OPA376
OPA2376
OPA4376
www.ti.com
SBOS406F –JUNE 2007–REVISED MARCH 2013
INPUT AND ESD PROTECTION
load, a voltage divider is created, introducing a gain
error at the output and slightly reducing the output
swing. The error introduced is proportional to the ratio
RS/RL, and is generally negligible at low output
current levels.
The OPA376 family incorporates internal electrostatic
discharge (ESD) protection circuits on all pins. In the
case of input and output pins, this protection primarily
consists of current steering diodes connected
between the input and power-supply pins. These ESD
protection diodes also provide in-circuit, input
overdrive protection, as long as the current is limited
to 10mA as stated in the Absolute Maximum Ratings.
Figure 24 shows how a series input resistor may be
added to the driven input to limit the input current.
The added resistor contributes thermal noise at the
amplifier input and its value should be kept to a
minimum in noise-sensitive applications.
V+
RS
VOUT
OPA376
10W to
20W
VIN
CL
RL
Figure 25. Improving Capacitive Load Drive
ACTIVE FILTERING
V+
IOVERLOAD
10mA max
VOUT
OPA376
The OPA376 series is well-suited for filter
applications requiring a wide bandwidth, fast slew
rate, low-noise, single-supply operational amplifier.
Figure 26 shows a 50kHz, 2nd-order, low-pass filter.
The components have been selected to provide a
maximally-flat Butterworth response. Beyond the
cutoff frequency, roll-off is –40dB/dec. The
Butterworth response is ideal for applications
requiring predictable gain characteristics such as the
anti-aliasing filter used ahead of an analog-to-digital
converter (ADC).
VIN
5kW
Figure 24. Input Current Protection
CAPACITIVE LOAD AND STABILITY
The OPA376 series of amplifiers may be used in
applications where driving
a capacitive load is
required. As with all op amps, there may be specific
instances where the OPAx376 can become unstable,
leading to oscillation. The particular op amp circuit
configuration, layout, gain, and output loading are
some of the factors to consider when establishing
whether an amplifier will be stable in operation. An op
amp in the unity-gain (+1V/V) buffer configuration and
driving a capacitive load exhibits a greater tendency
to be unstable than an amplifier operated at a higher
noise gain. The capacitive load, in conjunction with
the op amp output resistance, creates a pole within
the feedback loop that degrades the phase margin.
The degradation of the phase margin increases as
the capacitive loading increases.
R3
5.49kW
C2
150pF
V+
R1
R2
5.49kW
12.4kW
OPA376
VOUT
C1
1nF
VIN
The OPAx376 in a unity-gain configuration can
directly drive up to 250pF pure capacitive load.
Increasing the gain enhances the ability of the
amplifier to drive greater capacitive loads; see the
typical characteristic plot, Small-Signal Overshoot vs
Capacitive Load. In unity-gain configurations,
capacitive load drive can be improved by inserting a
small (10Ω to 20Ω) resistor, RS, in series with the
output, as shown in Figure 25. This resistor
significantly reduces ringing while maintaining dc
performance for purely capacitive loads. However, if
there is a resistive load in parallel with the capacitive
(V+)/2
Figure 26. Second-Order Butterworth 50kHz Low-
Pass Filter
Copyright © 2007–2013, Texas Instruments Incorporated
Submit Documentation Feedback
11
Product Folder Links: OPA376 OPA2376 OPA4376