欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • NCV7356D2R2G
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • NCV7356D2R2G图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • NCV7356D2R2G 现货库存
  • 数量8000 
  • 厂家ON 
  • 封装SOIC-14 
  • 批号24+ 
  • 只做原装正品现货销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • NCV7356D2R2G图
  • 集好芯城

     该会员已使用本站13年以上
  • NCV7356D2R2G 现货库存
  • 数量27138 
  • 厂家ON(安森美) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • NCV7356D2R2G图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • NCV7356D2R2G 现货库存
  • 数量32560 
  • 厂家ON 
  • 封装SOP14 
  • 批号2024+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • NCV7356D2R2G图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • NCV7356D2R2G
  • 数量6780 
  • 厂家ON/安森美 
  • 封装SOP-14 
  • 批号15+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • NCV7356D2R2G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCV7356D2R2G
  • 数量85000 
  • 厂家ON/安森美 
  • 封装SOP14 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • NCV7356D2R2G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCV7356D2R2G
  • 数量98500 
  • 厂家ON 
  • 封装SOP-14 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • NCV7356D2R2G图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • NCV7356D2R2G
  • 数量12952 
  • 厂家ON/安森美 
  • 封装SOP14 
  • 批号24+ 
  • 原装原厂 现货现卖
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • NCV7356D2R2G图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • NCV7356D2R2G
  • 数量12245 
  • 厂家ON/安森美 
  • 封装SOP14 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • NCV7356D2R2G图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • NCV7356D2R2G
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • NCV7356D2R2G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCV7356D2R2G
  • 数量3291 
  • 厂家ON/安森美 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • NCV7356D2R2G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • NCV7356D2R2G
  • 数量19800 
  • 厂家ON/安森美 
  • 封装SOP 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • NCV7356D2R2G图
  • 集好芯城

     该会员已使用本站13年以上
  • NCV7356D2R2G
  • 数量12952 
  • 厂家ON/安森美 
  • 封装SOP14 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • NCV7356D2R2G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • NCV7356D2R2G
  • 数量15280 
  • 厂家ON 
  • 封装SOP-14 
  • 批号23+ 
  • 原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • NCV7356D2R2G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • NCV7356D2R2G
  • 数量18531 
  • 厂家ON 
  • 封装SOP-14 
  • 批号23+ 
  • 全新原装正品现货特价
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • NCV7356D2R2G图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • NCV7356D2R2G
  • 数量26976 
  • 厂家ON 
  • 封装SOP14 
  • 批号2018+ 
  • ★★代理原装现货,特价热卖!★★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • NCV7356D2R2G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCV7356D2R2G
  • 数量17048 
  • 厂家ON/安森美 
  • 封装SOP14 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • NCV7356D2R2G图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • NCV7356D2R2G
  • 数量30000 
  • 厂家ON 
  • 封装SOP-14 
  • 批号23+ 
  • 代理全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • NCV7356D2R2G图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • NCV7356D2R2G
  • 数量26700 
  • 厂家ON(安森美) 
  • 封装▊原厂封装▊ 
  • 批号▊ROHS环保▊ 
  • 十年以上分销商原装进口件服务型企业0755-83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • NCV7356D2R2G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCV7356D2R2G
  • 数量12500 
  • 厂家ONSemi 
  • 封装 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • NCV7356D2R2G图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • NCV7356D2R2G
  • 数量82000 
  • 厂家ON/全网最低支持实单 
  • 封装SOP14 
  • 批号2023+ 
  • 原装原包现货支持实单
  • QQ:2885134554QQ:2885134554 复制
    QQ:2885134398QQ:2885134398 复制
  • 0755-22669259 QQ:2885134554QQ:2885134398
  • NCV7356D2R2G图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • NCV7356D2R2G
  • 数量12300 
  • 厂家ON/安森美 
  • 封装SOP 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • NCV7356D2R2G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCV7356D2R2G
  • 数量5000 
  • 厂家ON 
  • 封装SOP-14 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • NCV7356D2R2G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCV7356D2R2G
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • NCV7356D2R2G图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • NCV7356D2R2G
  • 数量865000 
  • 厂家ON/安森美 
  • 封装SOP14 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • NCV7356D2R2G图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • NCV7356D2R2G
  • 数量171953 
  • 厂家ON 
  • 封装SOP8 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • NCV7356D2R2G图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • NCV7356D2R2G
  • 数量9328 
  • 厂家ON-安森美 
  • 封装SOP-14 
  • 批号▉▉:2年内 
  • ▉▉¥12.2元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • NCV7356D2R2G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCV7356D2R2G
  • 数量13500 
  • 厂家ON 
  • 封装SOP-14 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • NCV7356D2R2G图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • NCV7356D2R2G
  • 数量5280 
  • 厂家ON(安森美) 
  • 封装SOIC-14 
  • 批号23+ 
  • ▉原装正品▉力挺实单可含税可拆样
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • NCV7356D2R2G图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • NCV7356D2R2G
  • 数量19639 
  • 厂家ON 
  • 封装SOP 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • NCV7356D2R2G图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • NCV7356D2R2G
  • 数量45200 
  • 厂家ON(安森美) 
  • 封装SOIC-14 
  • 批号2年内 
  • 原厂渠道 长期供应
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • NCV7356D2R2G图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • NCV7356D2R2G
  • 数量8460 
  • 厂家ON 
  • 封装SOP-14 
  • 批号NEW 
  • 【现货库存】全新原装假一罚百热卖现货
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • NCV7356D2R2G图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • NCV7356D2R2G
  • 数量8800 
  • 厂家PTIF 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132

产品型号NCV7356D2R2G的概述

NCV7356D2R2G芯片概述 NCV7356D2R2G是一种用于汽车领域的集成电路,专为高电压应用设计。其主要功能为电源管理,能够实现多种形式的负载驱动和保护。该芯片采用高集成度的设计,可以有效地减少外围元件的数量,从而降低系统的整体成本和复杂度。NCV7356D2R2G的应用范围广泛,涵盖了汽车照明、驱动电机、以及各种控制信号的生成等方面,受到了设计工程师的广泛青睐。 NCV7356D2R2G的详细参数 NCV7356D2R2G芯片的主要技术参数如下: - 工作电压范围:3.0V 至 38V - 最高工作电流:可达 200mA - 输出电流:每个输出可支持200mA - 静态电流:大约为2mA - 输入电压范围:从2.5V到16V - 工作温度范围:-40°C 至 +125°C - 封装类型:30-引脚 HTSSOP - 发射极电压:支持高达40V的耐压水平 - 短路保护:内置短...

产品型号NCV7356D2R2G的Datasheet PDF文件预览

NCV7356  
Single Wire CAN Transceiver  
The NCV7356 is a physical layer device for a single wire data link  
capable of operating with various Carrier Sense Multiple Access  
with Collision Resolution (CSMA/CR) protocols such as the Bosch  
Controller Area Network (CAN) version 2.0. This serial data link  
network is intended for use in applications where high data rate is not  
required and a lower data rate can achieve cost reductions in both the  
physical media components and in the microprocessor and/or  
dedicated logic devices which use the network.  
http://onsemi.com  
MARKING DIAGRAMS  
8
8
The network shall be able to operate in either the normal data rate  
mode or a high−speed data download mode for assembly line and  
service data transfer operations. The high−speed mode is only  
intended to be operational when the bus is attached to an off−board  
service node. This node shall provide temporary bus electrical loads  
which facilitate higher speed operation. Such temporary loads should  
be removed when not performing download operations.  
The bit rate for normal communications is typically 33 kbit/s, for  
high−speed transmissions like described above a typical bit rate of  
83 kbit/s is recommended. The NCV7356 is designed in accordance  
to the Single Wire CAN Physical Layer Specification GMW3089  
V2.4 and supports many additional features like undervoltage  
lockout, timeout for faulty blocked input signals, output blanking  
time in case of bus ringing and a very low sleep mode current.  
V7356  
ALYW  
G
1
SOIC−8  
D SUFFIX  
CASE 751  
1
14  
1
NCV7356G  
AWLYWW  
14  
1
SOIC−14  
D SUFFIX  
CASE 751A  
A
= Assembly Location  
WL, L = Wafer Lot  
= Year  
WW, W = Work Week  
G or G = Pb−Free Package  
Y
PIN CONNECTIONS  
TxD  
MODE0  
MODE1  
RxD  
1
2
3
4
8
7
6
5
GND  
Features  
CANH  
LOAD  
Fully Compatible with J2411 Single Wire CAN Specification  
60 mA (max) Sleep Mode Current  
V
BAT  
Operating Voltage Range 5.0 to 27 V  
Up to 100 kbps High−Speed Transmission Mode  
Up to 40 kbps Bus Speed  
(Top View)  
GND  
TxD  
1
2
3
4
5
6
7
14 GND  
13 NC  
Selective BUS Wake−Up  
MODE0  
MODE1  
RxD  
CANH  
LOAD  
12  
11  
10  
9
Logic Inputs Compatible with 3.3 V and 5 V Supply Systems  
Control Pin for External Voltage Regulators (14 Pin Package Only)  
Standby to Sleep Mode Timeout  
Low RFI Due to Output Wave Shaping  
Fully Integrated Receiver Filter  
Bus Terminals Short−Circuit and Transient Proof  
Loss of Ground Protection  
Protection Against Load Dump, Jump Start  
Thermal Overload and Short Circuit Protection  
ESD Protection of 4.0 kV on CANH Pin (2.0 kV on Any Other Pin)  
Undervoltage Lock Out  
Bus Dominant Timeout Feature  
NCV Prefix for Automotive and Other Applications Requiring Site  
and Control Changes  
V
BAT  
NC  
INH  
GND  
8
GND  
(Top View)  
ORDERING INFORMATION  
Device  
NCV7356D1G  
Package  
Shipping  
SOIC−8  
(Pb−Free)  
98 Units / Rail  
NCV7356D1R2G SOIC−8  
(Pb−Free)  
2500 Tape & Reel  
NCV7356D2  
SOIC−14  
55 Units / Rail  
55 Units / Rail  
NCV7356D2G  
SOIC−14  
(Pb−Free)  
NCV7356D2R2  
SOIC−14  
2500 Tape & Reel  
2500 Tape & Reel  
NCV7356D2R2G SOIC−14  
(Pb−Free)  
Pb−Free Packages are Available  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
©
Semiconductor Components Industries, LLC, 2007  
1
Publication Order Number:  
January, 2007 − Rev. 5  
NCV7356/D  
NCV7356  
V
BAT  
NCV7356  
5 V Supply  
and  
References  
Biasing and  
Monitor  
V
BAT  
Reverse  
Current  
Protection  
RC−OSC  
Wave Shaping  
CAN Driver  
CANH  
Time Out  
TxD  
Feedback  
Loop  
Input Filter  
LOAD  
MODE0  
MODE1  
MODE  
CONTROL  
Loss of  
Ground  
Detection  
Receive  
Comparator  
RxD  
Reverse  
Current  
Protection  
RxD Blanking  
Time Filter  
GND  
Figure 1. 8−Pin Package Block Diagram  
http://onsemi.com  
2
NCV7356  
V
BAT  
INH  
NCV7356  
5 V Supply  
and  
References  
Biasing and  
Monitor  
V
BAT  
Reverse  
Current  
Protection  
RC−OSC  
Wave Shaping  
CAN Driver  
CANH  
Time Out  
TxD  
Feedback  
Loop  
Input Filter  
LOAD  
MODE0  
MODE1  
MODE  
CONTROL  
Loss of  
Ground  
Detection  
Receive  
Comparator  
RxD  
Reverse  
Current  
Protection  
RxD Blanking  
Time Filter  
GND  
Figure 2. 14−Pin Package Block Diagram  
http://onsemi.com  
3
NCV7356  
PACKAGE PIN DESCRIPTION  
SOIC−8  
SOIC−14  
Symbol  
TxD  
Description  
1
2
3
4
5
6
7
8
2
Transmit data from microprocessor to CAN.  
Operating mode select input 0.  
3
MODE0  
MODE1  
RxD  
4
Operating mode select input 1.  
5
Receive data from CAN to microprocessor.  
Battery input voltage.  
10  
11  
V
BAT  
LOAD  
CANH  
GND  
NC  
Resistor load (loss of ground detection low side switch).  
Single wire CAN bus pin.  
12  
1, 7, 8, 14  
6, 13  
9
Ground  
No Connection (Note 1)  
INH  
Control pin for external voltage regulator (high voltage high side switch) (14 pin package only)  
1. PWB terminal 13 can be connected to ground which will allow the board to be assembled with either the 8 pin package or the 14 pin package.  
http://onsemi.com  
4
 
NCV7356  
Electrical Specification  
All voltages are referenced to ground (GND). Positive  
currents flow into the IC. The maximum ratings given in  
the table below are limiting values that do not lead to a  
permanent damage of the device but exceeding any of these  
limits may do so. Long term exposure to limiting values  
may affect the reliability of the device.  
MAXIMUM RATINGS  
Rating  
Symbol  
Condition  
Min  
Max  
Unit  
Supply Voltage, Normal Operation  
V
−0.3  
18  
40  
V
BAT  
Short−Term Supply Voltage, Transient  
V
Load Dump; t < 500 ms  
Jump Start; t < 1.0 min  
ISO 7637/1 Pulse 1 (Note 2)  
ISO 7637/1 Pulses 2 (Note 2)  
ISO 7637/1 Pulses 3A, 3B  
V (peak)  
BAT.LD  
27  
V
V
V
V
V
Transient Supply Voltage  
Transient Supply Voltage  
Transient Supply Voltage  
CANH Voltage  
V
V
V
−50  
BAT.TR1  
BAT.TR2  
BAT.TR3  
100  
200  
−200  
−20  
−40  
−50  
V
CANH  
V
< 27 V  
= 0 V  
BAT  
BAT  
40  
V
Transient Bus Voltage  
V
V
V
ISO 7637/1 Pulse 1 (Note 3)  
ISO 7637/1 Pulses 2 (Note 3)  
ISO 7637/1 Pulses 3A, 3B (Note 3)  
Via RT > 2.0 kW  
V
V
V
V
V
V
CANHTR1  
CANHTR2  
CANHTR3  
Transient Bus Voltage  
100  
200  
40  
Transient Bus Voltage  
−200  
−40  
−0.3  
−4000  
DC Voltage on Pin LOAD  
DC Voltage on Pins TxD, MODE1, MODE0, RxD  
ESD Capability of CANH  
V
LOAD  
V
7.0  
DC  
ESDBUS  
V
Human Body Model  
4000  
(with respect to V  
and GND)  
BAT  
Eq. to Discharge 100 pF with 1.5 kW  
ESD Capability of Any Other Pin  
V
ESD  
Human Body Model  
−2000  
2000  
V
Eq. to Discharge 100 pF with 1.5 kW  
Maximum Latchup Free Current at Any Pin  
Storage Temperature  
I
−500  
−55  
−40  
500  
150  
mA  
°C  
°C  
°C  
LATCH  
T
STG  
Junction Temperature  
T
J
150  
Lead Temperature Soldering  
Reflow: (SMD styles only)  
SOIC−14  
SOIC−8  
T
sld  
60 s − 150 s above 183°C  
60 s − 150 s above 217°C  
240 peak  
260 peak  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
RecommendedOperating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
2. ISO 7637 test pulses are applied to V  
via a reverse polarity diode and >1.0 mF blocking capacitor.  
BAT  
3. ISO 7637 test pulses are applied to CANH via a coupling capacitance of 1.0 nF.  
4. ESD measured per Q100−002 (EIA/JESD22−A114−A).  
TYPICAL THERMAL CHARACTERISTICS  
Test Condition, Typical Value  
Min Pad Board  
1, Pad Board  
Parameter  
Unit  
SOIC−8  
Junction−to−Lead (psi−JL7, Y ) or Pins 6−7  
57 (Note 5)  
51 (Note 6)  
°C/W  
°C/W  
JL8  
Junction−to−Ambient (R , q  
)
187 (Note 5)  
128 (Note 6)  
q
JA JA  
SOIC−14  
Junction−to−Lead (psi−JL8, Y  
Junction−to−Ambient (R , q  
)
30 (Note 7)  
30 (Note 8)  
84 (Note 8)  
°C/W  
°C/W  
JL8  
)
122 (Note 7)  
q
JA JA  
2
5. 1 oz copper, 53 mm coper area, 0.062thick FR4.  
2
6. 1 oz copper, 716 mm coper area, 0.062thick FR4.  
2
7. 1 oz copper, 94 mm coper area, 0.062thick FR4.  
2
8. 1 oz copper, 767 mm coper area, 0.062thick FR4.  
http://onsemi.com  
5
 
NCV7356  
ELECTRICAL CHARACTERISTICS (V  
= 5.0 to 27 V, T = −40 to +125°C, unless otherwise specified.)  
BAT  
A
Characteristic  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
GENERAL  
Undervoltage Lock Out  
V
3.5  
5.0  
4.8  
6.0  
8.0  
35  
V
BATuv  
Supply Current, Recessive,  
All Active Modes  
I
V
= 18 V,  
Not High Speed Mode  
High Speed Mode  
= 27 V, MODE0 = MODE1 = H,  
BAT  
mA  
BATN  
BAT  
TxD Open  
Normal Mode Supply Current,  
Dominant  
I
V
30  
mA  
mA  
mA  
BATN  
(Note 10)  
TxD = L, R  
= 200 W  
load  
High−Speed Mode Supply Current,  
Dominant  
I
V
BAT  
= 16 V, MODE0 = H, MODE1 = L,  
70  
60  
75  
75  
BATN  
(Note 10)  
TxD = L, R  
= 75 W  
load  
Wake−Up Mode Supply Current,  
Dominant  
I
V
= 27 V,  
BATW  
BAT  
(Note 10)  
MODE0 = L, MODE1 = H,  
TxD = L, R = 200 W  
load  
Sleep Mode Supply Current (Note 9)  
I
V
= 13 V, T = 85°C,  
30  
60  
mA  
BATS  
BAT  
A
TxD, RxD, MODE0,  
MODE1 Open  
Thermal Shutdown (Note 10)  
Thermal Recovery (Note 10)  
CANH  
T
155  
126  
180  
150  
°C  
°C  
SD  
T
REC  
Bus Output Voltage  
V
R > 200 W, Normal Mode  
4.4  
3.4  
4.2  
9.9  
5.1  
5.1  
V
V
V
V
V
V
oh  
L
6.0 V < V  
< 27 V  
BAT  
Bus Output Voltage  
Low Battery  
V
oh  
R > 200 W, Normal High−Speed Mode  
L
5.0 V < V  
< 6.0 V  
BAT  
Bus Output Voltage  
High−Speed Mode  
V
oh  
R > 75 W, High−Speed Mode  
5.1  
L
8.0 V < V  
< 16 V  
BAT  
HV Fixed Wake−Up  
Output High Voltage  
V
Wake−Up Mode, R > 200 W,  
12.5  
ohWuFix  
L
11.4 V < V  
< 27 V  
BAT  
HV Offset Wake−Up  
Output High Voltage  
V
Wake−Up Mode, R > 200 W,  
V
–1.5  
V
BAT  
ohWuOffset  
L
BAT  
5.0 V < V  
< 11.4 V  
BAT  
Recessive State  
Output Voltage  
V
Recessive State or Sleep Mode,  
= 6.5 kW  
−0.20  
0.20  
ol  
R
load  
Bus Short Circuit Current  
−I  
V
CANH  
= 0 V, V = 27 V, TxD = 0 V  
BAT  
50  
350  
10  
mA  
CAN_SHORT  
Bus Leakage Current  
During Loss of Ground  
I
Loss of Ground, V  
= 0 V  
−50  
mA  
LKN_CAN  
CANH  
(Note 11)  
Bus Leakage Current, Bus Positive  
Bus Input Threshold  
I
TxD High  
Normal, High−Speed Mode, HVWU  
−10  
2.0  
10  
mA  
LKP_CAN  
V
ih  
2.1  
2.2  
V
6.0 v V v 27 V  
BAT  
Bus Input Threshold Low Battery  
V
Normal, V  
= 5.0 V to 6.0 V  
1.6  
6.6  
1.7  
2.2  
7.9  
V
V
ihlb  
BAT  
Fixed Wake−Up from Sleep  
Input High Voltage Threshold  
V
Sleep Mode, V  
> 10.9 V  
ihWuFix  
(Note 10)  
BAT  
Offset Wake−Up from Sleep  
Input High Voltage Threshold  
V
Sleep Mode  
V
BAT  
−4.3  
V −3.25  
BAT  
V
ihWuOffset  
(Note 10)  
LOAD  
Voltage on Switched Ground Pin  
Voltage on Switched Ground Pin  
Voltage on Switched Ground Pin  
V
I
I
= 1.0 mA  
= 5.0 mA  
0.1  
0.5  
1.0  
V
V
V
W
LOAD_1mA  
LOAD  
V
LOAD  
LOAD  
V
R
I
= 7.0 mA, V  
= 0 V  
LOAD_LOB  
LOAD_LOB  
LOAD  
BAT  
Load Resistance During Loss of  
Battery  
V
= 0  
R
R
LOAD  
+35%  
BAT  
LOAD  
−10%  
9. Characterization data supports I  
10.Thresholds not tested in production, guaranteed by design.  
11. Leakage current in case of loss of ground is the summary of both currents I  
< 65 mA with conditions V  
= 18 V, T = 125°C  
BATS  
BAT A  
and I  
.
LKN_CAN  
LKN_LOAD  
http://onsemi.com  
6
 
NCV7356  
ELECTRICAL CHARACTERISTICS (continued)(V  
= 5.0 to 27 V, T = −40 to +125°C, unless otherwise specified.)  
BAT  
A
Characteristic  
TXD, MODE0, MODE1  
High Level Input Voltage  
Low Level Input Voltage  
TxD Pullup Current  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
V
ih  
6.0 < V  
< 27 V  
2.0  
V
V
BAT  
V
il  
6.0 < V  
< 27 V  
0.8  
50  
BAT  
−I  
IL_TXD  
TxD = L, MODE0 and 1 = H  
5.0 < V < 27 V  
10  
mA  
BAT  
MODE0 and 1 Pulldown Resistor  
R
10  
50  
kW  
MODE_pd  
RXD  
Low Level Output Voltage  
High Level Output Leakage  
RxD Output Current  
V
I
= 2.0 mA  
−10  
0.4  
10  
70  
V
ol_rxd  
RxD  
I
V
V
= 5.0 V  
= 5.0 V  
mA  
mA  
ih_rxd  
RxD  
Irxd  
RxD  
INH (14 Pin Package Only)  
High Level Output Voltage  
Leakage Current  
V
I
= −180 mA  
V
−0.8  
V
BAT  
−0.5  
V
BAT  
V
oh_INH  
INH  
BAT  
I
MODE0 = MODE1 = L, INH = 0 V  
−5.0  
5.0  
mA  
INH_lk  
http://onsemi.com  
7
NCV7356  
TIMING MEASUREMENT LOAD CONDITIONS  
Normal and High Voltage Wake−Up Mode  
High−Speed Mode  
min load / min tau  
min load / max tau  
max load / min tau  
max load / max tau  
3.3 kW / 540 pF  
3.3 kW / 1.2 nF  
200 W / 5.0 nF  
200 W / 20 nF  
Additional 140 W tool resistance  
to ground in parallel  
Additional 120 W tool resistance  
to ground in parallel  
ELECTRICAL CHARACTERISTICS (5.0 V V  
AC CHARACTERISTICS (See Figures 3, 4, and 5)  
27 V, −40°C T 125°C, unless otherwise specified.)  
A
BAT  
Characteristic  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
Transmit Delay in Normal and Wake−Up Mode,  
Bus Rising Edge (Notes 12, 13)  
t
Tr  
Min and Max Loads per Timing  
Measurement Load Conditions  
2.0  
6.3  
ms  
Transmit Delay in Wake−Up Mode to V  
Bus Rising Edge (Notes 12, 14)  
,
t
Min and Max Loads per Timing  
Measurement Load Conditions  
2.0  
1.8  
18  
10  
ms  
ms  
ms  
ms  
ms  
ihWU  
TWUr  
Transmit Delay in Normal Mode,  
Bus Falling Edge (Notes 12, 13)  
t
Tf  
Min and Max Loads per Timing  
Measurement Load Conditions  
Transmit Delay in Wake−Up Mode,  
Bus Falling Edge (Notes 12, 13)  
t
Min and Max Loads per Timing  
Measurement Load Conditions  
3.0  
13.7  
1.5  
3.0  
TWU1f  
Transmit Delay in High−Speed Mode,  
Bus Rising Edge (Note 15)  
t
t
Min and Max Loads per Timing  
Measurement Load Conditions  
0.1  
THSr  
THSf  
Transmit Delay in High−Speed Mode,  
Bus Falling Edge (Note 16)  
Min and Max Loads per Timing  
Measurement Load Conditions  
0.04  
Receive Delay, All Active Modes (Note 17)  
Receive Delay, All Active Modes (Note 17)  
t
t
CANH High to Low Transition  
CANH Low to High Transition  
0.3  
0.3  
1.0  
1.0  
ms  
ms  
ms  
DR  
RD  
Input Minimum Pulse Length,  
All Active Modes (Note 17)  
t
t
CANH High to Low Transition  
CANH Low to High Transition  
0.1  
0.1  
1.0  
1.0  
mpDR  
mpRD  
Wake−Up Filter Time Delay  
t
See Figure 4  
10  
0.5  
70  
6.0  
ms  
ms  
WUF  
t
rb  
See Figure 5  
Receive Blanking Time, After TxD L−H Transition  
TxD Timeout Reaction Time  
t
Normal and High−Speed Mode  
Wake−Up Mode  
17  
17  
ms  
ms  
ms  
tout  
TxD Timeout Reaction Time  
t
toutwu  
Delay from Normal to High−Speed and  
High Voltage Wake−Up Mode  
t
30  
dnhs  
Delay from High−Speed and High Voltage  
Wake−Up to Normal Mode  
t
30  
ms  
dhsn  
Delay from Normal to Standby Mode  
Delay from Sleep to Normal Mode  
t
V
BAT  
V
BAT  
V
BAT  
= 6.0 V to 27 V  
= 6.0 V to 27 V  
= 6.0 V to 27 V  
500  
50  
ms  
ms  
ms  
dsby  
t
dsnwu  
dsleep  
Delay from Standby to Sleep Mode (Note 18)  
t
100  
250  
500  
12.Minimum t loads measured from measured TxD voltage threshold to CANH = 1.0 V.  
13.Maximum t load measured from measured TxD voltage threshold to CANH = 3.5 V @ V  
= 27 V, CANH = 2.8 V @ V  
= 5.0 V.,  
BAT  
BAT  
CANH Threshold = V  
+ V  
.
ihMAX  
goff  
14.Maximum t load measured from measured TxD voltage threshold to CANH = 9.2 V.  
= V , MAX + V = 7.9 V + 1.3 V = 9.2 V.  
V
ihWUMAX  
ihWUFIX  
goff  
15.Minimum t loads measured from measured TxD voltage threshold to CANH = 1.0 V.  
Maximum t load measured from measured TxD voltage threshold to CANH = 3.5 V  
V
ihMAX  
+ V  
= 2.2 V + 1.3 V = 3.5 V.  
goff  
16.Minimum t loads measured from measured TxD voltage threshold to CANH = 3.5 V.  
+ V = 2.2 V + 1.3 V = 3.5 V.  
V
ihMAX  
goff  
Maximum t loads measured from measured TxD voltage threshold to CANH = 1.0 V.  
17.Receive delay time is measured from the rising / falling edge crossing of the nominal Vih value on CANH to the falling (Vcmos_il_max) / rising  
(Vcmos_ih_min) edge of RxD. This parameter is tested by applying a square wave signal to CANH. The minimum slew rate for the bus rising  
and falling edges is 50 V/ms. The low level on bus is always 0 V. For normal mode and high−speed mode testing the high level on bus is 4 V.  
For HVWU mode testing the high level on bus is V  
in future revisions of GMW3089.  
− 2 V. Relaxation of this non−critical parameter from 0.15 ms to 0.10 ms may be addressed  
BAT  
18.Tested on 14 Pin package only.  
http://onsemi.com  
8
 
NCV7356  
BUS LOADING REQUIREMENTS  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Number of System Nodes  
2
32  
60  
m
W
Network Distance Between Any Two ECU Nodes  
Node Series Inductor Resistance (If required)  
Ground Offset Voltage  
Bus Length  
R
ind  
3.5  
V
1.3  
V
goff  
Ground Offset Voltage, Low Battery  
Device Capacitance (Unit Load)  
Network Total Capacitance  
V
0.1 x V  
0.7  
V
gofflowbat  
BAT  
C
ul  
135  
396  
6435  
2000  
200  
1.0  
150  
300  
19000  
6565  
pF  
pF  
W
C
tl  
6490  
Device Resistance (Unit Load)  
R
ul  
Device Resistance (Min Load)  
R
min  
W
Network Total Resistance  
R
tl  
4596  
4.0  
W
Network Time Constant (Note 19)  
Network Time Constant in High−Speed Mode  
High−Speed Mode Network Resistance to GND  
t
ms  
ms  
W
t
1.5  
R
load  
75  
135  
19.The network time constant incorporates the bus wiring capacitance. The minimum value is selected to limit radiated emission. The maximum  
value is selected to ensure proper communication modes. Not all combinations of R and C are possible.  
TIMING DIAGRAMS  
V
TxD  
50%  
t
t
T
V
CANH  
V max + V max  
ih  
goff  
1 V  
t
t
R
t
F
t
D
t
DR  
V
RxD  
50%  
t
Figure 3. Input/Output Timing  
http://onsemi.com  
9
 
NCV7356  
TIMING DIAGRAMS  
V
CANH  
V
ih  
+ V  
goff  
t
t
WU  
t
WU  
t
WUF  
V
RxD  
wake−up  
interrupt  
t
< t  
WUF  
WU  
t
Figure 4. Wake−Up Filter Time Delay  
V
TxD  
50%  
t
V
CANH  
V
ih  
t
V
RxD  
50%  
t
t
RB  
Figure 5. Receive Blanking Time  
http://onsemi.com  
10  
NCV7356  
FUNCTIONAL DESCRIPTION  
TxD Input Pin  
High Voltage Wake−Up Mode  
This bus includes a selective node awake capability,  
which allows normal communication to take place among  
some nodes while leaving the other nodes in an undisturbed  
sleep state. This is accomplished by controlling the signal  
voltages such that all nodes must wake−up when they  
receive a higher voltage message signal waveform. The  
communication system communicates to the nodes  
information as to which nodes are to stay operational  
(awake) and which nodes are to put themselves into a non  
communicating low power “sleep” state. Communication  
at the lower, normal voltage levels shall not disturb the  
sleeping nodes.  
TxD Polarity  
TxD = logic 1 (or floating) on this pin produces an  
undriven or recessive bus state (low bus voltage)  
TxD = logic 0 on this pin produces either a bus normal  
or a bus high voltage dominant state depending on the  
transceiver mode state (high bus voltage)  
If the TxD pin is driven to a logic low state while the sleep  
mode (Mode 0 = 0 and Mode 1 = 0) is activated, the  
transceiver can not drive the CANH pin to the dominant  
state.  
The transceiver provides an internal pullup current on the  
TxD pin which will cause the transmitter to default to the  
bus recessive state when TxD is not driven.  
Normal Mode  
TxD input signals are standard CMOS logic levels.  
Transmission bit rate in normal communication is  
33 Kbits/s. In normal transmission mode the NCV7356  
supports controlled waveform rise and overshoot times.  
Waveform trailing edge control is required to assure that  
high frequency components are minimized at the  
beginning of the downward voltage slope. The remaining  
fall time occurs after the bus is inactive with drivers off and  
is determined by the RC time constant of the total bus load.  
Timeout Feature  
In case of a faulty blocked dominant TxD input signal,  
the CANH output is switched off automatically after the  
specified TxD timeout reaction time to prevent a dominant  
bus.  
The transmission is continued by next TxD L to H  
transition without delay.  
RxD Output Pin  
Logic data as sensed on the single wire CAN bus.  
MODE0 and MODE1 Pins  
The transceiver provides a weak internal pulldown  
current on each of these pins which causes the transceiver  
to default to sleep mode when they are not driven. The  
mode input signals are standard CMOS logic level for  
3.3 V and 5 V supply voltages.  
RxD Polarity  
RxD = logic 1 on this pin indicates a bus recessive  
state (low bus voltage)  
RxD = logic 0 on this pin indicates a bus normal or  
high voltage bus dominant state  
MODE0  
MODE1  
Mode  
RxD in Sleep Mode  
L
H
L
L
L
Sleep Mode  
RxD does not pass signals to the microprocessor while in  
sleep mode until a valid wake−up bus voltage level is  
received or the MODE0 and MODE 1 pins are not 0, 0  
respectively. When the valid wake−up bus voltage signal  
awakens the transceiver, the RxD pin signals an interrupt  
(logic 0). If there is no mode change within 250 ms (typ),  
the transceiver re−enters the sleep mode.  
When not in sleep mode all valid bus signals will be sent  
out on the RxD pin.  
RxD will be placed in the undriven or off state when in  
sleep mode.  
High−Speed Mode  
High Voltage Wake−Up  
Normal Mode  
H
H
H
Sleep Mode  
Transceiver is in low power state, waiting for wake−up  
via high voltage signal or by mode pins change to any state  
other than 0,0. In this state, the CANH pin is not in the  
dominant state regardless of the state of the TxD pin.  
High−Speed Mode  
RxD Typical Load  
This mode allows high−speed download with bit rates up  
to 100 Kbit/s. The output wave shapingaping circuit is  
disabled in this mode. Bus transmitter drive circuits for  
those nodes which are required to communicate in  
high−speed mode are able to drive reduced bus resistance  
in this mode.  
Resistance: 2.7 kW  
Capacitance: < 25 pF  
http://onsemi.com  
11  
NCV7356  
Bus LOAD Pin  
Wave Shaping in High−Speed Mode  
Resistor ground connection with internal open−on−loss−  
of−ground protection  
Wave shaping control of the rising and falling waveform  
edges are disabled during high−speed mode. EMI  
emissions requirements are waived during this mode. The  
waveform rise time in this mode is less than 1.0 ms.  
When the ECU experiences a loss of ground condition,  
this pin is switched to a high impedance state.  
The ground connection through this pin is not interrupted  
in any transceiver operating mode including the sleep  
mode. The ground connection only is interrupted when  
there is a valid loss of ground condition.  
This pin provides the bus load resistor with a path to  
ground which contributes less than 0.1 V to the bus offset  
voltage when sinking the maximum current through one  
unit load resistor. This path exists in all operating modes,  
including the sleep mode.  
Short Circuits  
If the CAN BUS pin is shorted to ground for any duration  
of time, the current is limited as specified in the Electrical  
Characteristics Table until an overtemperature shutdown  
circuit disables the output high side drive source transistor  
preventing damage to the IC.  
Loss of Ground  
In case of a valid loss of ground condition, the LOAD pin  
is switched into high impedance state. The CANH  
transmission is continued until the undervoltage lock out  
voltage threshold is detected.  
The transceiver’s maximum bus leakage current  
contribution to V from the LOAD pin when in a loss of  
ol  
ground state is 50 mA over all operating temperatures and  
3.5 < V  
< 27 V.  
BAT  
Loss of Battery  
In case of loss of battery (V  
transceiver does not disturb bus communication. The  
maximum reverse current into the power supply system  
= 0 or open) the  
BAT  
VBAT Input Pin  
Vehicle Battery Voltage  
The transceiver is fully operational as described in the  
Electrical Characteristics Table over the range 6.0 V <  
(V ) doesn’t exceed 500 mA.  
BAT  
V
V
< 18 V as measured between the GND pin and the  
pin.  
INH Pin (14 pin package only)  
BAT  
The INH pin is a high−voltage highside switch used to  
control the ECU’s regulated microcontroller power supply.  
After power−on, the transceiver automatically enters an  
intermediate standby mode, the INH output will go high  
BAT  
For 5.0 V < V < 6.0 V, the bus operates in normal  
Bat  
mode with reduced dominant output voltage and reduced  
receiver input voltage. High voltage wake−up is not  
possible (dominant output voltage is the same as in normal  
or high−speed mode).  
(up to V ) turning on the external voltage regulator. The  
BAT  
external regulator provides power to the ECU. If there is no  
mode change within 250 ms (typ), the transceiver re−enters  
the sleep mode and the INH output goes to logic 0  
(floating).  
When the transceiver has detected a valid wake−up  
condition (bus HVWU traffic which exceeds the wake−up  
filter time delay) the INH output will become high (up to  
The transceiver operates in normal mode when 18 V <  
V
Bat  
< 27 V at 85°C for one minute.  
CAN BUS  
Input/Output Pin  
Wave Shaping in Normal and High Voltage Wake−Up  
Mode  
V ) again and the same procedure starts as described  
BAT  
after power−on. In case of a mode change into any active  
mode, the sleep timer is stopped and INH stays high (up to  
Wave shaping is incorporated into the transmitter to  
minimize EMI radiated emissions. An important  
contributor to emissions is the rise and fall times during  
output transitions at the “corners” of the voltage waveform.  
The resultant waveform is one half of a sin wave of  
frequency 50−65 kHz at the rising waveform edge and one  
quarter of this sin wave at falling or trailing edge.  
V ). If the transceiver enters the sleep mode, INH goes  
BAT  
to logic 0 (floating) after 250 ms (typ) when no wake−up  
signal is present.  
http://onsemi.com  
12  
NCV7356  
HVWU Mode  
MODE0  
low  
MODE1  
high  
MODE0/1 => High  
High−Speed Mode  
V on  
BAT  
MODE0  
high  
MODE1  
low  
MODE0&1 => Low  
Normal Mode  
MODE0  
high  
MODE1  
high  
MODE0/1 => High  
(If V  
on)  
CC_ECU  
VBAT standby  
MODE0/1  
low  
RxD  
CAN  
float  
after 250 ms  
−> no mode change  
−> no valid wake−up  
(1)  
high/low  
wake−up  
request  
from Bus  
Sleep Mode  
MODE0/1  
low  
CAN  
float  
(1)  
low after HVWU, high after V  
on & V  
present  
BAT  
CCECU  
Figure 6. State Diagram, 8 Pin Package  
http://onsemi.com  
13  
NCV7356  
HVWU Mode  
MODE0 MODE1  
low high  
INH  
V
BAT  
MODE0/1 => High  
High−Speed Mode  
V on  
BAT  
MODE0 MODE1  
INH  
high  
low  
V
BAT  
MODE0&1 => Low  
Normal Mode  
MODE0 MODE1  
high high  
INH  
V
BAT  
MODE0/1 => High  
(If V  
on)  
CC_ECU  
VBAT standby  
MODE0/1 INH  
low  
RxD  
CAN  
float  
after 250 ms  
−> no mode change  
−> no valid wake−up  
(1)  
V
high/low  
BAT  
wake−up  
request  
from Bus  
Sleep Mode  
MODE0/1  
low  
INH/CAN  
floating  
(1)  
low after HVWU, high after V  
on & V  
present  
BAT  
CCECU  
Figure 7. State Diagram, 14 Pin Package  
http://onsemi.com  
14  
NCV7356  
MRA4004T3  
*
V
BAT  
V
+
BAT_ECU  
Voltage Regulator  
V
BAT  
+5 V  
100 nF  
ECU Connector to  
Single Wire CAN Bus  
100 pF  
+
2.7 kW  
V
BAT  
1 k  
5
47 mH  
4
RxD  
7
6
CANH  
LOAD  
NCV7356  
100 pF  
6.49 kW  
2
3
1
MODE0  
MODE1  
TxD  
ESD Protection −  
NUP1105L  
8
GND  
*Recommended capacitance at V  
> 1.0 mF (immunity to ISO7637/1 test pulses)  
BAT_ECU  
Figure 8. Application Circuitry, 8 Pin Package  
http://onsemi.com  
15  
NCV7356  
MRA4004T3  
*
V
BAT  
V
+
BAT_ECU  
Voltage Regulator  
INH  
V
BAT  
+5 V  
100 nF  
ECU Connector to  
Single Wire CAN Bus  
100 pF  
+
2.7 kW  
V
BAT  
1 k  
9
10  
47 mH  
5
RxD  
12  
11  
CANH  
LOAD  
NCV7356  
100 pF  
6.49 kW  
3
4
2
MODE0  
MODE1  
TxD  
ESD Protection −  
NUP1105L  
1, 7, 8, 14  
GND  
*Recommended capacitance at V  
> 1.0 mF (immunity to ISO7637/1 test pulses)  
BAT_ECU  
Figure 9. Application Circuitry, 14 Pin Package  
http://onsemi.com  
16  
NCV7356  
SOIC−8 Thermal Information  
Test Condition, Typical Value  
Min Pad Board  
1, Pad Board  
(Note 20)  
(Note 21)  
Parameter  
Junction−to−Lead (psi−JL7, Y ) or Pins 6−7  
Unit  
°C/W  
°C/W  
57  
51  
JL8  
Junction−to−Ambient (R , q  
)
187  
128  
q
JA JA  
2
20.1 oz copper, 53 mm coper area, 0.062thick FR4.  
2
21.1 oz copper, 716 mm coper area, 0.062thick FR4.  
Package Construction  
with and without Mold Compound  
Various copper areas used  
for heat spreading  
Active Area (red)  
Lead #1  
Figure 10. Internal construction of the  
package simulation.  
Figure 11. Min pad is shown as the red traces.  
1, pad includes the yellow area. Internal  
construction is shown for later reference.  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
1.0 oz. Cu  
2.0 oz. Cu  
0
100  
200  
300  
400  
500  
600  
700  
800  
2
Copper Area (mm )  
Figure 12. SOIC−8, qJA as a Function of the Pad Copper  
Area Including Traces,  
Board Material  
http://onsemi.com  
17  
 
NCV7356  
Table 1. SOIC−8 Thermal RC Network Models*  
2
2
2
53 mm  
719 mm  
Copper Area  
53 mm2  
719 mm  
Copper Area  
Cauer Network  
Foster Network  
C’s  
C’s  
Units  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
Tau  
Tau  
Units  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
5.86E−06  
2.29E−05  
6.98E−05  
3.68E−04  
3.75E−04  
1.57E−03  
2.05E−02  
9.13E−02  
2.64E−01  
1.66E+01  
R’s  
5.86E−06  
2.29E−05  
6.97E−05  
3.68E−04  
3.74E−04  
1.56E−03  
2.24E−02  
7.35E−02  
1.22E+00  
9.74E+00  
R’s  
1.00E−06  
1.00E−05  
1.00E−04  
1.99E−04  
1.00E−03  
1.64E−02  
5.60E−01  
4.50E+00  
7.61E+01  
3.00E+01  
R’s  
1.00E−06  
1.00E−05  
1.00E−04  
1.99E−04  
1.00E−03  
1.64E−02  
5.60E−01  
4.50E+00  
7.61E+01  
3.00E+01  
R’s  
0.22  
0.22  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
1.30E−01  
2.82E−01  
8.91E−01  
0.17  
1.30E−01  
2.82E−01  
8.91E−01  
0.18  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
0.50  
0.50  
1.30  
1.30  
1.80  
1.79  
0.95  
0.96  
1.88  
1.88  
7.43  
7.37  
7.15  
7.24  
31.19  
31.59  
19.80  
16.27  
59.97  
47.70  
30.1  
54.7  
75.79  
28.63  
14.1  
23.3  
4.41  
6.15  
109.0  
21.3  
*Bold face items in the Cauer network above, represent the package without the external thermal system. The Bold face items in the Foster network  
are computed by the square root of time constant R(t) = 130 * sqrt(time(sec)). The constant is derived based on the active area of the device  
with silicon and epoxy at the interface of the heat generation.  
The Cauer networks generally have physical  
significance and may be divided between nodes to separate  
thermal behavior due to one portion of the network from  
another. The Foster networks, though when sorted by time  
constant (as above) bear a rough correlation with the Cauer  
networks, are really only convenient mathematical models.  
Both Foster and Cauer networks can be easily implemented  
using circuit simulating tools, whereas Foster networks  
may be more easily implemented using mathematical tools  
(for instance, in a spreadsheet program), according to the  
following formula:  
n
−tńtau  
i
ǒ
R 1−e  
i
Ǔ
R(t) +  
S
i + 1  
http://onsemi.com  
18  
NCV7356  
R
1
R
2
R
3
R
n
Junction  
C
1
C
2
C
n
C
3
Ambient  
Time constants are not simple RC products.  
(thermal ground)  
Amplitudes of mathematical solution are not the resistance values.  
Figure 13. Grounded Capacitor Thermal Network (“Cauer” Ladder)  
R
R
R
R
Junction  
1
1
2
2
3
3
n
C
C
C
n
C
Each rung is exactly characterized by its RC−product time constant; Am-  
plitudes are the resistances  
Ambient  
(thermal ground)  
Figure 14. Non−Grounded Capacitor Thermal Ladder (“Foster” Ladder)  
1000  
100  
10  
2
Cu Area = 53 mm 1.0 oz.  
2
Cu Area = 93 mm 1.0 oz.  
2
Cu Area = 719 mm 1.0 oz.  
1
0.1  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
Time (s)  
0.1  
1
10  
100  
1000  
Figure 15. SOIC−8 Single Pulse Heating Curve  
1000  
D = 0.50  
100  
10  
0.20  
0.10  
0.05  
0.02  
1
0.01  
Single Pulse  
0.00001 0.0001  
0.1  
0.000001  
0.001  
0.01  
Time (s)  
0.1  
1
10  
100  
1000  
Figure 16. SOIC−8 Thermal Duty Cycle Curves on 1, Spreader Test Board  
http://onsemi.com  
19  
NCV7356  
SOIC−14 Thermal Information  
Test Condition, Typical Value  
Min Pad Board  
1, Pad Board  
(Note 22)  
(Note 23)  
Parameter  
Unit  
°C/W  
°C/W  
Junction−to−Lead (psi−JL8, Y  
)
JL8  
30  
30  
84  
Junction−to−Ambient (R , q  
)
122  
q
JA JA  
2
22.1 oz copper, 94 mm coper area, 0.062thick FR4.  
2
23.1 oz copper, 767 mm coper area, 0.062thick FR4.  
Figure 18. Min pad is shown as the red traces.  
1 inch pad includes the yellow area. Pin 1, 7, 8  
and 14 are connected to flag internally to the  
package and externally to the heat spreading area.  
Figure 17. Internal construction of the package  
simulation.  
150  
140  
130  
120  
1.0 oz. Cu  
110  
Sim 1.0 oz.  
Sim 2.0 oz.  
100  
2.0 oz. Cu  
90  
80  
70  
60  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
2
Copper Area (mm )  
Figure 19. SOIC−14, qJA as a Function of the Pad Copper Area Including Traces,  
Board Material  
http://onsemi.com  
20  
 
NCV7356  
Table 2. SOIC−14 Thermal RC Network Models*  
2
2
2
2
96 mm  
767 mm  
Copper Area  
96 mm  
767 mm  
Copper Area  
Cauer Network  
Foster Network  
C’s  
C’s  
Units  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
W−s/C  
Tau  
Tau  
Units  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
3.12E−05  
1.21E−04  
3.53E−04  
1.19E−03  
4.86E−03  
2.17E−02  
8.94E−02  
0.304  
3.12E−05  
1.21E−04  
3.50E−04  
1.19E−03  
5.05E−03  
7.16E−03  
3.51E−02  
0.262  
1.00E−06  
1.00E−05  
1.00E−04  
0.028  
1.00E−06  
1.00E−05  
1.00E−04  
0.001  
0.009  
0.047  
0.875  
7.53  
0.001  
0.280  
2.016  
16.64  
1.71  
2.43  
59.47  
68.4  
411  
92.221  
R’s  
R’s  
R’s  
R’s  
2.44E−02  
5.28E−02  
1.67E−01  
3.5  
0.041  
0.095  
0.279  
1.154  
5.621  
13.180  
23.823  
53.332  
24.794  
0.041  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
2.44E−02  
5.28E−02  
1.67E−01  
0.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
0.096  
0.281  
0.995  
6.351  
0.7  
0.1  
1.910  
8.7  
5.8  
21.397  
27.150  
25.276  
0.218  
15.9  
16.4  
31.9  
27.1  
61.3  
29.0  
4.3  
*Bold face items in the Cauer network above, represent the package without the external thermal system. The Bold face items in the Foster network  
are computed by the square root of time constant R(t) = 24.4 * sqrt(time(sec)). The constant is derived based on the active area of the device  
with silicon and epoxy at the interface of the heat generation.  
The Cauer networks generally have physical  
significance and may be divided between nodes to separate  
thermal behavior due to one portion of the network from  
another. The Foster networks, though when sorted by time  
constant (as above) bear a rough correlation with the Cauer  
networks, are really only convenient mathematical models.  
Both Foster and Cauer networks can be easily implemented  
using circuit simulating tools, whereas Foster networks  
may be more easily implemented using mathematical tools  
(for instance, in a spreadsheet program), according to the  
following formula:  
n
−tńtau  
i
ǒ
R 1−e  
i
Ǔ
R(t) +  
S
i + 1  
R
1
R
2
R
3
R
n
Junction  
C
1
C
2
C
n
C
3
Ambient  
Time constants are not simple RC products.  
Amplitudes of mathematical solution are not the resistance values.  
(thermal ground)  
Figure 20. Grounded Capacitor Thermal Network (“Cauer” Ladder)  
R
C
R
R
R
Junction  
1
2
3
n
C
2
C
n
C
3
1
Each rung is exactly characterized by its RC−product time constant; Am-  
plitudes are the resistances  
Ambient  
(thermal ground)  
Figure 21. Non−Grounded Capacitor Thermal Ladder (“Foster” Ladder)  
http://onsemi.com  
21  
NCV7356  
1000  
100  
10  
2
Cu Area = 96 mm 1.0 oz.  
2
Cu Area = 767 mm 1.0 oz.  
2
Cu Area = 767 mm 1.0 oz. 1S2P  
1
0.1  
0.01  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Time (s)  
Figure 22. SOIC−14 Single Pulse Heating  
1000  
D = 0.50  
0.20  
0.10  
0.05  
100  
10  
0.01  
2
Cu Area = 717 mm 1.0 oz.  
1
0.1  
0.01  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE DURATION (sec)  
Figure 23. SOIC−14 Thermal Duty Cycle Curves on 1, Spreader Test Board  
http://onsemi.com  
22  
NCV7356  
PACKAGE DIMENSIONS  
SOIC−14  
CASE 751A−03  
ISSUE H  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−A−  
14  
8
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.127  
(0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
−B−  
P 7 PL  
M
M
B
0.25 (0.010)  
7
1
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
F
R X 45  
_
C
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337 0.344  
4.00 0.150 0.157  
1.75 0.054 0.068  
0.49 0.014 0.019  
1.25 0.016 0.049  
−T−  
SEATING  
PLANE  
J
M
K
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25 0.008 0.009  
0.25 0.004 0.009  
_
D 14 PL  
0.19  
0.10  
0
M
S
S
A
0.25 (0.010)  
T B  
7
0
7
_
_
_
5.80  
0.25  
6.20 0.228 0.244  
0.50 0.010 0.019  
SOLDERING FOOTPRINT*  
7X  
7.04  
14X  
1.52  
1
14X  
0.58  
1.27  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
23  
NCV7356  
PACKAGE DIMENSIONS  
SOIC−8 NB  
CASE 751−07  
ISSUE AH  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over  
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under  
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.  
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV7356/D  
配单直通车
NCV7356D2R2G产品参数
型号:NCV7356D2R2G
Brand Name:ON Semiconductor
是否无铅:不含铅
生命周期:Active
IHS 制造商:ON SEMICONDUCTOR
零件包装代码:SOIC
包装说明:SOP, SOP14,.25
针数:14
制造商包装代码:751A-03
Reach Compliance Code:compliant
HTS代码:8542.39.00.01
Factory Lead Time:6 weeks
风险等级:1.12
Is Samacsys:N
数据速率:100 Mbps
JESD-30 代码:R-PDSO-G14
JESD-609代码:e3
长度:8.65 mm
湿度敏感等级:3
功能数量:1
端子数量:14
收发器数量:1
最高工作温度:125 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOP14,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
电源:5/27 V
认证状态:Not Qualified
筛选级别:AEC-Q100
座面最大高度:1.75 mm
子类别:Network Interfaces
标称供电电压:16 V
表面贴装:YES
电信集成电路类型:INTERFACE CIRCUIT
温度等级:AUTOMOTIVE
端子面层:Tin (Sn)
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:40
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!