PWM latch section. The on-duration of output waveform  
coincides with the rising duration of CF terminal waveform,when  
the no output current flows from F/B terminal.  
When the F/B terminal has finite impedance and current flows  
out from F/B terminal,"A" point potential shown in Fig.9 depends  
on this current.So the "A" point potential is close to GND level  
when the flow-out current becomes large.  
VOSCL  
~
2.0V  
t
"A" point potential is compared with the CF terminal oscillator  
waveform and PWM comparator,and the latch circuit is set  
when the potential of oscillator waveform is higher than "A"  
point potential.  
VOH  
VOL  
The latch circuit is reset during the dead-time of oscillation  
(falling duration of oscillation current).So the "B" point potential  
or output waveform of latch circuit is the one shown in Fig.10.  
The final output waveform or "C" point potential is got by  
combining the "B" point signal and dead-time signal  
logically.(please refer to Fig.10)  
t
Fig.7 Oscillator waveform when the SOFT circuit is  
operating  
(
/
22  
)
11  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
~
7.1V  
5.8V  
OSC WAVEFORM  
OF CF TERMINAL  
POINT A  
~
VTHCLM 200mV  
POINT B  
LATCH  
CURRENT  
TO  
OUTPUT  
-
+
PWM  
COMP  
WAVEFORM OF  
CLM+ TERMINAL  
6S  
1S  
*1  
POINT C  
F/B  
CURRENT LIMIT  
SIGNAL TO SET  
LATCH  
POINT D  
*2  
FROM  
OSC  
M51996  
CF  
CLM+  
WAVEFORM OF  
VOUT TERMINAL  
*1 Resistor to determine current limit sensitivety  
*2 High level during dead time  
Fig.11 Operating waveform of current limiting circuit  
Fig.9 PWM comparator PWM latch and  
current limit latch section  
To eliminate the abnormal operation by the noise voltage,the  
low pass filter,which consists of RNF and CNF is used as shown  
in Fig.12.  
It is recommended to use 10 to 100Wfor RNF because such  
range of RNF is not influenced by the flow-out current of some  
200µA from CLM+ terminal and CNF is designed to have the  
enough value to absorb the noise voltage.  
OSC WAVEFORM  
WAVEFORM AT POINT A  
WAVEFORM  
OF O.S.C. &  
POINT A  
M51996  
POINT B  
POINT C  
VOUT  
POINT  
D
RNF  
CNF  
CLM+  
GND  
RCLM  
Fig.10 Waveforms of PWM comparator input point A,  
latch circuit points B and C  
Current limiting section  
When the current-limit signal is applied before the crossing  
instant of "A" pint potential and CF terminal voltage shown in  
Fig.9,this signal makes the output "off" and the off state will  
continue until next cycle.Fig.11 shows the timing relation among  
them.  
If the current limiting circuit is set,no waveform is generated at  
output terminal, however this state is reset during the  
succeeding dead-time.  
So this current limiting circuit is able to have the function in  
every cycle,and is named "pulse-by-pulse current limit".  
There happen some noise voltage on RCLM during the switching  
of power transistor due to the snubber circuit and stray  
capacitor of the transformer windings.  
Fig.12 Connection diagram of current limit circuit  
Voltage detector circuit(DET) section  
The DET terminal can be used to control the output voltage  
which is determined by the winding ratio of fly back transformer  
in fly-back system or in case of common ground circuit of  
primary and secondary in feed forward system.  
The circuit diagram is quite similar to that of shunt regulator  
type 431 as shown in Fig.13.As well known from Fig.13 and  
Fig.14,the output of OP AMP has the current-sink ability,when  
the DET terminal voltage is higher than 2.5V  
(
/
22  
)
12  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
7.1V  
It is necessary to input the sufficient larger current(800µA to  
8mA)than I2 for triggering the OVP operation.  
500W  
3k  
The reason to decrease I2 is that it is necessary that Icc at the  
OVP rest supply voltage is small.  
It is necessary that OVP state holds by circuit current from R1 in  
the application example,so this IC has the characteristic of  
small Icc at the OVP reset supply voltage(~stand-by current +  
20µA)  
1S  
6S  
F/B  
DET  
5.4k  
On the other hand,the circuit current is large in the higher  
supply voltage,so the supply voltage of this IC doesn't become  
so high by the voltage drop across R1.  
10.8k  
1.2k  
10.8k  
This characteristic is shown in Fig.16.  
10S  
The OVP terminal input current in the voltage lower than the  
OVP threshold voltage is based on I2 and the input current in  
the voltage higher than the OVP threshold voltage is the sum of  
the current flowing to the base of Q3 and the current flowing  
from the collector of Q2 to the base.  
For holding in the latch state,it is necessary that the OVP  
terminal voltage is kept in the voltage higher than VBE of Q3.  
So if the capacitor is connected between the OVP terminal and  
GND,even though Q2 turns on in a moment by the surge  
voltage,etc,this latch action does not hold if the OVP terminal  
voltage does not become higher than VBE of Q3 by charging  
this capacitor.  
For resetting OVP state,it is necessary to make the OVP  
terminal voltage lower than the OVP L threshold voltage or  
make Vcc lower than the OVP reset supply voltage.  
As the OVP reset voltage is settled on the rather high voltage of  
9.0V,SMPS can be reset in rather short time from the switch-off  
of the AC power source if the smoothing capacitor is not so  
large value.  
Fig.13 Voltage detector circuit section(DET)  
but it becomes high impedance state when lower than  
2.5V DET terminal and F/B terminal have inverting  
phase characteristics each other,so it is recommended  
to connect the resistor and capacitor in series between  
them for phase compensation.It is very important one  
can not connect by resistor directly as there is the  
voltage difference between them and the capacitor has  
the DC stopper function.  
7.1V  
3k  
500W  
Vcc  
1S  
6S  
7.8V  
F/B  
100µA  
8k  
12k  
I1  
DET  
-
OP  
AMP  
+
Q1  
2.5V  
Q2  
Fig.14 Schmatic diagram of voltage detector circuit section(DET)  
400  
Q3  
OVP  
GND  
2.5k  
OVP circuit(over voltage protection circuit)section  
I2  
OVP circuit is basically positive feedback circuit constructed  
by Q2,Q3 as shown in Fig.15.  
I1=0 when OVP operates  
Q2,Q3 turn on and the circuit operation of IC stops,when the  
input signal is applied to OVP terminal.(threshold voltage ~  
750mV)  
Fig.15 Detail diagram of OVP circuit  
The current value of I2 is about 150µA when the OVP does  
not operates but it decreases to about 2µA when OVP  
operates.  
(
/ 22 )  
13  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
RECTIFIED DC  
VOLTAGE FROM  
SMOOTHING CAPACITOR  
8
7
MAIN TRANSFORMER  
R1  
OVP RESET POINT  
8.87V(-30°C)  
VF  
8.94V(25°C)  
9.23V(85°C)  
THIRD WINDING OR  
BIAS WINDING  
Vcc  
M51996A  
GND  
6
5
4
3
Ta=-30°C  
Ta=25°C  
Ta=85°C  
CVcc  
2
1
Fig.24 Start-up circuit diagram when it is not  
necessary to set the start and stop input voltage  
0
10  
30  
40  
20  
0
SUPPLY VOLTAGE Vcc(V)  
Just after the start-up,the Icc current is supplied from  
Cvcc,however,under the steady state condition ,IC will be  
supplied from the third winding or bias winding of  
transformer,the winding ratio of the third winding must be  
designed so that the induced voltage may be higher than the  
operation-stop voltage Vcc(STOP).  
Fig.16 CIRCUIT CURRENT VS. SUPPLY VOLTAGE  
(OVP OPERATION)  
The Vcc voltage is recommended to be 12V to 17V as the  
normal and optimum gate voltage is 10 to 15V and the output  
voltage(VOH) of type M51996AP/FP is about(Vcc-2V).  
It is not necessary that the induced voltage is settled higher  
than the operation start-up voltage Vcc(START),and the high gate  
drive voltage causes high gate dissipation,on the other hand,too  
low gate drive voltage does not make the MOS-FET fully on-  
state or the saturation state.  
Output section  
It is required that the output circuit have the high sink and  
source abilities for MOS-FET drive.It is well known that the  
"totempole circuit has high sink and source ability.However,it  
has the demerit of high through current.  
For example,the through current may reach such the high  
current level of 1A,if type M51996A has the "conventional"  
totempole circuit.For the high frequency application such as  
higher than 100kHz,this through current is very important factor  
and will cause not only the large Icc current and the inevitable  
heat-up of IC but also the noise voltage.  
(2)The start-up circuit when it is not necessary to set the  
start and stop input voltage  
It is recommend to use the third winding of "forward winding"  
or "positive polarity" as shown in Fig.18,when the DC source  
voltages at both the IC operation start and stop must be  
settled at the specified values.  
This IC uses the improved totempole circuit,so without  
deteriorating the characteristic of operating speed,its through  
current is approximately 100mA.  
The input voltage(VIN(START)),at which the IC operation  
starts,is decided by R1 and R2 utilizing the low start-up  
APPLICATION NOTE OF TYPE M51996AP/FP  
Design of start-up circuit and the power supply  
of IC  
RECTIFIED DC  
PRIMARY WINDING  
OF TRANSFORMER  
VIN  
VOLTAGE FROM  
SMOOTHING CAPACITOR  
NP  
(1)The start-up circuit when it is not necessary to set the  
start and stop input voltage  
Fig.17 shows one of the example circuit diagram of the start-up  
circuit which is used when it is not necessary to set the start  
and stop voltage.  
It is recommended that the current more than 300µA flows  
through R1 in order to overcome the operation start-up current  
Icc(START) and Cvcc is in the range of 10 to 47µF.The product of  
R1 by Cvcc causes the time delay of operation,so the response  
time will be long if the product is too much large.  
R1  
VF  
THIRD WINDING OF  
TRANSFORMER  
Vcc  
M51996A  
GND  
NB  
R2  
CVcc  
Fig.18 Start-up circuit diagram when it is not  
necessary to set the start and stop input voltage  
(
/ 22 )  
14  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
current characteristics of type M51996AP/FP.  
The input voltage(VIN(STOP)),at which the IC operation stops,is  
decided by the ratio of third winding of transformer.  
The VIN(START) and VIN(STOP) are given by following equations.  
MAIN  
TRANSFORMER  
THIRD  
Vcc  
COLLECTOR  
R1  
R2  
~
VIN(START) R1 • ICCL + (  
+ 1) • Vcc(START)  
...............(7)  
WINDING  
NP  
1
2
+
~
VIN(STOP)  
(Vcc(STOP)-VF) • NB  
V'IN RIP(P-P)  
............(8)  
M51996A  
CVcc  
where  
OUTPUT  
RCLM  
ICCL is the operation start-up current of IC  
Vcc(START) is the operation start-up voltage of IC  
Vcc(STOP) is the operation stop voltage of IC  
VF is the forward voltage of rectifier diode  
V'IN(P-P) is the peak to peak ripple voltage of  
EMITTER  
GND  
NB  
NP  
~
Vcc terminal  
V'IN RIP(P-P)  
Fig.19 How to design the conductor-pattern of type  
M51996A on PC board(schematic example)  
It is required that the VIN(START) must be higher than VIN(STOP).  
When the third winding is the "fly back winding" or "reverse  
polarity",the VIN(START) can be fixed,however,VIN(STOP) can not  
be settled by this system,so the auxiliary circuit is required.  
(4)Power supply circuit for easy start-up  
When IC start to operate,the voltage of the CVCC begins to  
decrease till the CVCC becomes to be charged from the third  
winding of main-transformer as the Icc of the IC increases  
abruptly.In case shown in Fig.17 and 18,some "unstable start-  
up" or "fall to start-up" may happen, as the charging interval of  
CVCC is very short duration;that is the charging does occur only  
the duration while the induced winding voltage is higher than  
the CVCC voltage,if the induced winding voltage is nearly equal  
to the "operation-stop voltage" of type M51996A.  
(3)Notice to the Vcc,Vcc line and GND line  
To avoid the abnormal IC operation,it is recommended to  
design the Vcc is not vary abruptly and has few spike  
voltage,which is induced from the stray capacity between the  
winding of main transformer.  
To reduce the spike voltage,the Cvcc,which is connected  
between Vcc and ground,must have the good high frequency  
characteristics.  
It is recommended to use the 10 to 47µF for CVCC1,and about 5  
times capacity bigger than CVCC1 for CVCC2.  
To design the conductor-pattern on PC board,following cautions  
must be considered as shown in Fig.19.  
(a)To separate the emitter line of type M51996A from the GND  
line of the IC  
R1  
(b)The locate the CVCC as near as possible to type M51996A  
and connect directly  
(c)To separate the collector line of type M51996A from the Vcc  
line of the IC  
(d)To connect the ground terminals of peripheral parts of ICs to  
GND of type M51996A as short as possible  
MAIN  
TRANSFORMER  
THIRD  
WINDING  
Vcc  
M51996A  
CVcc1  
CVcc2  
GND  
Fig.20 DC source circuit for stable start-up  
(
/ 22 )  
15  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
OVP circuit  
(1)To avoid the miss operation of OVP  
It is recommended to connect the capacitor between OVP  
terminal and GND for avoiding the miss operation by the spike  
noise.  
TO MAIN  
TRANSFORMER  
R1  
The OVP terminal is connected with the sink current source  
(~150µA) in IC when OVP does not operate,for absorbing the  
leak current of the photo coupler in the application.  
So the resistance between the OVP terminal and GND for leak-  
cut is not necessary.  
If the resistance is connected,the supply current at the OVP  
reset supply voltage becomes large.  
As the result,the OVP reset supply voltage may become higher  
than the operation stop voltage.  
Vcc  
~
CFIN  
Cvcc  
R2  
M51996A  
GND  
In that case,the OVP action is reset when the OVP is triggered  
at the supply voltage a little high than the operation stop  
voltage.  
THE TIME CONSTANT OF  
THIS PART SHOULD BE SHORT  
So it should be avoided absolutely to connect the resistance  
between the OVP terminal and GND.  
Fig.22 Example circuit diagram to make the  
OVP-reset-time fast  
To REG or Vcc  
5.6k  
Vcc  
MAIN  
TRANSFORMER  
THIRD  
Vcc  
WINDING  
470W  
M51996A  
OVP  
M51996A  
PHOTO COUPLER  
OVP  
CVcc  
GND  
GND  
Fig.21 Peripheral circuit of OVP terminal  
FIG.23 OVP setting method using the induced  
third winding voltage on fly back system  
(2)Application circuit to make the OVP-reset time fast  
The reset time may becomes problem when the discharge time  
constant of CFIN • (R1+R2) is long. Under such the circuit  
condition,it is recommended to discharge the CVCC forcedly and  
to make the Vcc low value;This makes the OVP-reset time fast.  
(4)Method to control for ON/OFF using the OVP terminal  
You can reset OVP to lower the OVP terminal voltage lower  
than VTHOVPL.  
So you can control for ON/OFF using this nature.  
The application is shown in Fig.24.  
The circuit turns off by SW OFF and turns on by SW ON in this  
application.  
Of course you can make use of the transistor or photo-transistor  
instead of SW.  
(3)OVP setting method using the induced third winding  
voltage on fly back system  
For the over voltage protection (OVP),the induced fly back type  
third winding voltage can be utilized,as the induced third  
winding voltage depends on the output voltage.Fig.23 shows  
one of the example circuit diagram.  
REG  
5.1k  
M51996A  
ON/OFF  
SW  
FIG.24 Method to control for ON/OFF using the  
OVP terminal  
(
/ 22 )  
16  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
Current limiting circuit  
I2  
(1)Peripheral circuit of CLM+ terminal  
Fig.25 shows the example circuit diagrams around the CLM+  
terminal.It is required to connect the low pass filter,in order to  
reduce the spike current component,as the main current or  
drain current contains the spike current especially during the  
turn-on duration of MOS-FIT.  
1,000pF to 22,000pF is recommended for CNF and the RNF1  
and RNF2 have the functions both to adjust the "current-  
detecting-sensitivity" and to consist the low pass filter.  
CLM  
RCLM  
I1  
(a) Feed forward system  
IP1  
IP2  
R1  
I1  
I2  
CFIN  
INPUT  
SMOOTHING  
CAPACITOR  
COLLECTOR  
VOUT  
Vcc  
Cvcc  
M51996A  
CLM+  
RNF1  
RNF2  
(b) Primary and secondary current  
GND  
EMITTER  
RCLM  
CNF  
Fig.26 Primary and secondary current waveforms  
under the current limiting operation  
Fig.25 Peripheral circuit diagram of CLM+ terminal  
condition on feed forward system  
To design the RNF1 and RNF2,it is required to consider the  
influence of CLM+ terminal source current(IINCLM+),  
which value is in the range of 90 to 270µA.  
In order to be not influenced from these resistor paralleled value  
of RNF1 and RNF2,(RNF1/RNF2)is recommended to be less than  
100W.  
The RCLM should be the non-inductive resistor.  
(2)Over current limiting curve  
(a)In case of feed forward system  
OUTPUT CURRENT  
Fig.26 shows the primary and secondary current wave-forms  
under the current limiting operation.  
At the typical application of pulse by pulse primary current  
detecting circuit,the secondary current depends on the primary  
current.As the peak value of secondary current is limited to  
specified value,the characteristics curve of output voltage  
versus output current become to the one as shown in Fig.27.  
Fig.27 Over current limiting curve on feed forward  
system  
The demerit of the pulse by pulse current limiting system is that  
the output pulse width can not reduce to less than some value  
because of the delay time of low pass filter connected to the  
CLM+ terminal and propagation delay time TPDCLM from CLM+  
terminal to output terminal of type M51996A.The typical  
TPDCLM+ is 100ns.  
As the frequency becomes higher,the delay time must be  
shorter.And as the secondary output voltage becomes  
higher,the dynamic range of on-duty must be wider;it means  
that it is required to make the on-duration much more narrower.  
So this system has the demerit at the higher oscillating  
frequency and higher output voltage applications.  
To prevent that the SOFT terminal is used to lower the  
frequency when the curve starts to become vertical.  
(
/ 22 )  
17  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
BIAS WINDING OF  
THE MAIN TRANSFORMER  
D2  
Vcc  
COLLECTOR  
CVcc  
REG  
VOUT  
TO OUTPUT TRANSISTOR  
500  
3K  
R3  
C
SOFT  
M51996A  
1S  
6S  
F/B  
F/B  
REG  
M51996A  
R1  
R2  
Q1  
D1  
Fig.28 Relationship between REG terminal and  
F/B terminal  
PHOTO-COUPLER  
FOR FEED BACK SIGNAL  
If the curve becomes vertical because of an excess current, the  
output voltage is lowered and no feedback current flows from  
feedback photo-coupler;the PWM comparator operates to  
enlarge the duty sufficiently,but the signal from the CLM+  
section operates to make the pulse width narrower.  
Fig.29 Current to lower frequency during over current  
Under the condition in which I2 in Fig.26 does not become 0,the  
output voltage is proportional to the product of the input voltage  
VIN(primary side voltage of the main transformer) and on duty.If  
the bias winding is positive,Vcc is approximately proportional to  
VIN.The existance of feed back current of the photo-coupler is  
known by measuring the F/B terminal voltage which becomes  
less than 2VBE in the internal circuit of REG terminal and F/B  
terminal if the output current flows from the F/B terminal.  
Fig.29 shows an application example.  
SOFT  
SOFT  
VOUT  
VOUT  
TO MAKE THE KNEE POINT HIGH  
Q1 is turned on when normal output voltage is controlled at a  
certain value.The SOFT terminal is clampedto a high-level  
voltage.If the output voltage decreases and the curve starts to  
drop,no feed back current flows,Q1 is turned off and the SOFT  
terminal responds to the smoothed output voltage.  
SOFT  
VOUT  
It is recommended to use an R1 and R2 of 10kW~30kW.An R3  
of 20 to 100kWand C of 1000pF to 8200pF should be used.  
To change the knee point of frequency drop,use the circuit in  
Fig.30.  
TO MAKE THE KNEE POINT LOW  
To have a normal SOFT start function in the circuit in Fig.29,use  
the circuit in Fig.31.It is recommended to use an R4 of 10kW.  
Fig.30 Method to control the knee point of  
frequency drop  
BIAS WINDING OF  
THE MAIN TRANSFORMER  
D2  
Vcc  
COLLECTOR  
VOUT  
CVcc  
TO OUTPUT TRANSISTOR  
M51996A  
R3  
C
SOFT  
R4  
REG  
F/B  
R1  
RSOFT  
CSOFT  
D1  
Q2  
R2  
Q1  
PHOTO-COUPLER  
FOR FEED BACK SIGNAL  
Fig.31 Circuit to use frequency drop during the over  
current and normal soft start  
(
/
22  
)
18  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
Output circuit  
(b)In case of fly back system  
(1)The output terminal characteristics at the Vcc voltage  
lower than the "Operation-stop" voltage  
The DC output voltage of SMPS depends on the Vcc voltage of  
type M51996A when the polarity of the third winding is negative  
and the system is fly back.So the operation of type M51996A  
will stop when the Vcc becomes lower than "Operation-stop  
voltage" of M51996A when the DC output voltage of SMPS  
decreases under specified value at over load condition.  
However,the M51996A will non-operate and operate  
intermittently,as the Vcc voltage rises in accordance with the  
decrease of Icc current.  
TO MAIN  
TRANSFORMER  
VOUT  
M51996A  
The fly back system has the constant output power  
characteristics as shown in Fig.32 when the peak primary  
current and the operating frequency are constant.  
Toavoid anincrease of the output current,the frequency is  
lowered when the DC output voltage of SMPS starts to drop  
using the SOFT terminal.Vcc is divided and is input to the SOFT  
terminal as shown in Fig.33,because the voltage in proportional  
to the output voltage is obtained from the bias winding.In this  
application example,the current flowing to R3 added to the start-  
up current.So please use high resistance or 100kWto 200kWfor  
R3.  
RCLM  
100kW  
Fig.34 Circuit diagram to prevent the MOS-FIT gate  
potential rising  
The output terminal has the current sink ability even though the  
Vcc voltage lower than the "Operation-stop" voltage or Vcc(STOP)  
(It means that the terminal is "Output low state" and please refer  
characteristics of output low voltage versus sink current.)  
This characteristics has the merit not to damage the MOS-FIT  
at the stop of operation when the Vcc voltage decreases lower  
than the voltage of Vcc(STOP),as the gate charge of MOS-  
FIT,which shows the capacitive load characteristics to the  
output terminal,is drawn out rapidly.  
The output terminal has the draw-out ability above the Vcc  
voltage of 2V,however,lower than the 2V,it loses the ability and  
the output terminal potential may rise due to the leakage  
current.  
The start-up current is not affected by R3 if R3 is connected to  
Cvcc2 in the circuit shown in Fig.20.  
POINT THAT Vcc VOLTAGE  
OR THIRD WINDING  
VOLTAGE DECREASES  
UNDER "OPERATION-STOP  
VOLTAGE"  
In this case, it is recommended to connect the resistor of 100kW  
between gate and source of MOS-FIT as shown in Fig.34.  
DC OUTPUT CURRENT  
Fig.32 Over current limitting curve on fly back system  
(2)MOS-FIT gate drive power dissipation  
Fig.35 shows the relation between the applied gate voltage  
and the stored gate charge.  
In the region 1 ,the charge is mainly stored at CGS as the  
depletion is spread and CGD is small owing to the off-state of  
MOS-FIT and the high drain voltage.  
In the region 2 ,the CGD is multiplied by the "mirror effect" as  
the characteristics of MOS-FIT transfers from off-state to on-  
state.  
In the region 3 ,both the CGD and CGS affect to the  
characteristics as the MOS-FIT is on-state and the drain  
voltage is low.  
Vcc  
COLLECTOR  
SOFT  
R3  
R4  
M51996A  
CVcc  
F/B  
REG  
R1  
The charging and discharging current caused by this gate  
charge makes the gate power dissipation.The relation between  
gate drive current ID and total gate charge QGSH is shown by  
following equation;  
R2  
To photo-coupler for feed back signal  
ID=QGSH • fOSC .....................................(11)  
Fig.33 Current to lower the frequency during the  
over current in the fly back system  
Where  
fOSC is switching frequency  
(
/ 22 )  
19  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
As the gate drive current may reach up to several tenths  
milliamperes at 500kHz operation,depending on the size of  
MOS-FIT,the power dissipation caused by the gate current can  
not be neglected.  
In this case,following action will be considered to avoid heat  
up of type M51996A.  
DETECTING  
VOLTAGE  
C1  
C
R1  
R2  
F/B  
C2  
C4  
R3  
DET  
M51996A  
B
20  
DRAIN  
Fig.37 How to use the DET circuit for the voltage  
detector  
VDS=80V  
15  
ID  
VDS=200V  
VDS=320V  
CGD  
Fig.38 shows the gain-frequency characteristics between point  
B and point C shown in Fig.37.  
CDS  
3
GATE  
VD  
The G1, 1 and  
are given by following equations;  
2
10  
CGS  
R3  
R1/R2  
1
VGS  
G1=  
2
.............................................(10)  
............................................(11)  
....................................(12)  
SOURCE  
=
1
C2 • R3  
5
0
C1 + C2  
C1 • C2 • R3  
1
ID=4A  
16  
=
2
At the start of the operation,there happen to be no output pulse  
due to F/B terminal current through C1 and C2,as the potential  
of F/B terminal rises sharply just after the start of the operation.  
Not to lack the output pulse,is recommended to connect the  
capacitor C4 as shown by broken line.  
20  
8
12  
0
4
TOTAL STORED GATE CHARGE(nC)  
Please take notice that the current flows through the R1 and R2  
are superposed to Icc(START).Not to superpose,R1 is connected  
to Cvcc2 as shown in Fig.20.  
Fig.35 The relation between applied gate-source  
voltage and stored gate charge  
GAVDET  
(DC VOLTAGE GAIN)  
(1) To attach the heat sink to type M51996A  
(2) To use the printed circuit board with the good  
thermal conductivity  
(3) To use the buffer circuit shown next section  
G1  
2
Log  
1
(3)Output buffer circuit  
It is recommended to use the output buffer circuit as shown in  
Fig.36,when type M51996A drives the large capacitive load or  
bipolar transistor.  
Fig.38 Gain-frequency characteristics between  
point B and C shown in Fig.37  
How to get the narrow pulse width during the  
start of operation  
Fig.39 shows how to get the narrow pulse width during the start  
of the operation.If the pulse train of forcedly narrowed pulse-  
width continues too long,the misstart of operation may  
happen,so it is recommended to make the output pulse width  
narrow only for a few pulse at the start of operation.0.1µF is  
recommended for the C.  
VOUT  
M51996A  
Fig.36 Output buffer circuit diagram  
DET  
Fig.37 shows how to use the DET circuit for the voltage detector  
and error amplifier.  
For the phase shift compensation,it is recommended to  
connected the CR network between det terminal and F/B  
terminal.  
(
/ 22 )  
20  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
Driver circuit for bipolar transistor  
F/B  
When the bipolar transistor is used instead of MOS-FIT,the  
base current of bipolar transistor must be sinked by the  
negative base voltage source for the switching-off duration,in  
order to make the switching speed of bipolar transistor fast one.  
In this case,over current can not be detected by detecting  
resistor in series to bipolar transistor,so it is recommended to  
use the CT(current transformer).  
M51996A  
100W  
TO PHOTO  
COUPLER  
C
Fig.39 How to get the narrow pulse width  
during the start of operation  
For the low current rating transistor,type M51996A can drive it  
directly as shown in Fig.42.  
How to synchronize with external circuit  
Type M51996A has no function to synchronize with external  
circuit,however,there is some application circuit for  
synchronization as shown in Fig.40.  
COLLECTOR  
Vcc  
VOUT  
BIPOLAR  
TRANSISTOR  
M51996A  
M51996A  
EMITTER  
GND  
CF  
T-ON  
T-OFF  
Fig.42 Driver circuit diagram (2) for bipolar transistor  
ROFF  
CF  
RON  
Q1  
SYNCHRONOUS  
PULSE  
0V  
0V  
MINIMUM PULSE  
WIDTH OF  
SYNCHRONOUS  
PULSE  
MAXIMUM PULSE WIDTH OF  
SYNCHRONOUS PULSE  
Fig.40 How to synchronize with external circuit  
COLLECTOR  
VOUT  
Vcc  
Vcc  
M51996A  
-Vss  
(-2V to -5V)  
EMITTER  
GND  
Fig.41 Driver circuit diagram (1) for bipolar transistor  
(
/ 22 )  
21  
MITSUBISHI (Dig./Ana. INTERFACE)  
M51996AP/FP  
SWITCHING REGULATOR CONTROL  
Attention for heat generation  
The maximum ambient temperature of type M51996A is  
+85°C,however,the ambient temperature in vicinity of the IC is  
not uniform and varies place by place,as the amount of power  
dissipation is fearfully large and the power dissipation is  
generated locally in the switching regulator.  
So it is one of the good idea to check the IC package  
temperature.  
The temperature difference between IC junction and the surface  
of IC package is 15°C or less,when the IC junction temperature is  
measured by temperature dependency of forward voltage of pin  
junction,and IC package temperature is measured by "thermo-  
viewer",and also the IC is mounted on the "phenol-base" PC  
board in normal atmosphere.  
So it is concluded that the maximum case temperature(surface  
temperature of IC) rating is 120°C with adequate margin.  
(
/ 22 )  
22  
配单直通车
M51996AP产品参数
型号:M51996AP
是否Rohs认证:不符合
生命周期:Transferred
IHS 制造商:MITSUBISHI ELECTRIC CORP
零件包装代码:DIP
包装说明:DIP, DIP14,.3
针数:14
Reach Compliance Code:unknown
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.64
Is Samacsys:N
模拟集成电路 - 其他类型:SWITCHING CONTROLLER
控制模式:VOLTAGE-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:30 V
最小输入电压:12 V
标称输入电压:18 V
JESD-30 代码:R-PDIP-T14
JESD-609代码:e0
长度:19 mm
功能数量:1
端子数量:14
最高工作温度:85 °C
最低工作温度:-30 °C
最大输出电流:1 A
封装主体材料:PLASTIC/EPOXY
封装代码:DIP
封装等效代码:DIP14,.3
封装形状:RECTANGULAR
封装形式:IN-LINE
认证状态:Not Qualified
座面最大高度:4.5 mm
子类别:Switching Regulator or Controllers
最大供电电流 (Isup):19 mA
表面贴装:NO
切换器配置:SINGLE
最大切换频率:500 kHz
技术:BIPOLAR
温度等级:OTHER
端子面层:Tin/Lead (Sn/Pb)
端子形式:THROUGH-HOLE
端子节距:2.54 mm
端子位置:DUAL
宽度:7.62 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!