欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • NCP1015ST100T3G
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • NCP1015ST100T3G图
  • 集好芯城

     该会员已使用本站13年以上
  • NCP1015ST100T3G 现货库存
  • 数量23230 
  • 厂家ON(安森美) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • NCP1015ST100T3G图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • NCP1015ST100T3G 现货库存
  • 数量166 
  • 厂家ON(安森美) 
  • 封装SOT223 
  • 批号21+ 
  • 原装特价可提供13点
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • NCP1015ST100T3G图
  • 深圳市宏芯微科技有限公司

     该会员已使用本站15年以上
  • NCP1015ST100T3G 现货库存
  • 数量32658 
  • 厂家ON 
  • 封装SOT-223 
  • 批号20+ 
  • 代理品牌优势库存杜绝假冒伪劣应对市场激烈竞争超低价热卖
  • QQ:1678302500QQ:1678302500 复制
  • 0755-82815382 QQ:1678302500
  • NCP1015ST100T3G图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • NCP1015ST100T3G 现货库存
  • 数量8000 
  • 厂家ON(安森美) 
  • 封装NA 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • NCP1015ST100T3G图
  • 深圳威尔运电子有限公司

     该会员已使用本站10年以上
  • NCP1015ST100T3G 现货热卖
  • 数量4000 
  • 厂家ON 
  • 封装N/A 
  • 批号2009 
  • 现货,进口原装!
  • QQ:276537593QQ:276537593 复制
  • 86-0755-83826550 QQ:276537593
  • NCP1015ST100T3G图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • NCP1015ST100T3G
  • 数量5300 
  • 厂家ON(安森美) 
  • 封装SOT-223 
  • 批号21+ 
  • 全新原装正品,现货库存欢迎咨询
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • NCP1015ST100T3G图
  • 集好芯城

     该会员已使用本站13年以上
  • NCP1015ST100T3G
  • 数量16539 
  • 厂家ON/安森美 
  • 封装SOT223 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • NCP1015ST100T3G图
  • 齐创科技(上海北京青岛)有限公司

     该会员已使用本站14年以上
  • NCP1015ST100T3G
  • 数量12000 
  • 厂家ON 
  • 封装标准封装 
  • 批号24+热销 
  • 热卖全新原装现货特价长期供应欢迎来电!
  • QQ:2394092314QQ:2394092314 复制
    QQ:792179102QQ:792179102 复制
  • 021-62153656 QQ:2394092314QQ:792179102
  • NCP1015ST100T3G图
  • 深圳市勤思达科技有限公司

     该会员已使用本站14年以上
  • NCP1015ST100T3G
  • 数量10402 
  • 厂家ONSEMI/安森美 
  • 封装SOT-223 
  • 批号24+ 
  • 全新现货可以开税票
  • QQ:2881239445QQ:2881239445 复制
  • 0755-83264115 QQ:2881239445
  • NCP1015ST100T3G图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • NCP1015ST100T3G
  • 数量120 
  • 厂家ON/安森美 
  • 封装SOT223 
  • 批号24+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • NCP1015ST100T3G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCP1015ST100T3G
  • 数量55242 
  • 厂家ON进口 
  • 封装SOT-223 
  • 批号2023+ 
  • 绝对原装正品现货,全新深圳原装进口现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • NCP1015ST100T3G图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • NCP1015ST100T3G
  • 数量3200 
  • 厂家ON 
  • 封装SOT223 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • NCP1015ST100T3G图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • NCP1015ST100T3G
  • 数量16539 
  • 厂家ON/安森美 
  • 封装SOT223 
  • 批号24+ 
  • 原装原厂 现货现卖
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • NCP1015ST100T3G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCP1015ST100T3G
  • 数量5000 
  • 厂家ON 
  • 封装SOT 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • NCP1015ST100T3G图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • NCP1015ST100T3G
  • 数量3800 
  • 厂家ON 
  • 封装SOT-223 
  • 批号24+ 
  • 授权分销 现货热卖
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • NCP1015ST100T3G图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • NCP1015ST100T3G
  • 数量5280 
  • 厂家ON(安森美) 
  • 封装SOT-223 
  • 批号23+ 
  • ▉原装正品▉力挺实单可含税可拆样
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • NCP1015ST100T3G图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • NCP1015ST100T3G
  • 数量35000 
  • 厂家ON 
  • 封装SOT223 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • NCP1015ST100T3G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCP1015ST100T3G
  • 数量13500 
  • 厂家ON 
  • 封装SOT-223 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • NCP1015ST100T3G图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • NCP1015ST100T3G
  • 数量9328 
  • 厂家ON-安森美 
  • 封装SOT-223 
  • 批号▉▉:2年内 
  • ▉▉¥8.9元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • NCP1015ST100T3G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCP1015ST100T3G
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • NCP1015ST100T3G图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • NCP1015ST100T3G
  • 数量23000 
  • 厂家ON 
  • 封装SOT-223 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305
  • NCP1015ST100T3G图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • NCP1015ST100T3G
  • 数量5800 
  • 厂家ON 
  • 封装SOP 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • NCP1015ST100T3G图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • NCP1015ST100T3G
  • 数量8460 
  • 厂家ON 
  • 封装标准封装 
  • 批号NEW 
  • 热卖全新原装现货特价长期供应欢迎来电!
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • NCP1015ST100T3G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP1015ST100T3G
  • 数量7900 
  • 厂家ON/安森美 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • NCP1015ST100T3G图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • NCP1015ST100T3G
  • 数量11846 
  • 厂家ON 
  • 封装SOT-223 
  • 批号1818+ 
  • 一级代理商现货批发,原装正品,假一罚十
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • NCP1015ST100T3G图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • NCP1015ST100T3G
  • 数量9000 
  • 厂家ON 
  • 封装SOT-223 
  • 批号2021+ 
  • 原装现货
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • NCP1015ST100T3G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCP1015ST100T3G
  • 数量43520 
  • 厂家ON/安森美 
  • 封装SOT223 
  • 批号2023+ 
  • 全新原装,一定原装房间仓库现货
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • NCP1015ST100T3G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • NCP1015ST100T3G
  • 数量18310 
  • 厂家ON 
  • 封装SOT-223 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • NCP1015ST100T3G图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • NCP1015ST100T3G
  • 数量7353 
  • 厂家ON Semiconductor 
  • 封装TO-261-4, TO-261AA 
  • 批号20+ 
  • 进口原装,公司现货
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • NCP1015ST100T3G图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • NCP1015ST100T3G
  • 数量26700 
  • 厂家ON(安森美) 
  • 封装▊原厂封装▊ 
  • 批号▊ROHS环保▊ 
  • 十年以上分销商原装进口件服务型企业0755-83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • NCP1015ST100T3G图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • NCP1015ST100T3G
  • 数量12245 
  • 厂家ON/安森美 
  • 封装SMD 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • NCP1015ST100T3G图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • NCP1015ST100T3G
  • 数量3365 
  • 厂家on 
  • 封装SOT-223(TO-261) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • NCP1015ST100T3G图
  • 深圳市中利达电子科技有限公司

     该会员已使用本站11年以上
  • NCP1015ST100T3G
  • 数量5000 
  • 厂家ON 
  • 封装N/A 
  • 批号24+ 
  • 挂了就有,工厂库存,YX价优
  • QQ:1902134819QQ:1902134819 复制
    QQ:2881689472QQ:2881689472 复制
  • 0755-13686833545 QQ:1902134819QQ:2881689472
  • NCP1015ST100T3G图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • NCP1015ST100T3G
  • 数量3365 
  • 厂家on 
  • 封装SOT-223(TO-261) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • NCP1015ST100T3G图
  • 深圳市凯睿晟科技有限公司

     该会员已使用本站10年以上
  • NCP1015ST100T3G
  • 数量30000 
  • 厂家ON/安森美 
  • 封装SMD 
  • 批号24+ 
  • 百域芯优势 实单必成 可开13点增值税
  • QQ:2885648621QQ:2885648621 复制
  • 0755-23616725 QQ:2885648621
  • NCP1015ST100T3G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCP1015ST100T3G
  • 数量85000 
  • 厂家ON/安森美 
  • 封装SOT-223 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • NCP1015ST100T3G图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • NCP1015ST100T3G
  • 数量4664 
  • 厂家onsemi 
  • 封装SOT223 
  • 批号22+ 
  • 支持检测.现货.原装价优
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • NCP1015ST100T3G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP1015ST100T3G
  • 数量11048 
  • 厂家ON/安森美 
  • 封装SOT-223 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087

产品型号NCP1015ST100T3G的概述

NCP1015ST100T3G的概述 NCP1015ST100T3G是一款由ON Semiconductor(美国恩智浦半导体公司)生产的高效电源转换器芯片。该芯片主要用于构建低功耗的开关电源,广泛应用于电视机、计算机、智能手机充电器以及其他需要高效率和小体积电源的电子设备。NCP1015结合了集成PWM(脉宽调制)控制和MOSFET(场效应管)的特性,力求在整个操作范围内提供最佳性能。其设计能够支持输出功率高达15W,具有高达85%的转换效率。 NCP1015的主要特点包括其出色的待机功耗性能和支持多种输入电压范围(如100至240V AC),使其能够在全球大多数电源环境下工作。该芯片采用单一的封装设计,可以简单集成到电路中,减少了设计时间和成本。因此,NCP1015受到了许多设计工程师的青睐。 详细参数 基本参数 - 工作温度范围:-40°C 至 +125°C - 输入电压范围:...

产品型号NCP1015ST100T3G的Datasheet PDF文件预览

NCP1015  
Self-Supplied Monolithic  
Switcher for Low Standby-  
Power Offline SMPS  
The NCP1015 integrates a fixedfrequency currentmode  
controller and a 700 V voltage MOSFET. Housed in a PDIP7 or  
SOT223 package, the NCP1015 offers everything needed to build a  
rugged and lowcost power supply, including softstart, frequency  
jittering, shortcircuit protection, skipcycle, a maximum peak  
current setpoint and a Dynamic SelfSupply (no need for an auxiliary  
winding).  
http://onsemi.com  
MARKING  
DIAGRAMS  
Unlike other monolithic solutions, the NCP1015 is quiet by nature:  
during nominal load operation, the part switches at one of the available  
frequencies (65100 kHz). When the current setpoint falls below a  
given value, e.g. the output power demand diminishes, the IC  
automatically enters the socalled skip cycle mode and provides  
excellent efficiency at light loads. Because this occurs at typically 0.25  
of the maximum peak value, no acoustic noise takes place. As a result,  
standby power is reduced to the minimum without acoustic noise  
generation.  
Shortcircuit detection takes place when the feedback signal fades  
away e.g. untrue shortcircuit or is broken optocoupler cases. Finally  
softstart and frequency jittering further ease the designer task to  
quickly develop lowcost and robust offline power supplies.  
For improved standby performance, the connection of an auxiliary  
winding stops the DSS operation and helps to consume less than  
100 mW at high line.  
PDIP7  
CASE 626A  
AP SUFFIX  
P1015APyy  
AWL  
YYWWG  
8
1
1
4
SOT223  
CASE 318E  
ST SUFFIX  
4
AYW  
1015y G  
G
1
1
yy  
y
A
WL  
YY  
WW  
= 06 (65 kHz), 10 (100 kHz)  
= A (65 kHz), B (100 kHz)  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
G or G = PbFree Package  
(*Note: Microdot may be in either location)  
Features  
Builtin 700 V MOSFET with typical R  
of 11 W  
DS(on)  
PIN CONNECTIONS  
Large Creepage Distance between Highvoltage Pins  
Currentmode Fixed Frequency Operation: 65 kHz 100 kHz  
Skipcycle Operation at Low Peak Currents Only: No Acoustic Noise!  
Dynamic SelfSupply, No Need for an Auxiliary Winding  
Internal 1 ms Softstart  
Autorecovery Internal Output Shortcircuit Protection  
Frequency Jittering for Better EMI Signature  
Below 100 mW Standby Power if Auxiliary Winding is Used  
Internal Temperature Shutdown  
PDIP7  
V
GND  
GND  
1
2
3
4
8
7
CC  
NC  
GND  
FB  
DRAIN  
5
(Top View)  
SOT223  
Direct Optocoupler Connection  
SPICE Models Available for TRANsient and AC Analysis  
This is a PbFree Device  
V
CC  
1
FB  
2
3
4
GND  
Typical Applications  
DRAIN  
Low Power acdc Adapters for Chargers  
Auxiliary Power Supplies (USB, Appliances, TVs, etc.)  
(Top View)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 20 of this data sheet.  
© Semiconductor Components Industries, LLC, 2011  
1
Publication Order Number:  
March, 2011 Rev. 3  
NCP1015/D  
NCP1015  
Indicative Maximum Output Power from NCP1015  
R
I  
230 Vac  
14 W  
100 250 Vac  
6.0 W  
DS(on)  
p
11 W 450 mA DSS  
11 W 450 mA Auxiliary Winding  
19 W  
8.0 W  
1. Informative values only, with: T  
= 50°C, circuit mounted on minimum copper area as recommended.  
amb  
V
out  
+
+
100250 Vac  
1
2
3
4
8
7
5
+
GND  
Figure 1. Typical Application Example  
PIN FUNCTION DESCRIPTION  
Pin No.  
SOT223  
PDIP7  
Pin Name  
Function  
Description  
1
1
V
CC  
Powers the Internal Circuitry This pin is connected to an external capacitor of typically  
10 mF. The natural ripple superimposed on the V  
CC  
participates to the frequency jittering. For improved  
standby performance, an auxiliary V can be connected  
CC  
to Pin 1. The V also includes an active shunt which  
CC  
serves as an opto failsafe protection.  
2
2
3
4
NC  
GND  
FB  
The IC Ground  
Feedback Signal Input  
By connecting an optocoupler to this pin, the peak current  
setpoint is adjusted accordingly to the output power  
demand.  
3
4
5
7
8
DRAIN  
Drain Connection  
The internal drain MOSFET connection.  
GND  
GND  
The IC Ground  
The IC Ground  
http://onsemi.com  
2
NCP1015  
V
CC  
Startup Source  
1
8
GND  
V
CC  
Drain  
R
sense  
High when V t 3 V  
CC  
UVLO  
250 ns  
L.E.B.  
Management  
Reset  
2
3
4
7
NC  
GND  
65 kHz  
100 kHz  
Clock  
Q
Set  
EMI Jittering  
4 V  
FlipFlop  
Driver  
D
= 65%  
max  
Reset  
V
CC  
18 k  
Error flag armed?  
GND  
+
0.5 V  
+
Overload?  
-
Startup Sequence  
Overload  
SoftStart  
5
FB  
Drain  
DRAIN  
Figure 2. Simplified Internal Circuit Architecture  
Rating  
MAXIMUM RATINGS  
Symbol  
Value  
0.3 to 10  
0.3 to 700  
1
Unit  
V
V
CC  
Power Supply voltage on all pins, except pin 5 (drain)  
Vds  
Drain voltage  
V
Ids  
Drain peak current during transformer saturation  
Maximum current into pin 1  
A
pk  
I_V  
15  
mA  
°C/W  
CC  
Thermal Characteristics  
P Suffix, Case 626A  
R
q
JunctiontoLead  
9.0  
q
JL  
R
JunctiontoAir, 2.0 oz (70 mm) Printed Circuit Copper Clad  
0.36 Sq. Inch (2.32 Sq. Cm)  
JA  
77  
60  
1.0 Sq. Inch (6.45 Sq. Cm)  
ST Suffix, Plastic Package Case 318E  
JunctiontoLead  
JunctiontoAir, 2.0 oz (70 mm) Printed Circuit Copper Clad  
0.36 Sq. Inch (2.32 Sq. Cm)  
1.0 Sq. Inch (6.45 Sq. Cm)  
14  
R
R
q
JL  
q
JA  
74  
55  
TJ  
Maximum Junction Temperature  
150  
°C  
°C  
kV  
V
MAX  
Storage Temperature Range  
60 to +150  
ESD Capability, Human Body Model (HBM) (All pins except HV)  
ESD Capability, Machine Model (MM)  
2
200  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
http://onsemi.com  
3
NCP1015  
ELECTRICAL CHARACTERISTICS (For typical values T =25°C, for min/max values T =40°Cto125°C, V =8V unless otherwise noted)  
J
J
CC  
Symbol  
Rating  
Pin  
Min  
Typ  
Max  
Unit  
SUPPLY SECTION AND V MANAGEMENT  
CC  
V
V
V
V
increasing level at which the current source turnsoff  
decreasing level at which the current source turnson  
1
1
1
1
1
1
1
7.9  
6.9  
4.4  
8.5  
7.5  
9.1  
8.1  
5.1  
V
V
V
CC(off)  
CC  
CC(on)  
CC  
V
Decreasing level at which the Latchoff phase Ends  
Hysteresis between V  
4.7  
CCLATCH  
DV  
1.0  
CC  
CC(off)  
ICC1  
ICC1  
Internal IC consumption, MOSFET switching at 65 kHz  
Internal IC consumption, MOSFET switching at 100 kHz  
0.92  
0.95  
200  
1.1  
1.15  
300  
mA  
mA  
mV  
V
Active zener voltage positive offset to V  
140  
clamp  
CC(off)  
POWER SWITCH CIRCUIT  
Power Switch Circuit onstate resistance (Id = 50 mA)  
T = 25°C  
R
W
DS(on)  
5
5
11  
19  
24  
J
T = 125°C  
J
V
dsb  
Power Switch Circuit & Startup breakdown voltage  
5
700  
V
(I  
= 100 mA, T = 25°C)  
J
DS(off)  
I
Power Switch & Startup breakdown voltage offstate leakage current  
T = 40°C (Vds = 650 V)  
mA  
DS(off)  
5
5
5
70  
50  
30  
120  
J
T = 25°C (Vds = 700 V)  
J
T = 125°C (Vds = 700 V)  
J
Switching characteristics (R = 50 W, Vds set for Ids = 0.7 x Ids  
)
ns  
L
lim  
t
t
Turnon time (90% 10%)  
Turnoff time (10% 90%)  
5
5
20  
10  
on  
off  
INTERNAL STARTUP CURRENT SOURCE  
IC1  
Highvoltage current source, V = 8 V  
0°C < T < 125°C  
1
1
5.0  
5.0  
8.0  
8.0  
10  
11  
mA  
mA  
CC  
J
40°C < T < 125°C  
J
IC2  
Highvoltage current source, V = 0  
10  
CC  
CURRENT COMPARATOR T = 255C (Note 2)  
J
I
Maximum internal current setpoint  
5
405  
450  
25  
495  
mA  
%
peak  
I
Default internal current setpoint for skip cycle operation,  
Lskip  
percentage Ipeak  
max  
t
Propagation delay from current detection to drain OFF state  
Leading Edge Blanking Duration  
125  
250  
ns  
ns  
DEL  
t
LEB  
INTERNAL OSCILLATOR  
f
f
Oscillation frequency, 65 kHz version, T = 25°C (Note 2)  
59  
90  
65  
100  
3.3  
67  
71  
110  
kHz  
kHz  
%
OSC  
OSC  
J
Oscillation frequency, 100 kHz version, T = 25°C (Note 2)  
J
f
Frequency dithering compared to switching frequency (with active DSS)  
dither  
D
Maximum Dutycycle  
62  
72  
%
max  
FEEDBACK SECTION  
R
Internal pullup resistor  
4
18  
kW  
up  
ss  
t
Internal softstart (guaranteed by design)  
1.0  
ms  
SKIP CYCLE GENERATION  
Default skip mode level on FB pin  
TEMPERATURE MANAGEMENT  
V
skip  
4
0.5  
V
TSD  
Temperature shutdown  
Hysteresis in shutdown  
150  
50  
°C  
°C  
2. See characterization curves for temperature evolution  
http://onsemi.com  
4
 
NCP1015  
TYPICAL CHARACTERISTICS  
1.5  
1.4  
2  
3  
4  
5  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
6  
7  
8  
9  
10  
11  
12  
0.6  
0.5  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. IC1 @ VCC = 8.0 V, FB = 1.5 V  
vs. Temperature  
Figure 4. ICC1 @ VCC = 8.0 V, FB = 1.5 V  
vs. Temperature  
9.0  
8.9  
8.8  
8.7  
0.40  
0.38  
0.36  
0.34  
0.32  
0.30  
0.28  
0.26  
0.24  
8.6  
8.5  
8.4  
8.3  
8.2  
0.22  
0.20  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. ICC2 @ VCC = 6.0 V, FB = Open  
vs. Temperature  
Figure 6. VCC OFF, FB = 1.5 V vs. Temperature  
http://onsemi.com  
5
NCP1015  
TYPICAL CHARACTERISTICS  
69  
8.0  
7.9  
7.8  
7.7  
7.6  
7.5  
7.4  
7.3  
7.2  
68  
67  
66  
7.1  
7.0  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. VCC ON, FB = 3.5 V vs. Temperature  
Figure 8. Duty Cycle vs. Temperature  
600  
550  
500  
450  
400  
350  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
Figure 9. IpeakRR, VCC = 8.0 V, FB = 3.5 V  
vs. Temperature  
25  
20  
110  
100 kHz  
100  
90  
15  
10  
5
80  
70  
65 kHz  
40  
60  
50  
0
40 20  
0
20  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Frequency vs. Temperature  
Figure 11. ON Resistance vs. Temperature  
http://onsemi.com  
6
NCP1015  
APPLICATION INFORMATION  
Introduction  
The NCP1015 offers a complete currentmode control  
solution (actually an enhanced NCP1200 controller section)  
together with a highvoltage power MOSFET in a  
monolithic structure. The component integrates everything  
needed to build a rugged and lowcost SwitchMode Power  
Supply (SMPS) featuring low standby power. The quick  
selection table details the differences in operating  
frequency.  
No need for an auxiliary winding: ON Semiconductor  
Very High Voltage Integrated Circuit technology lets  
you supply the IC directly from the highvoltage dc  
rail. We call it Dynamic SelfSupply (DSS). This  
solution simplifies the transformer design and ensures a  
better control of the SMPS in difficult output  
averaged version to help you closing the loop.  
Readytouse templates can be downloaded in  
OrCAD’s PSpice, and INTUSOFT’s IsSpice4 from ON  
Semiconductor web site, NCP1015 related section.  
Dynamic SelfSupply  
When the power supply is first powered from the mains  
outlet, the internal current source (typically 8 mA) is biased  
and charges up the V capacitor from the drain pin. Once  
CC  
the voltage on this V capacitor reaches the V  
level  
CC  
CC(off)  
(typically 8.5 V), the current source turns off and pulses are  
delivered by the output stage: the circuit is awake and  
activates the power MOSFET. Figure 12 details the internal  
circuitry:  
conditions, e.g. constant current operations. However,  
for improved standby performance, an auxiliary  
Vref OFF = 8.5 V  
Vref ON = 7.5 V  
Drain  
winding can be connected to the V pin to disable the  
Vref  
= 4.7 V  
CC  
Latch  
DSS operation.  
+
-
Shortcircuit protection: by permanently monitoring  
the feedback line activity, the IC is able to detect the  
presence shortcircuit, immediately reducing the output  
power for a total system protection. Once the short has  
disappeared, the controller resumes and goes back to  
normal operation.  
Low standbypower: If SMPS naturally exhibit a good  
efficiency at nominal load, they begin to be less  
efficient when the output power demand diminishes. By  
skipping unneeded switching cycles, the NCP1015  
drastically reduces the power wasted during light load  
conditions. An auxiliary winding can further help  
decreasing the standby power to extremely low levels  
by invalidating the DSS operation. Typical  
Startup Source  
V
CC  
Internal Supply  
+
+
Vref  
CV  
V
CC  
CC(off)  
+200 mV  
(8.7 V Typ.)  
Figure 12. The Current Source Regulates VCC  
by Introducing a Ripple  
measurements show results below 80 mW @ 230 Vac  
for a typical 7 W universal power supply.  
Being loaded by the circuit consumption, the voltage on  
the V capacitor goes down. When the DSS controller  
CC  
No acoustic noise while operating: Instead of skipping  
cycles at high peak currents, the NCP1015 waits until  
the peak current demand falls below a fixed 0.25 of the  
maximum limit. As a result, cycle skipping can take  
place without having a singing transformer. You can  
thus select cheap magnetic components free of noise  
problems.  
detects that V has reached 7.5 V (V  
), it activates the  
CC  
CC(on)  
internal current source to bring V toward 8.5 V and stops  
CC  
again: a cycle takes place whose low frequency depends on  
the V capacitor and the IC consumption. A 1 V ripple  
CC  
takes place on the V pin whose average value equals  
CC  
(V  
+ V  
) / 2. Figure 13 shows a typical operation  
CC(off)  
CC(on)  
of the DSS.  
SPICE model: a dedicated model to run transient  
cyclebycycle simulations is available but also an  
http://onsemi.com  
7
 
NCP1015  
8.5V  
8.00  
6.00  
4.00  
2.00  
7.5V  
Vcc  
Device  
internally  
pulses  
0
Startup period  
Figure 13. The Charge/Discharge Cycle over a 10 mF VCC Capacitor  
As one can see, the V capacitor shall be dimensioned to  
offer an adequate startup time, i.e. ensure regulation is  
the socalled latchoff level, where the current source  
activates again to attempt a new restart. If the error has  
gone, the IC automatically resumes its operation. If the  
default is still there, the IC pulses during 8.5 V down to 7.5 V  
and enters a new latchoff phase. The resulting burst  
operation guarantees a low average power dissipation and  
lets the SMPS sustain a permanent shortcircuit. Figure 14  
presents the corresponding diagram:  
CC  
reached before V crosses 7.5 V (otherwise the part enters  
CC  
the fault condition mode). If we know that DV = 1 V and  
ICC1 is 1.2 mA (for instance we selected a 11 W device  
switching at 65 kHz), then the V  
calculated using:  
capacitor can be  
CC  
ICC1 @ tstartup  
(eq. 1)  
C w  
DV  
Current Sense  
Let’s suppose that the SMPS needs 10 ms to startup, then  
we will calculate C to offer a 15 ms period. As a result, C  
should be greater than 18 mF thus the selection of a 33 mF /  
16 V capacitor is appropriate.  
Information  
4 V  
+
FB  
To  
Latch  
Reset  
Division  
Short Circuit Protection  
The internal protection circuitry involves a patented  
arrangement that permanently monitors the assertion of an  
internal error flag. This error flag is, in fact, a signal that  
instructs the controller that the internal maximum peak  
current limit is reached. This naturally occurs during the  
V
CC  
Max  
Ip  
V
CC(on)  
Flag  
Clamp  
Active?  
startup period (V is not stabilized to the target value) or  
out  
when the optocoupler LED is no longer biased, e.g in a  
shortcircuit condition or when the feedback network is  
broken. When the DSS normally operates, the logic checks  
for the presence of the error flag every time V crosses  
CC  
Figure 14. Simplified NCP1015 ShortCircuit  
V . If the error flag is low (peak limit not active) then  
CC(on)  
Detection Circuitry  
the IC works normally. If the error signal is active, then the  
NCP1015 immediately stops the output pulses, reduces its  
internal current consumption and does not allow the startup  
The protection burst dutycycle can easily be computed  
through the various timing events as portrayed by Figure 15:  
source to activate: V drops toward ground until it reaches  
CC  
http://onsemi.com  
8
 
NCP1015  
Tsw  
1 V Ripple  
Tstart  
TLatch  
Latchoff  
Level  
Figure 15. NCP1015 Facing a Fault Condition (Vin = 150 Vdc)  
The rising slope from the latchoff level up to 8.5 V is  
expressed by:  
Figure 16 shows a typical drainground waveshape  
where leakage effects have been removed:  
P
DSS + Vin @ ICC1  
Vds(t)  
DV1 @ C  
IC1  
tstart  
+
toff  
The time during which the IC actually pulses is given by:  
Vr  
DV2 @ C  
Vin  
dt  
tsw  
+
ICC1  
Finally, the latchoff time can be derived using the same  
formula topology:  
DV3 @ C  
ICC2  
tlatch  
+
ton  
t
From these three definitions, the burst dutycycle D can  
Tsw  
be computed:  
Figure 16. A Typical Drainground Waveshape  
where Leakage Effects are Not Accounted for  
tsw  
D +  
(eq. 2)  
(eq. 3)  
tstart ) tsw ) tlatch  
DV2  
D +  
By looking at Figure 16 the average result can easily be  
derived by additive square area calculation:  
DV3  
DV2  
ICC1  
DV1  
IC1  
ICC1 @ ǒ  
Ǔ
)
)
ICC2  
Feeding the equation with values extracted from the  
parameter section gives a typical dutycycle D of 13%,  
precluding any lethal thermal runaway while in a fault  
condition.  
toff  
tsw  
(eq. 5)  
(eq. 6)  
(eq. 7)  
(eq. 8)  
t VDS(t) u+ Vin @ (1 * D) ) Vr @  
By developing Equation 5 we obtain:  
toff  
tsw  
ton  
tsw  
t VDS(t) u+ Vin * Vin  
@
) Vr @  
DSS Internal Dissipation  
The Dynamic SelfSupplied pulls the energy out from the  
drain pin. In the Flybackbased converters, this drain level  
can easily go above 600 V peak and thus increase the stress  
on the DSS startup source. However, the drain voltage  
evolves with time and its period is small compared to that of  
the DSS. As a result, the averaged dissipation, excluding  
capacitive losses, can be derived by:  
t
t
can be expressed by:  
off  
Lp  
Vr  
toff + Ip @  
can be evaluated by:  
on  
Lp  
Vin  
t
on + Ip @  
P
DSS + ICC1 @t VDS(t) u  
(eq. 4)  
http://onsemi.com  
9
 
NCP1015  
Plugging Equation 7 and Equation 8 into Equation 6 leads  
to <V > = V and thus:  
V
nom * V  
V
stby * VCC(on)  
clamp v Rlim v  
(eq. 10)  
ds(t)  
in  
Itrip  
ICC1  
P
DSS + Vin @ ICC1  
(eq. 9)  
Where:  
The worse case occurs at high line, when V equals  
in  
V
V
is the auxiliary voltage at nominal load  
nom  
370 Vdc. With ICC1 = 1.2 mA (65 kHz version), we can  
expect a DSS dissipation around 440 mW. If you select a  
higher switching frequency version, the ICC1 increases and  
it is likely that the DSS consumption exceeds 500 mW. In  
that case, we recommend adding an auxiliary winding in  
order to offer more dissipation room to the power MOSFET.  
Please read application note AND8125/D “Evaluating the  
power capability of the NCP101X members” to help  
selecting the right part / configuration for your application.  
is the auxiliary voltage when standby is entered  
stdby  
I
trip  
is the current corresponding to the nominal operation.  
It thus must be selected to avoid false tripping in overshoot  
conditions.  
ICC1 is the controller consumption. This number slightly  
decreases compared to ICC1 from the spec since the part in  
standby does almost not switch.  
V
CC(on)  
is the level above which V must be maintained  
aux  
to keep the DSS in the OFF mode. It is good to shoot around  
8 V in order to offer an adequate design margin, e.g. to not  
reactivate the startup source (which is not a problem in  
itself if low standby power does not matter)  
Lowering the Standby Power with an Auxiliary  
Winding  
The DSS operation can bother the designer when a) its  
dissipation is too high b) extremely low standby power is a  
must. In both cases, one can connect an auxiliary winding to  
disable the selfsupply. The current source then ensures the  
startup sequence only and stays in the off state as long as  
Since R  
shall not bother the controller in standby, e.g.  
limit  
keep V to around 8 V (as selected above), we purposely  
aux  
select a V  
well above this value. As explained before,  
nom  
experience shows that a 40% decrease can be seen on  
auxiliary windings from nominal operation down to standby  
mode. Let’s select a nominal auxiliary winding of 20 V to  
V
does not drop below V  
or 7.5 V. Figure 17 shows  
CC  
CC(on)  
that the insertion of a resistor (R  
dc level and the V pin is mandatory a) not to damage the  
) between the auxiliary  
limit  
CC  
offer sufficient margin regarding 8 V when in standby (R  
also drops voltage in standby). Plugging the values in  
internal 8.7 V zener diode during an overshoot for instance  
(absolute maximum current is 15 mA) b) to implement the  
failsafe optocoupler protection as offered by the active  
clamp. Please note that there cannot be bad interaction  
between the clamping voltage of the internal zener and  
limit  
Equation 10 gives the limits within which R  
selected:  
shall be  
limit  
20 * 8.7  
6.3 m  
12 * 8  
1.1 m  
v Rlimit v  
(eq. 11)  
V
CC(off)  
since this clamping voltage is actually built on top  
of V  
with a fixed amount of offset (200 mV typical).  
CC(off)  
that is to say: 1.8 kW < R  
If we are designing a power supply delivering 12 V, then  
the ratio auxiliary/power must be: 12 / 20 = 0.6. The I  
current has to not exceed 6.4 mA. This will occur when V  
growsup to: 8.7 V + 1.8 k x (6.4 m + 1.1 m) = 22.2 V for  
the first boundary or 8.7 V + 3.6 k x (6.4 m +1.1 m) = 35.7 V  
for second boundary. On the power output, it will  
respectively give 22.6 x 0.6 = 13.3 V and 35.7 x 0.6 = 21.4 V.  
< 3.6 kW.  
limit  
Selfsupplying controllers in extremely low standby  
applications often puzzles the designer. Actually, if a SMPS  
operated at nominal load can deliver an auxiliary voltage of  
an arbitrary 16 V (V ), this voltage can drop to below  
10 V (V ) when entering standby. This is because the  
recurrence of the switching pulses expands so much that the  
low frequency refueling rate of the V capacitor is not  
enough to keep a proper auxiliary voltage. Figure 18 shows  
a typical scope shot of a SMPS entering deep standby  
(output unloaded). So care must be taken when calculating  
CC  
aux  
nom  
stby  
CC  
As one can see, tweaking the R  
value will allow the  
limit  
selection of a given overvoltage output level. Theoretically  
predicting the auxiliary drop from nominal to standby is an  
almost impossible exercise since many parameters are  
involved, including the converter time constants. Fine  
R
limit  
1) to not excess the maximum pin current in normal  
operation but 2) not to drop too much voltage over R  
when entering standby. Otherwise the DSS could reactivate  
and the standby performance would degrade. We are thus  
limit  
tuning of R  
thus requires a few iterations and  
limit  
experiments on a breadboard to check V variations but  
aux  
able to bound R  
between two equations:  
limit  
also output voltage excursion in fault. Once properly  
adjusted, the failsafe protection will preclude any lethal  
voltage runaways in case a problem would occur in the  
feedback loop.  
http://onsemi.com  
10  
NCP1015  
Drain  
V
V
= 8.5 V  
= 7.5 V  
CC(off)  
CC(on)  
-
+
+
Startup Source  
V
CC  
Rlimit  
D1  
+
+
+
+
CVCC  
CAux  
Laux  
Ground  
Figure 17. A Detailed View of the NCP1015 with Properly Connected Auxiliary Winding  
u30 ms  
Figure 18. The Burst Frequency becomes So Low that it is Difficult to  
Keep an Adequate Level on the Auxiliary VCC  
Lowering the Standby Power with Skipcycle  
excited by the skipping pulses. A possible solution,  
Skip cycle offers an efficient way to reduce the standby  
power by skipping unwanted cycles at light loads. However,  
the recurrent frequency in skip often enters the audible range  
and a high peak current obviously generates acoustic noise  
in the transformer. The noise takes its origins in the  
resonance of the transformer mechanical structure which is  
successfully implemented in the NCP1200 series, also  
authorizes skip cycle but only when the power demand as  
dropped below a given level. At this time, the peak current  
is reduced and no noise can be heard. Figure 19 shows the  
peak current evolution of the NCP1015 entering standby:  
http://onsemi.com  
11  
NCP1015  
100%  
Peak current  
at nominal power  
Skipcycle  
current limit  
25%  
Figure 19. Low Peak Current SkipCycle Guarantees NoiseFree Operation  
Full power operation involves the nominal switching  
the benefit to artificially reduce the measurement noise on  
a standard EMI receiver and pass the tests more easily. The  
frequency and thus avoids any noise when running.  
Experiments carried on a 5 W universal mains board  
unveiled a standby power of 300 mW @ 230 Vac with the  
DSS activated and dropped to less than 100 mW when an  
auxiliary winding is connected.  
EMI sweep is implemented by routing the V  
ripple  
CC  
(induced by the DSS activity) to the internal oscillator. As a  
result, the switching frequency moves up and down to the  
DSS rhythm. Typical deviation is 4% of the nominal  
frequency. With a 1 V peaktopeak ripple, the frequency  
will equal 65 kHz in the middle of the ripple and will  
Frequency Jittering for Improved EMI Signature  
By sweeping the switching frequency around its nominal  
value, it spreads the energy content on adjacent frequencies  
rather than keeping it centered in one single ray. This offers  
increase as V rises or decrease as V ramps down.  
CC  
CC  
Figure 20 shows the behavior we have adopted:  
VCC  
OFF  
V
CC  
Ripple  
67.6 kHz  
65 kHz  
62.4 kHz  
VCC  
Internal Sawtooth  
ON  
Figure 20. The VCC Ripple Causes the Frequency Jittering on the Internal Oscillator Sawtooth  
(65 kHz version)  
http://onsemi.com  
12  
 
NCP1015  
SoftStart  
softstart is also activated during the over current burst  
(OCP) sequence. Every restart attempt is followed by a  
softstart activation. Generally speaking, the softstart will  
The NCP1015 features an internal 1 ms softstart  
activated during the power on sequence (P ). As soon as  
ON  
V
CC  
reaches V  
, the peak current is gradually  
be activated when V ramps up either from zero (fresh  
CC(off)  
CC  
increased from nearly zero up to the maximum internal  
clamping level (e.g. 350 mA). This situation lasts 1 ms and  
further to that time period, the peak current limit is blocked  
to the maximum until the supply enters regulation. The  
poweron sequence) or 4.5 V, the latchoff voltage  
occurring during OCP. Figure 21 shows the softstart  
behavior. The time scales are purposely shifted to offer a  
better zoom portion.  
8.5 V  
V
CC  
0 V (Fresh PON)  
or  
4.7 V (Overload)  
Current  
Sense  
Max Ip  
1.0 ms  
Figure 21. SoftStart is Activated During a Startup Sequence or an OCP Condition  
Nonlatching Shutdown  
and ground. By pulling FB below the internal skip level  
In some cases, it might be desirable to shut off the part  
temporarily and authorize its restart once the default has  
disappeared. This option can easily be accomplished  
through a single NPN bipolar transistor wired between FB  
(V ), the output pulses are disabled. As soon as FB is  
skip  
relaxed, the IC resumes its operation. Figure 22 shows the  
application example:  
1
2
3
4
8
7
5
Transformer  
ON/OFF  
+
CV  
CC  
Figure 22. A Nonlatching Shutdown where Pulses are Stopped as long as the NPN is Biased  
Full Latching Shutdown  
Other applications require a full latching shutdown, e.g.  
When the OVP level exceeds the zener breakdown voltage,  
the NPN biases the PNP and fires the equivalent SCR,  
permanently bringing down the FB pin. The switching  
pulses are disabled until the user unplugs the power supply.  
when an abnormal situation is detected (over temp or  
overvoltage). This feature can easily be implemented  
through two external transistors wired as a discrete SCR.  
http://onsemi.com  
13  
 
NCP1015  
Rhold  
12 k  
OVP  
1
2
3
4
8
7
10 k  
BAT54  
5
Transformer  
+
CV  
CC  
0.1 mF  
10 k  
Figure 23. Two Bipolar Transistors Ensures a Total Latchoff of the SMPS in Presence of an OVP  
T
J(max) * TAMB(max)  
R
ensures that the SCR stays on when fired. The bias  
hold  
Pmax  
+
(eq. 12)  
current flowing through R  
the V ramp up (8.5 V) and down (7.5 V) when the SCR  
should be small enough to let  
hold  
RqJA  
CC  
which gives around 1 W for an ambient of 50°C. The losses  
inherent to the MOSFET R  
following formula:  
is fired. The NPN base can also receive a signal from a  
temperature sensor. Typical bipolar can be MMBT2222 and  
MMBT2907 for the discrete latch. The NST3946 features  
two bipolar NPN + PNP in the same package and could also  
be used.  
can be evaluated using the  
DS(on)  
1
3
Pmos  
+
@ Ip 2 @ D @ RDS(on)  
(eq. 13)  
where I is the worse case peak current (at the lowest line  
p
Power Dissipation and Heatsinking  
The power dissipation of NCP1015 consists of the  
dissipation DSS currentsource (when active) and the  
input), D is the converter operating dutycycle and R  
DS(on)  
the MOSFET resistance for T = 100°C. This formula is only  
J
valid for Discontinuous Conduction Mode (DCM)  
operation where the turnon losses are null (the primary  
current is zero when you restart the MOSFET). Figure 24  
gives a possible layout to help dropping the thermal  
resistance. When measured on a 35 mm (1 oz.) copper  
thickness PCB, we obtained a thermal resistance of 75°C/W:  
dissipation of MOSFET. Thus P = P  
+ P  
.
tot  
DSS  
MOSFET  
When the PDIP7 package is surrounded by copper, it  
becomes possible to drop its thermal resistance  
junctiontoambient, R  
down to 75°C/W and thus  
qJA  
dissipate more power. The maximum power the device can  
thus evacuate is:  
Clamping Elements  
To Secondary Diode  
DC  
Figure 24. A Possible PCB Arrangement to Reduce the Thermal Resistance JunctiontoAmbient  
Design Procedure  
The design of a SMPS around a monolithic device does  
1. In any case, the lateral MOSFET bodydiode shall  
never be forward biased, either during startup  
(because of a large leakage inductance) or in  
normal operation as shown by Figure 25.  
not differ from that of a standard circuit using a controller  
and a MOSFET. However, one needs to be aware of certain  
characteristics specific of monolithic devices:  
http://onsemi.com  
14  
 
NCP1015  
350  
250  
150  
50.0  
50.0  
> 0 !!  
1.004M  
1.011M  
1.018M  
1.025M  
1.032M  
Figure 25. The DrainSource Wave Shall Always be Positive . . .  
As a result, the Flyback voltage which is reflected on  
the drain at the switch opening cannot be larger than  
the input voltage. When selecting components, you  
thus must adopt a turn ratio which adheres to the  
following equation:  
e.g. the V target is almost reached and I is still  
out p  
pushed to the maximum.  
Taking into account all previous remarks, it becomes  
possible to calculate the maximum power that can be  
transferred at low line:  
When the switch closes, V is applied across the primary  
in  
N @ (Vout ) Vf) t VIN(min)  
(eq. 14)  
inductance L until the current reaches the level imposed by  
p
For instance, if you operate from a 120 V dc rail and  
you deliver 12 V, we can select a reflected voltage of  
100 VDC maximum: 120 100 > 0. Therefore, the  
turn ratio Np : Ns must be smaller than 100 / (12 +  
1) = 7.7 or Np : Ns < 7.7. We will see later on how  
it affects the calculation.  
the feedback loop. The duration of this event is called the ON  
time and can be defined by:  
Lp @ Ip  
Vin  
ton  
+
(eq. 16)  
At the switch opening, the primary energy is transferred  
to the secondary and the flyback voltage appears across L ,  
2. Currentmode architecture is, by definition,  
sensitive to subharmonic oscillations.  
p
reseting the transformer core with a slope of:  
Subharmonic oscillations only occur when the  
SMPS is operating in Continuous Conduction  
Mode (CCM) together with a dutycycle greater  
than 50%. As a result, we recommend operating  
the device in DCM only, whatever dutycycle it  
implies (max. = 65%).  
N @ (Vout ) Vf)  
@ toff  
Lp  
the t time is thus:  
off  
Lp @ Ip  
N @ (Vout ) Vf)  
toff  
+
(eq. 17)  
If one wants to keep DCM only, but still need to pass the  
maximum power, we will not allow a deadtime after the  
core is reset, but rather immediately restart. The switching  
3. Lateral Mosfets have a poorly doped bodydiode  
which naturally limits their ability to sustain the  
avalanche. A traditional RCD clamping network  
shall thus be installed to protect the MOSFET. In  
some low power applications, a simple capacitor  
can also be used since:  
time t can be expressed by:  
sw  
1
1
ǒ
Ǔ
t
sw + toff ) ton + Lp @ Ip @  
)
(eq. 18)  
Vin N @ (Vout ) Vf)  
Lf  
Ctot  
The Flyback transfer formula dictates that:  
V
DRAIN(max) + Vin ) N @ (Vout ) Vf) ) Ip @  
Ǹ
(eq. 15)  
Pout  
1
+
@ Lp @ Ip 2 @ fsw  
(eq. 19)  
where L is the leakage inductance, C the total  
h
f
tot  
2
capacitance at the drain node (which is increased by  
the capacitor you will wire between drain and  
which, by extracting I and plugging into Equation 19 leads to:  
p
source), N the Np : Ns turn ratio, V the output  
2 @ Pout  
h @ fsw @ Lp  
out  
1
1
@ ǒ  
Ǔ (eq. 20)  
tsw + L  
)
p Ǹ  
voltage, V the secondary diode forward drop and  
Vin N @ (Vout ) Vf)  
f
finally, I the maximum peak current. Worse case  
p
Extracting L from Equation 20 gives:  
occurs when the SMPS is very close to regulation,  
p
http://onsemi.com  
15  
NCP1015  
(Vin @ Vr)2 @ h  
2 @ fsw @ [Pout @ (Vr 2 ) 2 @ Vr @ Vin ) Vin 2)]  
LPcritical  
+
(eq. 21)  
with V = N . (V + V ) and h the efficiency.  
where V corresponds to the lowest bulk voltage,  
IN(min)  
r
out  
f
If L critical gives the inductance value above which  
hence the longest ton duration or largest dutycycle. I  
p
P(max)  
DCM operation is lost, there is another expression we can  
is the available peak current from the considered part, e.g.  
450 mA typical for the NCP1015 (however, the minimum  
value of this parameter shall be considered for reliable  
evaluation). Combining Equations 21 and 22 gives the  
maximum theoretical power you can pass respecting the  
peak current capability of the NCP1015, the maximum  
dutycycle and the discontinuous mode operation:  
write to connect L , the primary peak current bounded by the  
p
NCP1015 and the maximum dutycycle that needs to stay  
below 50%:  
D
max @ VIN(min) @ tsw  
LP(max)  
+
(eq. 22)  
IP(max)  
fsw  
P
max + tsw 2 @ VIN(min) 2 @ Vr 2 @ h @  
(eq. 23)  
2
(2LP(max)Vr 2 ) 4LP(max)VrVIN(min) ) VIN(min)  
)
From Equation 22 we obtain the operating dutycycle D:  
Ip @ Lp  
D +  
(eq. 24)  
Vin @ tsw  
This lets us calculate the RMS current circulating in the  
MOSFET:  
Applying the above equations leads to :  
Selected maximum reflected voltage = 120 V  
D
with V = 12 V, secondary drop = 0.5 V ³ Np : Ns = 1 : 0.1  
out  
Ǹ
ID(rms) + Ip @  
(eq. 25)  
3
L critical = 3.9 mH  
p
From this equation, we obtain the average dissipation in  
the MOSFET:  
I = 250 mA  
p
D
max  
= 0.39  
1
Pavg  
+
@ Ip 2 @ D @ RDS(on)  
(eq. 26)  
I
= 90 mA  
DRAIN(rms)  
3
P
P
= 202 mW at R  
= 25 W (T > 100°C)  
MOSFET  
DS(on) J  
to which switching losses shall be added.  
If we stick to Equation 23, compute Lp and follow the  
above calculations, we will discover that a power supply  
built with the NCP1015 and operating from a 100 Vac line  
minimum will not be able to deliver more than 7 W  
continuous, regardless of the selected switching frequency  
= 1.2 mA x 350 V = 420 mW, if DSS is used  
DSS  
Secondary diode voltage stress = (350 x 0.1) + 12 = 47 V  
(e.g. a MBRS360T3, 3 A / 60 V would fit)  
Example 2.: A 12 V 16 W SMPS Operating on Narrow  
European Mains with NCP1015:  
(however the transformer core size will go down as f is  
sw  
increased). This number grows up significantly when  
operated from single European mains (18 W).  
For more different flyback converters then are the below  
examples we recommend use following support:  
1) Application note AND8125/D “Evaluating the power  
capability of the NCP101X members”  
2) Application note AND8134/D “Designing Converters  
with the NCP101X members.”  
3) Application note AND8142/D “A 6W/12W Universal  
mains adapter with NCP101X series”.  
V = 230 Vac 15%, or 276 Vdc ÷ 370 Vdc  
Efficiency = 80%  
in  
V
out  
= 12 V, I = 1.25 A  
out  
f
I
= 65 kHz  
sw  
= 450 mA 10% = 405 mA  
P(max)  
Applying the equations leads to :  
Selected maximum reflected voltage = 250 V  
with V = 12 V, secondary drop = 0.5 V ³ Np : Ns = 1:0.05  
out  
L = 7,2 mH  
p
4) The PSpice or Orcad simulation models  
I = 0.27 mA  
p
Example 1.: A 12 V 7.0 W SMPS Operating on a Large  
Mains with NCP1015:  
D
max  
= 0.41  
I
= 100 mA  
DRAIN(rms)  
V
= 100 Vac ÷ 250 Vac or 140 Vdc ÷ 350 Vdc once  
in  
rectified, assuming a low bulk ripple  
P
P
= 250 mW at R  
= 25 W (T > 100°C)  
MOSFET  
DS(on) J  
Efficiency = 80%  
= 1.2 mA x 370 V = 444 mW, if DSS is used below an  
DSS  
ambient of 50°C.  
V
out  
= 12 V, I = 580 mA  
out  
Secondary diode voltage stress = (370 x 0.05) + 12 = 30.5 V  
(e.g. a MBRS340T3, 3 A / 40 V)  
f
I
= 65 kHz  
sw  
= 450 mA 10% = 405 mA  
P(max)  
http://onsemi.com  
16  
NCP1015  
MOSFET Protection  
Please note that these calculations assume a flat DC rail  
whereas a 10 ms ripple naturally affects the final voltage  
available on the transformer end. Once the Bulk capacitor  
has been selected, one should check that the resulting ripple  
As in any Flyback design, it is important to limit the drain  
excursion to a safe value, e.g. below the MOSFET BVdss  
which is 700 V. Figures 26A, B, and C present possible  
implementations:  
(min V ?) is still compatible with the above calculations.  
bulk  
As an example, to benefit from the largest operating range,  
a 7 W board was built with a 47 mF bulk capacitor which  
ensured discontinuous operation even in the ripple  
minimum waves.  
HV  
HV  
HV  
Rclamp  
Cclamp  
D
Dz  
D
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CVc  
c
CVcc  
CVcc  
C
NCP1015  
NCP1015  
NCP1015  
C
B
A
Figure 26. Different Options to Clamp the Leakage Spike  
Figure 26A: The simple capacitor limits the voltage  
according to Equation 15. This option is only valid for low  
power applications, e.g. below 5 W, otherwise chances exist  
to destroy the MOSFET. After evaluating the leakage  
inductance, you can compute C with Equation 15. Typical  
values are between 100 pF and up to 470 pF. Large  
capacitors increase capacitive losses.  
current. Worse case occurs when I and V are maximum  
p in  
and V is close to reach the steadystate value.  
out  
Figure 26C: This option is probably the most expensive of  
all three but it offers the best protection degree. If you need  
a very precise clamping level, you must implement a zener  
diode or a TVS. There are little technology differences  
behind a standard zener diode and a TVS. However, the die  
area is far bigger for a transient suppressor than that of zener.  
A 5 W zener diode like the 1N5388B will accept 180 W peak  
power if it lasts less than 8.3 ms. If the peak current in the  
worse case (e.g. when the PWM circuit maximum current  
limit works) multiplied by the nominal zener voltage  
exceeds these 180 W, then the diode will be destroyed when  
the supply experiences overloads. A transient suppressor  
like the P6KE200 still dissipates 5 W of continuous power  
but is able to accept surges up to 600 W @ 1 ms. Select the  
zener or TVS clamping level between 40 to 80 volts above  
the reflected output voltage when the supply is heavily  
loaded.  
Figure 26B: The most standard circuitry called the RCD  
network. You calculate R  
following formulas:  
and C  
using the  
clamp  
clamp  
2 @ Vclamp @ (Vclamp * (Vout ) Vf sec) @ N)  
Lleak @ Ip 2 @ fsw  
Rclamp  
+
(eq. 27)  
Vclamp  
Cclamp  
+
(eq. 28)  
Vripple @ fsw @ Rclamp  
V
clamp  
is usually selected 5080 V above the reflected  
value N x (V + V ). The diode needs to be a fast one and  
out  
f
a MUR160 represents a good choice. One major drawback  
of the RCD network lies in its dependency upon the peak  
http://onsemi.com  
17  
 
NCP1015  
Typical Application Examples  
A 6.5 W NCP1015based Flyback converter. (For  
evaluation a universal NCP1012 demoboard can be used)  
Figure 27 shows a converter originally built with a  
NCP1012 which can be easily used for evaluation of  
NCP1015 device delivering 6.5 W from a universal volts  
input range. The board uses the Dynamic SelfSupply and  
a simplified zenertype feedback. This configuration was  
selected for cost reasons and a more precise circuitry can be  
used, e.g. based on a TL431:  
D6  
B150  
TR1  
1
4
8
7
D1  
1N4007  
D2  
1N4007  
E3  
470 m/25 V  
C1  
2n2/Y  
R2  
150 k  
D5  
U160  
2
1
6
5
E1  
R1  
47 R  
10 m/400 V  
IC1  
NCP1012  
ZD1  
11 V  
J2  
CZM5/2  
1
5
4
8
IC2  
PC817  
1
2
V
CC  
DRAIN  
FB  
R3  
100 R  
2
3
7
GND  
GND  
E2  
10 m/63 V  
J1  
CEE7.5/2  
R4  
180 R  
D3  
1N4007  
D4  
1N4007  
GND GND  
C2  
2n2/Y  
Figure 27. A NCP1012based Flyback Converter Delivering 6.5 W  
The converter built according to Figure 28 layouts, gave  
the following results:  
Efficiency at V = 100 Vac and P = 6.5 W = 75.7%  
in  
out  
Efficiency at V = 230 Vac and P = 6.5 W = 76.5%  
in  
out  
Figure 28. The NCP1012based PCB Layout and its Associated Component Placement  
http://onsemi.com  
18  
 
NCP1015  
A 7.0 W NCP1015based Flyback Converter Featuring Low Standby Power  
Figure 29 shows another typical application showing a  
NCP101565 kHz operating in a 7 W converter up to 70°C  
of ambient temperature. We can growup the output power  
since an auxiliary winding is used, the DSS is disabled, and  
thus offering more room for the MOSFET. In this  
application, the feedback is made via a TLV431 whose low  
bias current (100 mA min) helps to lower the noload  
standby power.  
Vbulk  
1N4148  
D4  
R4 22  
C8  
L2  
22 mH  
D2  
R7  
100 k/  
1 W  
MBRS360T3  
10 nF  
12 V @  
0.5 A  
400 V  
T1  
+
+
+
C10  
33 mF/25 V  
100 mF/16 V  
+
Aux  
C7  
GND  
C6 C8  
470 mF/16 V  
T1  
D3  
MUR160  
R2  
3.3 k  
R3  
1 k  
NCP1015  
C2  
47 mF/  
450 V  
+
R5  
39 k  
1
8
V
CC  
GND  
2 NC  
3 NC  
4 FB  
NC 7  
DRAIN  
5
+
100 mF/10 V  
C3  
C4  
C9  
1 nF  
IC1  
SFH61562  
100 nF  
IC2  
TLV431  
R6  
4.3 k  
C5  
2.2 nF  
Y1 Type  
Figure 29. A Typical Converter Delivering 5 W from a Universal Mains  
Measurements have been taken from a demonstration  
board implementing Figure 12 12’s sketch and the following  
results were achieved, with either the auxiliary winding in  
place or through the Dynamic SelfSupply:  
For a quick evaluation of Figure 29 application example,  
the following transformers are available from Coilcraft:  
A9619C, L = 3 mH, Np : Ns = 1: 0.1, 7 W application on  
p
universal mains, including auxiliary winding, NCP1015−  
V = 230 Vac, auxiliary winding, P = 0, P = 60 mW  
65 kHz  
in  
out  
in  
V = 100 Vac, auxiliary winding, P = 0, P = 42 mW  
A0032A, L = 6 mH, Np : Ns = 1: 0.055, 10 W application  
in  
out  
in  
p
on European mains, DSS operation only, NCP101565 kHz  
V
= 230 Vac, Dynamic SelfSupply, P  
= 0, P  
=
=
in  
out  
in  
300 mW  
Coilcraft  
1102 Silver Lake Road  
CARY, IL 60013  
Email: info@coilcraft.com  
Tel. : 8476396400  
Fax.: 8476391469  
V
= 100 Vac, Dynamic SelfSupply, P  
= 0, P  
in  
out  
in  
130 mW  
P
out  
P
out  
= 7 W, h = 81% @ 230 Vac, with aux winding  
= 7 W, h = 81.3% @ 100 Vac, with aux winding  
http://onsemi.com  
19  
 
NCP1015  
ORDERING INFORMATION  
Frequency  
(kHz)  
R
DSon  
(W)  
Device Order Number  
Package Type  
Shipping  
Ipk (mA)  
NCP1015AP065G  
65  
100  
65  
PDIP7  
11  
11  
11  
11  
450  
(PbFree)  
50 Units / Rail  
NCP1015AP100G  
NCP1015ST65T3G  
NCP1015ST100T3G  
PDIP7  
(PbFree)  
450  
450  
450  
SOT223  
(PbFree)  
4000 / Tape & Reel  
100  
SOT223  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
20  
NCP1015  
PACKAGE DIMENSIONS  
PDIP7  
AP SUFFIX  
CASE 626A01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
4. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
5. DIMENSIONS A AND B ARE DATUMS.  
B
L
M
1
4
MILLIMETERS  
INCHES  
MIN  
J
DIM MIN  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
0.370  
0.240  
0.155  
0.015  
0.040  
F
NOTE 3  
A
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
K
L
C
7.62 BSC  
0.300 BSC  
M
N
---  
0.76  
10  
_
1.01  
---  
0.030  
10  
_
0.040  
T−  
N
SEATING  
PLANE  
D
K
G
H
M
M
M
B
0.13 (0.005)  
T A  
http://onsemi.com  
21  
NCP1015  
PACKAGE DIMENSIONS  
SOT223  
ST SUFFIX  
CASE 318E04  
ISSUE L  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
b1  
MILLIMETERS  
INCHES  
NOM  
0.064  
0.002  
0.030  
0.121  
0.012  
0.256  
0.138  
0.091  
0.037  
0.069  
0.276  
4
2
DIM  
A
A1  
b
b1  
c
D
E
e
e1  
L1  
MIN  
1.50  
0.02  
0.60  
2.90  
0.24  
6.30  
3.30  
2.20  
0.85  
1.50  
6.70  
0°  
NOM  
1.63  
0.06  
0.75  
3.06  
0.29  
6.50  
3.50  
2.30  
0.94  
1.75  
7.00  
MAX  
1.75  
0.10  
0.89  
3.20  
0.35  
6.70  
3.70  
2.40  
1.05  
2.00  
7.30  
10°  
MIN  
0.060  
0.001  
0.024  
0.115  
0.009  
0.249  
0.130  
0.087  
0.033  
0.060  
0.264  
0°  
MAX  
0.068  
0.004  
0.035  
0.126  
0.014  
0.263  
0.145  
0.094  
0.041  
0.078  
0.287  
10°  
H
E
E
1
3
b
e1  
e
H
E
C
q
q
A
0.08 (0003)  
A1  
L1  
SOLDERING FOOTPRINT*  
3.8  
0.15  
2.0  
0.079  
6.3  
0.248  
2.3  
0.091  
2.3  
0.091  
2.0  
0.079  
mm  
inches  
ǒ
Ǔ
1.5  
0.059  
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
SENSEFET is a trademark of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP1015/D  
配单直通车
NCP1015ST100T3G产品参数
型号:NCP1015ST100T3G
Brand Name:ON Semiconductor
是否无铅:不含铅
生命周期:Active
IHS 制造商:ON SEMICONDUCTOR
零件包装代码:SOT-223
包装说明:SOP, SOT-223
针数:4
制造商包装代码:0.0318
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:1 week
风险等级:1.5
Is Samacsys:N
模拟集成电路 - 其他类型:SWITCHING REGULATOR
控制模式:CURRENT-MODE
控制技术:PULSE WIDTH MODULATION
标称输入电压:8 V
JESD-30 代码:R-PDSO-G4
JESD-609代码:e3
长度:6.5 mm
湿度敏感等级:1
功能数量:1
端子数量:4
最大输出电流:1 A
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOT-223
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified
座面最大高度:1.75 mm
子类别:Switching Regulator or Controllers
表面贴装:YES
切换器配置:SINGLE
最大切换频率:110 kHz
端子面层:Tin (Sn)
端子形式:GULL WING
端子节距:2.3 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:3.5 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!