NCP81161
APPLICATIONS INFORMATION
The NCP81161 gate driver is a single phase MOSFET
turn on of the high–side MOSFET. When the PWM pull
low, gate DRVH will go low after the propagation delay
(tpd DRVH).
The time to turn off the high side MOSFET is depending
on the total gate charge of the high−side MOSFET. A timer
will be triggered once the high side MOSFET is turn off to
delay the turn on the low−side MOSFET.
driver designed for driving N−channel MOSFETs in a
synchronous buck converter topology. The NCP81161 is
designed to work with ON Semiconductor’s NCP6131
multi−phase controller. This gate driver is optimized for
desktop applications.
Undervoltage Lockout
The DRVH and DRVL are held low until VCC reaches
4.5 V during startup. The PWM signals will control the gate
status when VCC threshold is exceeded. If VCC decreases to
250 mV below the threshold, the output gate will be forced
low until input voltage VCC rises above the startup threshold.
Low−Side Driver Timeout
In normal operation, the DRVH signal tracks the PWM
signal and turns off the Q1 high−side switch with a few 10
ns delay (t ) following the falling edge of the input
pdlDRVH
signal. When Q1is turned off, DRVL is allowed to go high,
Q2 turns on, and the SW node voltage collapses to zero. But
in a fault condition such as a high−side Q1 switch
drain−source short circuit, the SW node cannot fall to zero,
even when DRVH goes low. This driver has a timer circuit
to address this scenario. Every time the PWM goes low, a
DRVL on−time delay timer is triggered.
Power−On Reset
Power−On Reset feature is used to protect a gate driver
avoid abnormal status driving the startup condition. When
the initial soft−start voltage is higher than 2.75 V, the gate
driver will monitor the switching node SW pin. If SW pin
high than 2.25 V, bottom gate will be force to high for
discharge the output capacitor. The fault mode will be latch
and EN pin will force to be low, unless the driver is recycle.
When input voltage is higher than 4.5 V, and EN goes high,
the gate driver will normal operation, top gate driver
DRVH and bottom gate driver will follow the PWM signal
decode to a status.
If the SW node voltage does not trigger a low−side
turn−on, the DRVL on−time delay circuit does it instead,
when it times out with t
delay. If Q1 is still turned on,
SW(TO)
that is, its drain is shorted to the source, Q2 turns on and
creates a direct short circuit across the VDCIN voltage rail.
The crowbar action causes the fuse in the VDCIN current
path to open. The opening of the fuse saves the load (CPU)
from potential damage that the high−side switch short
circuit could have caused.
Bi−directional EN Signal
Fault modes such as Power−On Reset and Undervoltage
Lockout will de−assert the EN pin, which will pull down
the DRON pin of controller as well. Thus the controller will
be shut down consequently.
Layout Guidelines
Layout for DC−DC converter is very important. The
bootstrap and VCC bypass capacitors should be placed as
close as to the driver IC.
PWM Input and Zero Cross Detect (ZCD)
Connect GND pin to local ground plane. The ground
plane can provide a good return path for gate drives and
reduce the ground noise. The thermal slug should be tied to
the ground plane for good heat dissipation. To minimize the
ground loop for low side MOSFET, the driver GND pin
should be close to the low−side MOSFET source pin. The
gate drive trace should be routed to minimize the length,
the minimum width is 20 mils.
The PWM input, along with EN and ZCD, control the
state of DRVH and DRVL.
When PWM is set high, DRVH will be set high after the
adaptive non−overlap delay. When PWM is set low, DRVL
will be set high after the adaptive non−overlap delay.
When the PWM is set to the mid state, DRVH will be set
low, and after the adaptive non−overlap delay, DRVL will
be set high. DRVL remains high during the ZCD blanking
time. When the timer is expired, the SW pin will be
monitored for zero cross detection. After the detection, the
DRVL will be set low.
Gate Driver Power Loss Calculation
The gate driver power loss consists of the gate drive loss
and quiescent power loss.
The equation below can be used to calculate the power
dissipation of the gate driver. Where QGMFis the total gate
charge for each main MOSFET and QGSF is the total gate
charge for each synchronous MOSFET.
Adaptive Nonoverlap
The nonoverlap dead time control is used to avoid the
shoot through damage the power MOSFETs. When the
PWM signal pull high, DRVL will go low after a
propagation delay, the controller will monitors the
switching node (SWN) pin voltage and the gate voltage of
the MOSFET to know the status of the MOSFET. When the
low side MOSFET status is off an internal timer will delay
fSW
2 n
ǒ Ǔ
nMF QGMF ) nSF QGSF ) ICC] VCC
PDRV + [
Also shown is the standby dissipation factor (ICC ⋅ VCC)
of the driver.
http://onsemi.com
7