欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • P89C668HBA图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • P89C668HBA 现货库存
  • 数量8800 
  • 厂家NXP 
  • 封装PLCC 
  • 批号23+ 
  • 原装进口特价现货!
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • P89C668HBA/00图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • P89C668HBA/00 现货库存
  • 数量643 
  • 厂家PHILIPS 
  • 封装PLCC44 
  • 批号07+ 
  • 一定原装正品/国外现货
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • P89C668HBA【特价现货】图
  • 齐创科技(上海北京青岛)有限公司

     该会员已使用本站14年以上
  • P89C668HBA【特价现货】 现货库存
  • 数量2000 
  • 厂家NXP代理 
  • 封装PLCC44 
  • 批号24+热销 
  • 中国区代理全新原装正品进口
  • QQ:2394092314QQ:2394092314 复制
    QQ:792179102QQ:792179102 复制
  • 021-62153656 QQ:2394092314QQ:792179102
  • P89C668HBA图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • P89C668HBA 现货库存
  • 数量20000 
  • 厂家NXP(恩智浦) 
  • 封装N/A 
  • 批号21+ 
  • 只做原装正品原厂原包
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • P89C668HBA图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • P89C668HBA 现货库存
  • 数量5150 
  • 厂家NXP 
  • 封装PLCC 
  • 批号新年份 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • P89C668HBA图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • P89C668HBA 现货库存
  • 数量50600 
  • 厂家PHILIPS/飞利浦 
  • 封装PLCC 
  • 批号2103+ 
  • 原装价格当天为准可含票
  • QQ:2885134398QQ:2885134398 复制
    QQ:2885134554QQ:2885134554 复制
  • 0755- QQ:2885134398QQ:2885134554
  • P89C668HBA图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • P89C668HBA 现货库存
  • 数量54 
  • 厂家NXP 
  • 封装44PLCC 
  • 批号 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • P89C668HBA图
  • 深圳市意好科技有限公司

     该会员已使用本站15年以上
  • P89C668HBA
  • 数量6730 
  • 厂家PHILIPS 
  • 封装原厂 
  • 批号24+ 
  • 中华地区销售
  • QQ:2853107358QQ:2853107358 复制
    QQ:2853107357QQ:2853107357 复制
  • 0755-88608316 QQ:2853107358QQ:2853107357
  • P89C668HBA图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • P89C668HBA
  • 数量8800 
  • 厂家NXP/恩智浦 
  • 封装PLCC 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • P89C668HBA/00图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • P89C668HBA/00
  • 数量643 
  • 厂家PHILIPS 
  • 封装PLCC44 
  • 批号07+ 
  • 一定原装正品/国外现货
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • P89C668HBA图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • P89C668HBA
  • 数量1000 
  • 厂家NXP 
  • 封装PLCC44 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • P89C668HBA图
  • 集好芯城

     该会员已使用本站13年以上
  • P89C668HBA
  • 数量18456 
  • 厂家PHILIPS/飞利浦 
  • 封装PLCC 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • P89C668HBA-LF图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • P89C668HBA-LF
  • 数量4771 
  • 厂家PH 
  • 封装无铅正品 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • P89C668HBA图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • P89C668HBA
  • 数量6800 
  • 厂家PHILIPS 
  • 封装PLCC44 
  • 批号05+ 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • P89C668HBA图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • P89C668HBA
  • 数量2000 
  • 厂家PHILIPS 
  • 封装PLCC 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • P89C668HBA图
  • 北京顺科电子科技有限公司

     该会员已使用本站8年以上
  • P89C668HBA
  • 数量5500 
  • 厂家NXP/恩智浦 
  • 封装PLCC 
  • 批号21+ 
  • 进口品牌//国产品牌代理商18911556207
  • QQ:729566152QQ:729566152 复制
    QQ:1138731127QQ:1138731127 复制
  • 18911556207 QQ:729566152QQ:1138731127
  • P89C668HBA   (FLASH)图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • P89C668HBA (FLASH)
  • 数量3000 
  • 厂家PHILIPS 
  • 封装PLCC44 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • P89C668HBA图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • P89C668HBA
  • 数量5500 
  • 厂家PHILIPS 
  • 封装PLCC 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • P89C668HBA图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • P89C668HBA
  • 数量5000 
  • 厂家NXP 
  • 封装PLCC 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • P89C668HBA/00,512图
  • 深圳市斌腾达科技有限公司

     该会员已使用本站9年以上
  • P89C668HBA/00,512
  • 数量1300 
  • 厂家NXP USA Inc. 
  • 封装44-LCC(J 形引线) 
  • 批号18+ 
  • 100%进口原装!长期供应!绝对优势价格(诚信经营
  • QQ:2881704051QQ:2881704051 复制
    QQ:2881704535QQ:2881704535 复制
  • 0755-82815082 QQ:2881704051QQ:2881704535
  • P89C668HBA/00图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • P89C668HBA/00
  • 数量30000 
  • 厂家PHILIPS 
  • 封装PLCC44 
  • 批号23+ 
  • 代理全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • P89C668HBA图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • P89C668HBA
  • 数量5000 
  • 厂家NXP Semiconductors 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • P89C668HBA/HP01图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • P89C668HBA/HP01
  • 数量12850 
  • 厂家PHILIPS 
  • 封装PLCC 
  • 批号NEW 
  • 绝对进口原装现货,市场价格最低!!
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • P89C668HBA图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • P89C668HBA
  • 数量3344 
  • 厂家PHILIPS/飞利浦 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • P89C668HBA图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • P89C668HBA
  • 数量104 
  • 厂家PHILIPS/飞利浦 
  • 封装PLCC 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • P89C668HBA图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • P89C668HBA
  • 数量8560 
  • 厂家NXP 
  • 封装PLCC44 
  • 批号17+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • P89C668HBA图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • P89C668HBA
  • 数量19504 
  • 厂家NXP停产收购 
  • 封装PLCC44 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • P89C668HBA图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • P89C668HBA
  • 数量20000 
  • 厂家NXP 
  • 封装PLCC 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • P89C668HBA图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • P89C668HBA
  • 数量35600 
  • 厂家NXP 
  • 封装PLCC 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579
  • P89C668HBA图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • P89C668HBA
  • 数量19504 
  • 厂家NXP停产收购 
  • 封装PLCC44 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • P89C668HBA图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • P89C668HBA
  • 数量3000 
  • 厂家PHILIPS 
  • 封装PLCC44 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • P89C668HBA图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • P89C668HBA
  • 数量3000 
  • 厂家PHILIPS 
  • 封装PLCC44 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • P89C668HBA图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • P89C668HBA
  • 数量12245 
  • 厂家PHILIPS/飞利浦 
  • 封装PLCC 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • P89C668HBA图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • P89C668HBA
  • 数量10000 
  • 厂家NXP 
  • 封装PLCC 
  • 批号17+ 
  • 全新原装现货,有意请来电或QQ联系
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • P89C668HBA图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • P89C668HBA
  • 数量408 
  • 厂家PHI 
  • 封装PLCC/68 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872561 QQ:1484215649QQ:729272152
  • P89C668HBAHFA图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • P89C668HBAHFA
  • 数量2015 
  • 厂家PHILIPS 
  • 封装SOP/DIP 
  • 批号19889 
  • ★一级代理原装现货,特价热卖!★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963

产品型号P89C668HBA的概述

P89C668HBA芯片概述 P89C668HBA是一款基于8032架构的8位微控制器,广泛应用于嵌入式系统和工业自动化设备中。该芯片具有强大的处理能力和多种功能,旨在满足中小型复杂系统的需求。它的设计允许开发人员在多个应用中高效运用,包括但不限于消费电子、汽车电子和通讯设备。 P89C668HBA的微控制器架构集成了丰富的集成功能,例如多通道定时器、串行通信接口和多种输入输出引脚,使得该芯片在控制和数据处理方面异常高效。该芯片的引脚布局合理,便于在各种电路板设计中应用。 P89C668HBA的详细参数 1. 处理器核心:8位8051核心架构 2. 工作电压:4.0V至5.5V 3. 最大工作频率:12MHz 4. 内存配置: - 程序内存:32KB Flash - 数据内存:256B RAM 5. I/O引脚:多达32条通用I/O引脚 6. 定时器:两路16位定时器 7....

产品型号P89C668HBA的Datasheet PDF文件预览

INTEGRATED CIRCUITS  
P89C668  
80C51 8-bit Flash microcontroller family  
64KB ISP FLASH with 8KB RAM  
Preliminary data  
Supersedes data of 2001 Jul 19  
2001 Jul 27  
IC28 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
DESCRIPTION  
Parallel programmed with 87C51 compatible hardware interface to  
The P89C668 device contains a non-volatile 64 kbytes Flash  
program memory that is both parallel programmable and serial  
In-System Programmable. In-System Programming allows devices  
to alter their own program memory, in the actual end product, under  
software control. This opens up a range of applications that can  
include the ability to field update the application firmware.  
programmer  
Speed up to 20 MHz with 6 clock cycles per machine cycle  
(40 MHz equivalent performance); up to 33 MHz with 12 clocks  
Full static operation  
RAM expandable externally to 64 kbytes  
4 level priority interrupt  
8 interrupt sources  
A default serial loader (boot loader) program in ROM allows serial  
In-System programming of the Flash memory without the need for a  
loader in the Flash code. User programs may erase and reprogram  
the Flash memory at will through the use of standard routines  
contained in ROM.  
Four 8-bit I/O ports  
This device is a Single-Chip 8-Bit Microcontroller manufactured in  
advanced CMOS process and is a derivative of the 80C51  
microcontroller family. The device has the same instruction set as  
the 80C51.  
Full-duplex enhanced UART  
Framing error detection  
Automatic address recognition  
Power control modes  
Clock can be stopped and resumed  
Idle mode  
The device also has four 8-bit I/O ports, three 16-bit timer/event  
counters, a multi-source, four-priority-level, nested interrupt structure,  
an enhanced UART and on-chip oscillator and timing circuits.  
The added features of the P89C668 makes it a powerful microcontroller  
for applications that require pulse width modulation, high-speed I/O and  
up/down counting capabilities such as motor control.  
Power down mode  
Programmable clock out  
Second DPTR register  
Asynchronous port reset  
Low EMI (inhibit ALE)  
FEATURES  
80C51 Central Processing Unit  
2
I C serial interface  
On-chip Flash Program Memory with In-System Programming  
(ISP) capability  
Programmable Counter Array (PCA)  
PWM  
Boot ROM contains low level Flash programming routines for  
downloading via the UART  
Capture/compare  
Can be programmed by the end-user application (IAP)  
ORDERING INFORMATION  
MEMORY  
FREQ. (MHz)  
TEMPERATURE  
RANGE °C  
AND PACKAGE  
MEMORY SIZE  
VOLTAGE  
RANGE  
DWG. #  
6 CLOCK  
12 CLOCK  
MODE  
64K × 8  
FLASH  
RAM  
MODE  
P89C668HBA  
P89C668HFA  
P89C668HBBD  
64 KB  
64 KB  
64 KB  
8 KB  
8 KB  
8 KB  
0 to +70, PLCC  
–40 to +85, PLCC  
0 to +70, LQFP  
4.5 to 5.5 V  
4.5 to 5.5 V  
4.5 to 5.5 V  
0 to 20 MHz  
0 to 20 MHz  
0 to 20 MHz  
0 to 33 MHz  
0 to 33 MHz  
0 to 33 MHz  
SOT187-2  
SOT187-2  
SOT389-1  
2
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
BLOCK DIAGRAM  
P0.0–P0.7  
P2.0–P2.7  
PORT 0  
DRIVERS  
PORT 2  
DRIVERS  
V
V
CC  
SS  
RAM ADDR  
REGISTER  
PORT 0  
LATCH  
PORT 2  
LATCH  
FLASH  
RAM  
8
B
STACK  
POINTER  
ACC  
REGISTER  
PROGRAM  
ADDRESS  
REGISTER  
TMP1  
TMP2  
BUFFER  
ALU  
SFRs  
TIMERS  
P.C.A.  
PC  
INCRE-  
MENTER  
PSW  
8
16  
PROGRAM  
COUNTER  
PSEN  
ALE  
DPTR’S  
MULTIPLE  
TIMING  
AND  
CONTROL  
EAV  
PP  
RST  
PORT 1  
LATCH  
2
PORT 3  
LATCH  
PD  
I C  
OSCILLATOR  
PORT 1  
DRIVERS  
PORT 3  
DRIVERS  
SCL  
XTAL1  
XTAL2  
SDA  
P1.0–P1.7  
P3.0–P3.7  
su01089  
3
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
LOGIC SYMBOL  
LOW QUAD FLAT PACKAGE  
PIN FUNCTIONS  
V
V
SS  
CC  
44  
34  
XTAL1  
ADDRESS AND  
DATA BUS  
1
33  
LQFP  
XTAL2  
RST  
T2  
11  
23  
T2EX  
EA/V  
PP  
PSEN  
12  
22  
SCL  
SDA  
ALE/PROG  
Pin Function  
Pin Function  
Pin Function  
RxD  
1
2
3
P1.5/CEX2  
P1.6/SCL  
P1.7/SDA  
RST  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
NIC*  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
SS  
TxD  
INT0  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
PSEN  
ALE  
NIC*  
EA/V  
P0.7/AD7  
4
INT1  
T0  
T1  
WR  
RD  
ADDRESS BUS  
SU01090  
5
6
P3.0/RxD  
NIC*  
7
8
9
10  
11  
12  
13  
14  
15  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0/CEX3  
P3.5/T1/CEX4  
P3.6/WR  
P3.7/RD  
XTAL2  
V
CC  
NIC*  
P1.0/T2  
P1.1/T2EX  
P1.2/ECI  
P1.3/CEX0  
P1.4/CEX1  
PLASTIC LEADED CHIP CARRIER  
PIN FUNCTIONS  
PP  
XTAL1  
* NO INTERNAL CONNECTION  
6
1
40  
SU01401  
7
39  
PLCC  
17  
29  
18  
28  
Pin Function  
Pin Function  
Pin Function  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
NIC*  
P1.0/T2  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
P3.4/T0/CEX3  
P3.5/T1/CEX4  
P3.6/WR  
P3.7/RD  
XTAL2  
XTAL1  
V
SS  
NIC*  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P2.7/A15  
PSEN  
ALE  
NIC*  
EA/V  
PP  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
P1.1/T2EX  
P1.2/ECI  
P1.3/CEX0  
P1.4/CEX1  
P1.5/CEX2  
P1.6/SCL  
P1.7/SDA  
RST  
P3.0/RxD  
NIC*  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
V
CC  
* NO INTERNAL CONNECTION  
SU01091  
4
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
PIN DESCRIPTIONS  
PIN NUMBER  
MNEMONIC  
NAME AND FUNCTION  
PLCC  
LQFP  
V
V
22  
16  
I
I
Ground: 0 V reference.  
SS  
44  
38  
Power Supply: This is the power supply voltage for normal, idle, and power-down operation.  
CC  
P0.0–0.7  
43–36  
37–30  
I/O  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float  
and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and  
data bus during accesses to external program and data memory. In this application, it uses strong  
internal pull-ups when emitting 1s.  
P1.0–P1.7  
2–9  
40–44,  
1–3  
I/O  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups on all pins except P1.6 and  
P1.7 which are open drain. Port 1 pins that have 1s written to them are pulled high by the internal  
pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source  
current because of the internal pull-ups. (See DC Electrical Characteristics: I ).  
IL  
Alternate functions for P89C668 Port 1 include:  
2
3
4
5
6
7
8
9
40  
41  
42  
43  
44  
1
I/O  
I
T2 (P1.0): Timer/Counter 2 external count input/Clockout (see Programmable Clock-Out)  
T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control  
ECI (P1.2): External Clock Input to the PCA  
I
I/O  
I/O  
I/O  
I/O  
I/O  
CEX0 (P1.3): Capture/Compare External I/O for PCA module 0  
CEX1 (P1.4): Capture/Compare External I/O for PCA module 1  
CEX2 (P1.5): Capture/Compare External I/O for PCA module 2  
2
2
SCL (P1.6): I C bus clock line (open drain)  
2
3
SDA (P1.7): I C bus data line (open drain)  
P2.0–P2.7  
24–31  
18–25  
I/O  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2  
pins that are externally being pulled low will source current because of the internal pull-ups. (See  
DC Electrical Characteristics: I ). Port 2 emits the high-order address byte during fetches from  
IL  
external program memory and during accesses to external data memory that use 16-bit addresses  
(MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During  
accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents  
of the P2 special function register.  
P3.0–P3.7  
11,  
13–19  
5, 7–13  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written  
to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that  
are externally being pulled low will source current because of the pull-ups. (See DC Electrical  
Characteristics: I ). Port 3 also serves the special features of the P89C668, as listed below:  
IL  
11  
13  
14  
15  
16  
17  
18  
19  
5
7
I
O
I
RxD (P3.0): Serial input port  
TxD (P3.1): Serial output port  
8
INT0 (P3.2): External interrupt  
9
I
INT1 (P3.3): External interrupt  
10  
11  
12  
13  
I
CEX3/T0 (P3.4): Timer 0 external input; Capture/Compare External I/O for PCA module 3  
CEX4/T1 (P3.5): Timer 1 external input; Capture/Compare External I/O for PCA module 4  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
I
O
O
RST  
ALE  
10  
4
I
Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An  
internal diffused resistor to V permits a power-on reset using only an external capacitor to V  
.
SS  
CC  
33  
27  
O
Address Latch Enable: Output pulse for latching the low byte of the address during an access to  
external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator  
frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped  
during each access to external data memory. ALE can be disabled by setting SFR auxiliary.0.  
With this bit set, ALE will be active only during a MOVX instruction.  
PSEN  
32  
26  
O
Program Store Enable: The read strobe to external program memory. When executing code from  
the external program memory, PSEN is activated twice each machine cycle, except that two PSEN  
activations are skipped during each access to external data memory. PSEN is not activated during  
fetches from internal program memory.  
5
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
PIN NUMBER  
MNEMONIC  
NAME AND FUNCTION  
PLCC  
LQFP  
EA/V  
35  
29  
I
External Access Enable/Programming Supply Voltage: EA must be externally held low to  
enable the device to fetch code from external program memory locations. If EA is held high, the  
device executes from internal program memory. The value on the EA pin is latched when RST is  
released and any subsequent changes have no effect. Since the P89C668 has 64k internal  
memory, the P89C668 will execute only from internal memory when EA is held high. This pin also  
PP  
receives the programming supply voltage (V ) during Flash programming.  
PP  
XTAL1  
XTAL2  
NOTE:  
21  
20  
15  
14  
I
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.  
Crystal 2: Output from the inverting oscillator amplifier.  
O
To avoid “latch-up” effect at power-on, the voltage on any pin (other than V ) must not be higher than V + 0.5 V or less than V – 0.5 V.  
PP  
CC  
SS  
6
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
Table 1. Special Function Registers  
DIRECT  
ADDRESS MSB  
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION  
RESET  
VALUE  
SYMBOL  
DESCRIPTION  
LSB  
E0  
ACC*  
AUXR#  
AUXR1#  
B*  
Accumulator  
E0H  
8EH  
A2H  
F0H  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
00H  
EXTRAM  
Auxiliary  
AO  
xxxxxx10B  
xxxxxxx0B  
00H  
ENBOOT  
Auxiliary 1  
B register  
GF2  
F3  
0
DPS  
F0  
F7  
F6  
F5  
F4  
F2  
F1  
CCAP0H# Module 0 Capture High  
CCAP1H# Module 1 Capture High  
CCAP2H# Module 2 Capture High  
CCAP3H# Module 3 Capture High  
CCAP4H# Module 4 Capture High  
CCAP0L# Module 0 Capture Low  
CCAP1L# Module 1 Capture Low  
CCAP2L# Module 2 Capture Low  
CCAP3L# Module 3 Capture Low  
CCAP4L# Module 4 Capture Low  
FAH  
FBH  
FCH  
FDH  
FEH  
EAH  
EBH  
ECH  
EDH  
EEH  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
CCAPM0# Module 0 Mode  
CCAPM1# Module 1 Mode  
CCAPM2# Module 2 Mode  
CCAPM3# Module 3 Mode  
CCAPM4# Module 4 Mode  
C2H  
C3H  
C4H  
C5H  
C6H  
ECOM  
ECOM  
ECOM  
ECOM  
ECOM  
CAPP  
CAPP  
CAPP  
CAPP  
CAPP  
CAPN  
CAPN  
CAPN  
CAPN  
CAPN  
MAT  
MAT  
MAT  
MAT  
MAT  
TOG  
TOG  
TOG  
TOG  
TOG  
PWM  
PWM  
PWM  
PWM  
PWM  
ECCF  
ECCF  
ECCF  
ECCF  
ECCF  
x0000000B  
x0000000B  
x0000000B  
x0000000B  
x0000000B  
C7  
CF  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
CCON*#  
CH#  
CL#  
PCA Counter Control  
PCA Counter High  
PCA Counter Low  
C0H  
F9H  
E9H  
CR  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
00x00000B  
00H  
00H  
CMOD#  
PCA Counter Mode  
C1H  
CIDL  
WDTE  
CPS1  
CPS0  
ECF  
00xxx000B  
DPTR:  
DPH  
DPL  
Data Pointer (2 bytes)  
Data Pointer High  
Data Pointer Low  
83H  
82H  
00H  
00H  
AF  
EA  
AE  
EC  
AD  
ES1  
AC  
ES0  
AB  
ET1  
AA  
EX1  
A9  
ET0  
A8  
EX0  
ET2  
B8  
IEN0*  
IEN1*  
Interrupt Enable 0  
Interrupt Enable 1  
A8H  
E8  
00H  
xxxxxxx0B  
BF  
BE  
BD  
BC  
BB  
BA  
B9  
IP*  
Interrupt Priority  
B8H  
B7H  
PT2  
B7  
PPC  
B6  
PS1  
B5  
PS0  
B4  
PT1  
B3  
PX1  
B2  
PT0  
B1  
PX0  
B0  
x0000000B  
x0000000B  
IPH#  
Interrupt Priority High  
PT2H  
PPCH  
PS1H  
PS0H  
PT1H  
PX1H  
PT0H  
PX0H  
87  
AD7  
97  
86  
AD6  
96  
85  
AD5  
95  
84  
AD4  
94  
83  
AD3  
93  
82  
AD2  
92  
81  
AD1  
91  
80  
AD0  
90  
P0*  
P1*  
P2*  
P3*  
Port 0  
Port 1  
Port 2  
Port 3  
80H  
90H  
A0H  
B0H  
FFH  
FFH  
FFH  
FFH  
SDA  
A7  
SCL  
A6  
CEX2  
A5  
CEX1  
A4  
CEX0  
A3  
ECI  
A2  
T2EX  
A1  
T2  
A0  
AD15  
B7  
AD14  
B6  
AD13  
B5  
AD12  
B4  
AD11  
B3  
AD10  
B2  
AD9  
B1  
AD8  
B0  
RD  
WR  
T1/  
T0/  
INT1  
INT0  
TxD  
RxD  
CEX4  
CEX3  
1
PCON#  
Power Control  
87H  
SMOD1  
SMOD0  
POF  
GF1  
GF0  
PD  
IDL  
00xxx000B  
*
SFRs are bit addressable.  
#
SFRs are modified from or added to the 80C51 SFRs.  
Reserved bits.  
1. Reset value depends on reset source.  
2001 Jul 27  
7
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
Table 1. 89C51RC+/RD+ Special Function Registers (Continued)  
DIRECT  
ADDRESS MSB  
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION  
RESET  
VALUE  
SYMBOL  
DESCRIPTION  
LSB  
D7  
D6  
AC  
D5  
F0  
D4  
D3  
D2  
D1  
F1  
D0  
P
PSW*  
Program Status Word  
D0H  
CY  
RS1  
RS0  
OV  
00000000B  
RCAP2H#  
RCAP2L#  
Timer 2 Capture High  
Timer 2 Capture Low  
CBH  
CAH  
00H  
00H  
SADDR#  
SADEN#  
Slave Address  
Slave Address Mask  
A9H  
B9H  
00H  
00H  
S0BUF  
Serial Data Buffer  
99H  
xxxxxxxxB  
9F  
9E  
9D  
9C  
9B  
9A  
99  
TI  
98  
RI  
SM0/FE  
S0CON*  
SP  
Serial Control  
98H  
81H  
SM1  
SM2  
REN  
TB8  
RB8  
00H  
Stack Pointer  
07H  
S1DAT#  
S1IST  
Serial 1 Data  
DAH  
DCH  
DBH  
00H  
Serial 1 Internal Status  
Serial 1 Address  
xxxxxxxx  
00H  
S1ADR#  
SLAVE ADDRESS  
GC  
S1STA#  
S1CON*#  
TCON*  
Serial 1 Status  
Serial 1 Control  
Timer Control  
D9H  
D8H  
88H  
SC4  
DF  
SC3  
DE  
SC2  
SC1  
DC  
SC0  
0
0
0
F8H  
DD  
STA  
8D  
DB  
SI  
DA  
AA  
8A  
IT1  
D9  
D8  
CR2  
8F  
ENS1  
8E  
STO  
8C  
CR1  
89  
CR0  
88  
00000000B  
00H  
8B  
IE1  
TF1  
TR1  
TF0  
TR0  
IE0  
IT0  
CF  
TF2  
CE  
EXF2  
CD  
RCLK  
CC  
TCLK  
CB  
EXEN2  
CA  
TR2  
C9  
C8  
T2CON*  
T2MOD#  
Timer 2 Control  
C8H  
C9H  
C/T2  
T2OE  
CP/RL2 00H  
DCEN xxxxxx00B  
Timer 2 Mode Control  
TH0  
TH1  
TH2#  
TL0  
TL1  
TL2#  
Timer High 0  
Timer High 1  
Timer High 2  
Timer Low 0  
Timer Low 1  
Timer Low 2  
8CH  
8DH  
CDH  
8AH  
8BH  
CCH  
00H  
00H  
00H  
00H  
00H  
00H  
TMOD  
Timer Mode  
89H  
A6H  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
00H  
WDTRST  
Watchdog Timer Reset  
*
SFRs are bit addressable.  
#
SFRs are modified from or added to the 80C51 SFRs.  
Reserved bits.  
OSCILLATOR CHARACTERISTICS  
RESET  
XTAL1 and XTAL2 are the input and output, respectively, of an  
inverting amplifier. The pins can be configured for use as an  
on-chip oscillator.  
A reset is accomplished by holding the RST pin high for at least two  
machine cycles (12 oscillator periods), while the oscillator is running.  
To insure a good power-on reset, the RST pin must be high long  
enough to allow the oscillator time to start up (normally a few  
milliseconds) plus two machine cycles. At power-on, the voltage on  
To drive the device from an external clock source, XTAL1 should be  
driven while XTAL2 is left unconnected. Minimum and maximum  
high and low times specified in the data sheet must be observed.  
V
CC  
and RST must come up at the same time for a proper start-up.  
Ports 1, 2, and 3 will asynchronously be driven to their reset  
condition when a voltage above V (min.) is applied to RESET.  
IH1  
The value on the EA pin is latched when RST is deasserted and has  
no further effect.  
8
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
LOW POWER MODES  
Design Consideration  
When the idle mode is terminated by a hardware reset, the device  
normally resumes program execution, from where it left off, up to  
two machine cycles before the internal reset algorithm takes  
control. On-chip hardware inhibits access to internal RAM in this  
event, but access to the port pins is not inhibited. To eliminate the  
possibility of an unexpected write when Idle is terminated by reset,  
the instruction following the one that invokes Idle should not be  
one that writes to a port pin or to external memory.  
Stop Clock Mode  
The static design enables the clock speed to be reduced down to  
0 MHz (stopped). When the oscillator is stopped, the RAM and  
Special Function Registers retain their values. This mode allows  
step-by-step utilization and permits reduced system power  
consumption by lowering the clock frequency down to any value. For  
lowest power consumption the Power Down mode is suggested.  
Idle Mode  
ONCE Mode  
In the idle mode (see Table 2), the CPU puts itself to sleep while all  
of the on-chip peripherals stay active. The instruction to invoke the  
idle mode is the last instruction executed in the normal operating  
mode before the idle mode is activated. The CPU contents, the  
on-chip RAM, and all of the special function registers remain intact  
during this mode. The idle mode can be terminated either by any  
enabled interrupt (at which time the process is picked up at the  
interrupt service routine and continued), or by a hardware reset  
which starts the processor in the same manner as a power-on reset.  
The ONCE (“On-Circuit Emulation”) Mode facilitates testing and  
debugging of systems without the device having to be removed from  
the circuit. The ONCE Mode is invoked by:  
1. Pull ALE low while the device is in reset and PSEN is high;  
2. Hold ALE low as RST is deactivated.  
While the device is in ONCE Mode, the Port 0 pins go into a float  
state, and the other port pins and ALE and PSEN are weakly pulled  
high. The oscillator circuit remains active. While the device is in this  
mode, an emulator or test CPU can be used to drive the circuit.  
Normal operation is restored when a normal reset is applied.  
Power-Down Mode  
To save even more power, a Power Down mode (see Table 2) can  
be invoked by software. In this mode, the oscillator is stopped and  
the instruction that invoked Power Down is the last instruction  
executed. The on-chip RAM and Special Function Registers retain  
Programmable Clock-Out  
A 50% duty cycle clock can be programmed to come out on P1.0.  
This pin, besides being a regular I/O pin, has two alternate  
functions. It can be programmed:  
their values down to 2.0 V and care must be taken to return V to  
CC  
the minimum specified operating voltages before the Power Down  
Mode is terminated.  
1. to input the external clock for Timer/Counter 2, or  
2. to output a 50% duty cycle clock ranging from 122 Hz to 8 MHz  
at a 16 MHz operating frequency.  
Either a hardware reset or external interrupt can be used to exit from  
Power Down. Reset redefines all the SFRs but does not change the  
on-chip RAM. An external interrupt allows both the SFRs and the  
on-chip RAM to retain their values.  
To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in  
T2CON) must be cleared and bit T20E in T2MOD must be set. Bit  
TR2 (T2CON.2) also must be set to start the timer.  
To properly terminate Power Down the reset or external interrupt  
The Clock-Out frequency depends on the oscillator frequency and  
the reload value of Timer 2 capture registers (RCAP2H, RCAP2L)  
as shown in this equation:  
should not be executed before V is restored to its normal  
CC  
operating level and must be held active long enough for the  
oscillator to restart and stabilize (normally less than 10ms).  
Oscillator Frequency  
With an external interrupt, INT0 and INT1 must be enabled and  
configured as level-sensitive. Holding the pin low restarts the oscillator  
but bringing the pin back high completes the exit. Once the interrupt  
is serviced, the next instruction to be executed after RETI will be the  
one following the instruction that put the device into Power Down.  
2   (65536 * RCAP2H, RCAP2L)  
Where (RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L  
taken as a 16-bit unsigned integer.  
In the Clock-Out mode Timer 2 roll-overs will not generate an  
interrupt. This is similar to when it is used as a baud-rate generator.  
It is possible to use Timer 2 as a baud-rate generator and a clock  
generator simultaneously. Note, however, that the baud-rate and the  
Clock-Out frequency will be the same.  
POWER OFF FLAG  
The Power Off Flag (POF) is set by on-chip circuitry when the V  
CC  
level on the P89C668 rises from 0 V to 5 V. The POF bit can be set  
or cleared by software allowing a user to determine if the reset is  
the result of a power-on or a warm start after powerdown. The V  
CC  
level must remain above 3 V for the POF to remain unaffected by  
the V level.  
CC  
Table 2. External Pin Status During Idle and Power-Down Mode  
MODE  
PROGRAM MEMORY  
Internal  
ALE  
PSEN  
PORT 0  
Data  
PORT 1  
Data  
PORT 2  
Data  
PORT 3  
Data  
Idle  
Idle  
1
1
0
0
1
1
0
0
External  
Float  
Data  
Address  
Data  
Data  
Power-down  
Power-down  
Internal  
Data  
Data  
Data  
External  
Float  
Data  
Data  
Data  
9
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
2
2
Note that in both the P89C668 and the 8XC552 the I C pins are  
I C SERIAL COMMUNICATION — SIO1  
2
2
alternate functions to port pins P1.6 and P1.7. Because of this,  
P1.6 and P1.7 on these parts do not have a pull-up structure as  
found on the 80C51. Therefore P1.6 and P1.7 have open drain  
outputs on the P89C668.  
The I C serial port is identical to the I C serial port on the 8XC552,  
8XC654, and 8XC652 devices. The operation of this subsystem is  
described in detail in the 8XC552 section of this manual.  
Serial Control Register (S1CON) – See Table 3  
S1CON (D8H)  
CR2  
ENS1  
STA  
STO  
SI  
AA  
CR1  
CR0  
Bits CR0, CR1 and CR2 determine the serial clock frequency that is generated in the master mode of operation.  
Table 3.  
Serial Clock Rates  
BIT FREQUENCY (kHz) AT f  
OSC  
2
2
CR2  
CR1  
CR0  
3 MHz  
6 MHz  
8 MHz  
12 MHz  
15 MHz  
f
DIVIDED BY  
OSC  
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
23  
27  
31  
37  
6.25  
50  
47  
54  
63  
62.5  
71  
83.3  
100  
17  
94  
107  
125  
150  
25  
200  
400  
117  
128  
112  
96  
80  
480  
60  
1
1
134  
1
1
156  
1
1
75  
188  
12.5  
100  
200  
31  
1
1
1
133  
250  
1
1
1
100  
0.24 < 62.5  
0 < 255  
267  
500  
30  
0.49 < 62.5  
0 < 254  
0.65 < 55.6  
0 < 253  
0.98 < 50.0  
0 < 251  
1.22 < 52.1  
0 < 250  
48 × (256 – (reload value Timer 1))  
Reload value Timer 1 in Mode 2.  
NOTES:  
2
2
1. These frequencies exceed the upper limit of 100 kHz of the I C-bus specification and cannot be used in an I C-bus application.  
2
2. At f  
= 12 MHz/15 MHz the maximum I C bus rate of 100 kHz cannot be realized due to the fixed divider rates.  
OSC  
10  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
Figure 3). When reset is applied the DCEN=0 which means Timer 2  
will default to counting up. If DCEN bit is set, Timer 2 can count up  
or down depending on the value of the T2EX pin.  
TIMER 2 OPERATION  
Timer 2  
Timer 2 is a 16-bit Timer/Counter which can operate as either an  
event timer or an event counter, as selected by C/T2* in the special  
function register T2CON (see Figure 1). Timer 2 has three operating  
modes: Capture, Auto-reload (up or down counting), and Baud Rate  
Generator, which are selected by bits in the T2CON as shown in  
Table 4.  
Figure 4 shows Timer 2 which will count up automatically since  
DCEN=0. In this mode there are two options selected by bit EXEN2  
in T2CON register. If EXEN2=0, then Timer 2 counts up to 0FFFFH  
and sets the TF2 (Overflow Flag) bit upon overflow. This causes the  
Timer 2 registers to be reloaded with the 16-bit value in RCAP2L  
and RCAP2H. The values in RCAP2L and RCAP2H are preset by  
software means.  
Capture Mode  
In the capture mode there are two options which are selected by bit  
EXEN2 in T2CON. If EXEN2=0, then timer 2 is a 16-bit timer or  
counter (as selected by C/T2* in T2CON) which, upon overflowing  
sets bit TF2, the timer 2 overflow bit. This bit can be used to  
generate an interrupt (by enabling the Timer 2 interrupt bit in the  
IE register). If EXEN2= 1, Timer 2 operates as described above, but  
with the added feature that a 1- to -0 transition at external input  
T2EX causes the current value in the Timer 2 registers, TL2 and  
TH2, to be captured into registers RCAP2L and RCAP2H,  
respectively. In addition, the transition at T2EX causes bit EXF2 in  
T2CON to be set, and EXF2 like TF2 can generate an interrupt  
(which vectors to the same location as Timer 2 overflow interrupt.  
The Timer 2 interrupt service routine can interrogate TF2 and EXF2  
to determine which event caused the interrupt). The capture mode is  
illustrated in Figure 2 (There is no reload value for TL2 and TH2 in  
this mode. Even when a capture event occurs from T2EX, the  
counter keeps on counting T2EX pin transitions or osc/12 pulses.).  
If EXEN2=1, then a 16-bit reload can be triggered either by an  
overflow or by a 1-to-0 transition at input T2EX. This transition also  
sets the EXF2 bit. The Timer 2 interrupt, if enabled, can be  
generated when either TF2 or EXF2 are 1.  
In Figure 5 DCEN=1 which enables Timer 2 to count up or down.  
This mode allows pin T2EX to control the direction of count. When a  
logic 1 is applied at pin T2EX Timer 2 will count up. Timer 2 will  
overflow at 0FFFFH and set the TF2 flag, which can then generate  
an interrupt, if the interrupt is enabled. This timer overflow also  
causes the 16-bit value in RCAP2L and RCAP2H to be reloaded  
into the timer registers TL2 and TH2.  
When a logic 0 is applied at pin T2EX this causes Timer 2 to count  
down. The timer will underflow when TL2 and TH2 become equal to  
the value stored in RCAP2L and RCAP2H. Timer 2 underflow sets  
the TF2 flag and causes 0FFFFH to be reloaded into the timer  
registers TL2 and TH2.  
Auto-Reload Mode (Up or Down Counter)  
The external flag EXF2 toggles when Timer 2 underflows or overflows.  
This EXF2 bit can be used as a 17th bit of resolution if needed. The  
EXF2 flag does not generate an interrupt in this mode of operation.  
In the 16-bit auto-reload mode, Timer 2 can be configured (as either  
a timer or counter [C/T2* in T2CON]) then programmed to count up  
or down. The counting direction is determined by bit DCEN (Down  
Counter Enable) which is located in the T2MOD register (see  
(MSB)  
(LSB)  
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2  
CP/RL2  
Symbol  
Position  
Name and Significance  
TF2  
T2CON.7  
T2CON.6  
Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set  
when either RCLK or TCLK = 1.  
EXF2  
Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and  
EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2  
interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down  
counter mode (DCEN = 1).  
RCLK  
TCLK  
T2CON.5  
T2CON.4  
T2CON.3  
Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock  
in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.  
Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock  
in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.  
EXEN2  
Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative  
transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to  
ignore events at T2EX.  
TR2  
T2CON.2  
T2CON.1  
Start/stop control for Timer 2. A logic 1 starts the timer.  
C/T2  
Timer or counter select. (Timer 2)  
0 = Internal timer (OSC/6)  
1 = External event counter (falling edge triggered).  
CP/RL2  
T2CON.0  
Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When  
cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when  
EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload  
on Timer 2 overflow.  
SU01209  
Figure 1. Timer/Counter 2 (T2CON) Control Register  
11  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
Table 4. Timer 2 Operating Modes  
RCLK + TCLK  
CP/RL2  
TR2  
1
MODE  
0
0
1
X
0
1
16-bit Auto-reload  
16-bit Capture  
Baud rate generator  
(off)  
1
X
X
1
0
OSC  
÷ 6  
C/T2 = 0  
TL2  
(8-bits)  
TH2  
(8-bits)  
TF2  
C/T2 = 1  
T2 Pin  
Control  
TR2  
Capture  
Transition  
Detector  
Timer 2  
Interrupt  
RCAP2L  
RCAP2H  
T2EX Pin  
EXF2  
Control  
EXEN2  
SU01210  
Figure 2. Timer 2 in Capture Mode  
T2MOD  
Symbol  
Address = 0C9H  
Not Bit Addressable  
Reset Value = XXXX XX00B  
6
5
4
3
2
T2OE  
1
DCEN  
0
Bit  
7
Function  
Not implemented, reserved for future use.*  
Timer 2 Output Enable bit.  
T2OE  
DCEN  
Down Count Enable bit. When set, this allows Timer 2 to be configured as an up/down counter.  
*
User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features.  
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is  
indeterminate.  
SU00729  
Figure 3. Timer 2 Mode (T2MOD) Control Register  
12  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
OSC  
÷ 6  
C/T2 = 0  
C/T2 = 1  
TL2  
(8-BITS)  
TH2  
(8-BITS)  
T2 PIN  
CONTROL  
TR2  
RELOAD  
TRANSITION  
DETECTOR  
RCAP2L  
RCAP2H  
TF2  
TIMER 2  
INTERRUPT  
T2EX PIN  
EXF2  
CONTROL  
EXEN2  
SU01211  
Figure 4. Timer 2 in Auto-Reload Mode (DCEN = 0)  
(DOWN COUNTING RELOAD VALUE)  
FFH  
FFH  
TOGGLE  
EXF2  
OSC  
÷6  
C/T2 = 0  
C/T2 = 1  
OVERFLOW  
TL2  
TH2  
TF2  
INTERRUPT  
T2 PIN  
CONTROL  
TR2  
COUNT  
DIRECTION  
1 = UP  
0 = DOWN  
RCAP2L  
RCAP2H  
(UP COUNTING RELOAD VALUE)  
T2EX PIN  
SU01212  
Figure 5. Timer 2 Auto Reload Mode (DCEN = 1)  
13  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
Timer 1  
Overflow  
÷ 2  
“0”  
“1”  
OSC  
C/T2 = 0  
SMOD  
RCLK  
“1”  
“0”  
TL2  
(8-bits)  
TH2  
(8-bits)  
C/T2 = 1  
T2 Pin  
Control  
RX Clock  
÷ 16  
“1”  
“0”  
TR2  
Reload  
TCLK  
Transition  
Detector  
RCAP2L  
RCAP2H  
TX Clock  
÷ 16  
Timer 2  
Interrupt  
T2EX Pin  
EXF2  
Control  
EXEN2  
Note availability of additional external interrupt.  
SU01213  
Figure 6. Timer 2 in Baud Rate Generator Mode  
Timer 2 Overflow Rate  
16  
Table 5. Timer 2 Generated Commonly Used  
Baud Rates  
Modes 1 and 3 Baud Rates +  
The timer can be configured for either “timer” or “counter” operation.  
In many applications, it is configured for “timer” operation (C/T2*=0).  
Timer operation is different for Timer 2 when it is being used as a  
baud rate generator.  
Timer 2  
Baud Rate  
Osc Freq  
RCAP2H  
RCAP2L  
750 k  
19.2 k  
5.6 k  
4.8 k  
2.4 k  
600  
220  
600  
220  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
6 MHz  
FF  
FF  
FF  
FF  
FE  
FB  
F2  
FD  
F9  
FF  
D9  
B2  
64  
C8  
1E  
AF  
8F  
57  
Usually, as a timer it would increment every machine cycle (i.e.,  
/ the oscillator frequency). As a baud rate generator, it increments  
at the oscillator frequency. Thus the baud rate formula is as follows:  
1
6
Modes 1 and 3 Baud Rates =  
Oscillator Frequency  
[16   [65536 * (RCAP2H, RCAP2L)]]  
Where: (RCAP2H, RCAP2L)= The content of RCAP2H and  
RCAP2L taken as a 16-bit unsigned integer.  
6 MHz  
The Timer 2 as a baud rate generator mode shown in Figure 6, is  
valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a  
rollover in TH2 does not set TF2, and will not generate an interrupt.  
Thus, the Timer 2 interrupt does not have to be disabled when  
Timer 2 is in the baud rate generator mode. Also if the EXEN2  
(T2 external enable flag) is set, a 1-to-0 transition in T2EX  
(Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but  
will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2).  
Therefore when Timer 2 is in use as a baud rate generator, T2EX  
can be used as an additional external interrupt, if needed.  
Baud Rate Generator Mode  
Bits TCLK and/or RCLK in T2CON (Table 5) allow the serial port  
transmit and receive baud rates to be derived from either Timer 1 or  
Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit  
baud rate generator. When TCLK= 1, Timer 2 is used as the serial  
port transmit baud rate generator. RCLK has the same effect for the  
serial port receive baud rate. With these two bits, the serial port can  
have different receive and transmit baud rates – one generated by  
Timer 1, the other by Timer 2.  
Figure 6 shows the Timer 2 in baud rate generation mode. The baud  
rate generation mode is like the auto-reload mode,in that a rollover in  
TH2 causes the Timer 2 registers to be reloaded with the 16-bit value  
in registers RCAP2H and RCAP2L, which are preset by software.  
When Timer 2 is in the baud rate generator mode, one should not try  
to read or write TH2 and TL2. As a baud rate generator, Timer 2 is  
incremented every state time (osc/2) or asynchronously from pin T2;  
under these conditions, a read or write of TH2 or TL2 may not be  
accurate. The RCAP2 registers may be read, but should not be  
The baud rates in modes 1 and 3 are determined by Timer 2’s  
overflow rate given below:  
14  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
written to, because a write might overlap a reload and cause write  
and/or reload errors. The timer should be turned off (clear TR2)  
before accessing the Timer 2 or RCAP2 registers.  
Where f  
= Oscillator Frequency  
OSC  
To obtain the reload value for RCAP2H and RCAP2L, the above  
equation can be rewritten as:  
Table 5 shows commonly used baud rates and how they can be  
obtained from Timer 2.  
fOSC  
RCAP2H, RCAP2L + 65536 * ǒ  
Ǔ
32   Baud Rate  
Summary Of Baud Rate Equations  
Timer 2 is in baud rate generating mode. If Timer 2 is being clocked  
through pin T2(P1.0) the baud rate is:  
Timer/Counter 2 Set-up  
Except for the baud rate generator mode, the values given for T2CON  
do not include the setting of the TR2 bit. Therefore, bit TR2 must be  
set, separately, to turn the timer on. see Table 6 for set-up of Timer 2  
as a timer. Also see Table 7 for set-up of Timer 2 as a counter.  
Timer 2 Overflow Rate  
Baud Rate +  
16  
If Timer 2 is being clocked internally , the baud rate is:  
fOSC  
Baud Rate +  
[16   [65536 * (RCAP2H, RCAP2L)]]  
Table 6. Timer 2 as a Timer  
T2CON  
MODE  
INTERNAL CONTROL  
(Note 1)  
EXTERNAL CONTROL  
(Note 2)  
16-bit Auto-Reload  
00H  
01H  
34H  
24H  
14H  
08H  
09H  
36H  
26H  
16H  
16-bit Capture  
Baud rate generator receive and transmit same baud rate  
Receive only  
Transmit only  
Table 7. Timer 2 as a Counter  
TMOD  
MODE  
INTERNAL CONTROL  
(Note 1)  
EXTERNAL CONTROL  
(Note 2)  
16-bit  
02H  
03H  
0AH  
0BH  
Auto-Reload  
NOTES:  
1. Capture/reload occurs only on timer/counter overflow.  
2. Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate  
generator mode.  
15  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
Slave 1  
SADDR  
SADEN  
Given  
=
=
=
1100 0000  
1111 1110  
1100 000X  
Enhanced UART  
The UART operates in all of the usual modes that are described in  
the first section of Data Handbook IC20, 80C51-Based 8-Bit  
Microcontrollers. In addition the UART can perform framing error  
detect by looking for missing stop bits, and automatic address  
recognition. The UART also fully supports multiprocessor  
communication as does the standard 80C51 UART.  
In the above example SADDR is the same and the SADEN data is  
used to differentiate between the two slaves. Slave 0 requires a 0 in  
bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is  
ignored. A unique address for Slave 0 would be 1100 0010 since  
slave 1 requires a 0 in bit 1. A unique address for slave 1 would be  
1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be  
selected at the same time by an address which has bit 0 = 0 (for  
slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed  
with 1100 0000.  
When used for framing error detect the UART looks for missing stop  
bits in the communication. A missing bit will set the FE bit in the  
S0CON register. The FE bit shares the S0CON.7 bit with SM0 and  
the function of S0CON.7 is determined by PCON.6 (SMOD0) (see  
Figure 7). If SMOD0 is set then S0CON.7 functions as FE.  
S0CON.7 functions as SM0 when SMOD0 is cleared. When used as  
FE S0CON.7 can only be cleared by software. Refer to Figure 8.  
In a more complex system the following could be used to select  
slaves 1 and 2 while excluding slave 0:  
Automatic Address Recognition  
Slave 0  
Slave 1  
Slave 2  
SADDR  
SADEN  
Given  
=
=
=
1100 0000  
1111 1001  
1100 0XX0  
Automatic Address Recognition is a feature which allows the UART  
to recognize certain addresses in the serial bit stream by using  
hardware to make the comparisons. This feature saves a great deal  
of software overhead by eliminating the need for the software to  
examine every serial address which passes by the serial port. This  
feature is enabled by setting the SM2 bit in S0CON. In the 9 bit  
UART modes, mode 2 and mode 3, the Receive Interrupt flag (RI)  
will be automatically set when the received byte contains either the  
“Given” address or the “Broadcast” address. The 9 bit mode  
requires that the 9th information bit is a 1 to indicate that the  
received information is an address and not data. Automatic address  
recognition is shown in Figure 9.  
SADDR  
SADEN  
Given  
=
=
=
1110 0000  
1111 1010  
1110 0X0X  
SADDR  
SADEN  
Given  
=
=
=
1110 0000  
1111 1100  
1110 00XX  
In the above example the differentiation among the 3 slaves is in the  
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be  
uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and  
it can be uniquely addressed by 1110 and 0101. Slave 2 requires  
that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0  
and 1 and exclude Slave 2 use address 1110 0100, since it is  
necessary to make bit 2 = 1 to exclude slave 2.  
The 8 bit mode is called Mode 1. In this mode the RI flag will be set  
if SM2 is enabled and the information received has a valid stop bit  
following the 8 address bits and the information is either a Given or  
Broadcast address.  
Mode 0 is the Shift Register mode and SM2 is ignored.  
The Broadcast Address for each slave is created by taking the  
logical OR of SADDR and SADEN. Zeros in this result are trended  
as don’t-cares. In most cases, interpreting the don’t-cares as ones,  
the broadcast address will be FF hexadecimal.  
Using the Automatic Address Recognition feature allows a master to  
selectively communicate with one or more slaves by invoking the  
Given slave address or addresses. All of the slaves may be  
contacted by using the Broadcast address. Two special Function  
Registers are used to define the slave’s address, SADDR, and the  
address mask, SADEN. SADEN is used to define which bits in the  
SADDR are to b used and which bits are “don’t care”. The SADEN  
mask can be logically ANDed with the SADDR to create the “Given”  
address which the master will use for addressing each of the slaves.  
Use of the Given address allows multiple slaves to be recognized  
while excluding others. The following examples will help to show the  
versatility of this scheme:  
Upon reset SADDR (SFR address 0A9H) and SADEN (SFR  
address 0B9H) are leaded with 0s. This produces a given address  
of all “don’t cares” as well as a Broadcast address of all “don’t  
cares”. This effectively disables the Automatic Addressing mode and  
allows the microcontroller to use standard 80C51 type UART drivers  
which do not make use of this feature.  
Slave 0  
SADDR  
SADEN  
Given  
=
=
=
1100 0000  
1111 1101  
1100 00X0  
16  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
S0CON Address = 98H  
Reset Value = 0000 0000B  
Bit Addressable  
SM0/FE  
SM1  
SM2  
REN  
TB8  
RB8  
Tl  
Rl  
Bit:  
7
6
5
4
3
2
1
0
(SMOD0 = 0/1)*  
Symbol  
FE  
Function  
Framing Error bit. This bit is set by the receiver when an invalid stop bit is detected. The FE bit is not cleared by valid  
frames but should be cleared by software. The SMOD0 bit must be set to enable access to the FE bit.  
SM0  
SM1  
Serial Port Mode Bit 0, (SMOD0 must = 0 to access bit SM0)  
Serial Port Mode Bit 1  
SM0  
SM1  
Mode  
Description  
Baud Rate**  
f /6  
OSC  
0
0
1
1
0
1
0
1
0
1
2
3
shift register  
8-bit UART  
9-bit UART  
9-bit UART  
variable  
/32 or f  
f
/16  
OSC  
OSC  
variable  
SM2  
Enables the Automatic Address Recognition feature in Modes 2 or 3. If SM2 = 1 then Rl will not be set unless the  
received 9th data bit (RB8) is 1, indicating an address, and the received byte is a Given or Broadcast Address.  
In Mode 1, if SM2 = 1 then Rl will not be activated unless a valid stop bit was received, and the received byte is a  
Given or Broadcast Address. In Mode 0, SM2 should be 0.  
REN  
TB8  
RB8  
Enables serial reception. Set by software to enable reception. Clear by software to disable reception.  
The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired.  
In modes 2 and 3, the 9th data bit that was received. In Mode 1, if SM2 = 0, RB8 is the stop bit that was received.  
In Mode 0, RB8 is not used.  
Tl  
Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the  
other modes, in any serial transmission. Must be cleared by software.  
Rl  
Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or halfway through the stop bit time in  
the other modes, in any serial reception (except see SM2). Must be cleared by software.  
NOTE:  
*SMOD0 is located at PCON6.  
**f = oscillator frequency  
OSC  
SU01457  
Figure 7. S0CON: Serial Port Control Register  
17  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
START  
BIT  
DATA BYTE  
ONLY IN  
MODE 2, 3  
STOP  
BIT  
SET FE BIT IF STOP BIT IS 0 (FRAMING ERROR)  
SM0 TO UART MODE CONTROL  
S0CON  
(98H)  
SM0 / FE  
SMOD1  
SM1  
SM2  
REN  
POF  
TB8  
LVF  
RB8  
GF0  
TI  
RI  
PCON  
(87H)  
SMOD0  
GF1  
IDL  
0 : S0CON.7 = SM0  
1 : S0CON.7 = FE  
SU01458  
Figure 8. UART Framing Error Detection  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
S0CON  
(98H)  
SM0  
SM1  
SM2  
REN  
1
TB8  
X
RB8  
TI  
RI  
1
1
1
0
1
RECEIVED ADDRESS D0 TO D7  
PROGRAMMED ADDRESS  
COMPARATOR  
IN UART MODE 2 OR MODE 3 AND SM2 = 1:  
INTERRUPT IF REN=1, RB8=1 AND “RECEIVED ADDRESS” = “PROGRAMMED ADDRESS”  
– WHEN OWN ADDRESS RECEIVED, CLEAR SM2 TO RECEIVE DATA BYTES  
– WHEN ALL DATA BYTES HAVE BEEN RECEIVED: SET SM2 TO WAIT FOR NEXT ADDRESS.  
SU01459  
Figure 9. UART Multiprocessor Communication, Automatic Address Recognition  
18  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
The priority scheme for servicing the interrupts is the same as that  
for the 80C51, except there are four interrupt levels rather than two  
as on the 80C51. An interrupt will be serviced as long as an interrupt  
of equal or higher priority is not already being serviced. If an  
interrupt of equal or higher level priority is being serviced, the new  
interrupt will wait until it is finished before being serviced. If a lower  
priority level interrupt is being serviced, it will be stopped and the  
new interrupt serviced. When the new interrupt is finished, the lower  
priority level interrupt that was stopped will be completed.  
Interrupt Priority Structure  
The P89C668 has an 8 source four-level interrupt structure (see  
Table 8).  
There are 4 SFRs associated with the four-level interrupt. They are  
the IE, IEN1, IP, and IPH. (See Figures 10, 11, 12, and 13.) The IPH  
(Interrupt Priority High) register makes the four-level interrupt  
structure possible. The IPH is located at SFR address B7H. The  
structure of the IPH register and a description of its bits is shown in  
Figure 12.  
The function of the IPH SFR is simple and when combined with the  
IP SFR determines the priority of each interrupt. The priority of each  
interrupt is determined as shown in the following table:  
PRIORITY BITS  
INTERRUPT PRIORITY LEVEL  
IPH.x  
IP.x  
0
0
0
1
1
Level 0 (lowest priority)  
Level 1  
1
0
Level 2  
1
Level 3 (highest priority)  
Table 8.  
Interrupt Table  
SOURCE  
X0  
POLLING PRIORITY  
REQUEST BITS  
HARDWARE CLEAR?  
VECTOR ADDRESS  
1
2
1
2
3
4
5
6
7
8
IE0  
N (L) Y (T)  
03H  
2BH  
0BH  
13H  
1BH  
23H  
3BH  
33H  
2
SI01 (I C)  
T0  
N
TP0  
Y
X1  
IE1  
N (L) Y (T)  
T1  
TF1  
Y
N
N
N
SP  
RI, TI  
TF2, EXF2  
T2  
PCA  
CF, CCFn  
n = 0–4  
NOTES:  
1. L = Level activated  
2. T = Transition activated  
7
6
5
4
3
2
1
0
IEN0 (0A8H)  
EA  
EC  
ES1  
ES0  
ET1  
EX1  
ET0  
EX0  
Enable Bit = 1 enables the interrupt.  
Enable Bit = 0 disables it.  
BIT  
SYMBOL FUNCTION  
IEN0.7  
EA  
Global disable bit. If EA = 0, all interrupts are disabled. If EA = 1, each interrupt can be individually  
enabled or disabled by setting or clearing its enable bit.  
PCA interrupt enable bit  
IEN0.6  
IEN0.5  
IEN0.4  
IEN0.3  
IEN0.2  
IEN0.1  
IEN0.0  
EC  
2
ES1  
ES0  
ET1  
EX1  
ET0  
EX0  
I C interrupt enable bit.  
Serial Port interrupt enable bit.  
Timer 1 interrupt enable bit.  
External interrupt 1 enable bit.  
Timer 0 interrupt enable bit.  
External interrupt 0 enable bit.  
SU01460  
Figure 10. IE Registers  
19  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
7
6
5
4
3
2
1
0
IP (0B8H)  
PT2  
PPC  
PS1  
PS0  
PT1  
PX1  
PT0  
PX0  
Priority Bit = 1 assigns high priority  
Priority Bit = 0 assigns low priority  
BIT  
IP.7  
IP.6  
IP.5  
IP.4  
IP.3  
IP.2  
IP.1  
IP.0  
SYMBOL FUNCTION  
PT2  
PPC  
PS1  
PS0  
PT1  
PX1  
PT0  
PX0  
Timer 2 interrupt priority bit.  
PCA interrupt priority bit  
Serial I/O1 (I C) interrupt priority bit.  
Serial Port interrupt priority bit.  
Timer 1 interrupt priority bit.  
External interrupt 1 priority bit.  
Timer 0 interrupt priority bit.  
External interrupt 0 priority bit.  
2
SU01461  
Figure 11. IP Registers  
7
6
5
4
3
2
1
0
IPH (B7H)  
PT2H  
PPCH  
PS1H  
PS0H  
PT1H  
PX1H  
PT0H  
PX0H  
Priority Bit = 1 assigns higher priority  
Priority Bit = 0 assigns lower priority  
BIT  
SYMBOL FUNCTION  
IPH.7  
IPH.6  
IPH.5  
IPH.4  
IPH.3  
IPH.2  
IPH.1  
IPH.0  
PT2H  
PPCH  
PS1H  
PS0H  
PT1H  
PX1H  
PT0H  
PX0H  
Timer 2 interrupt priority bit high.  
PCA interrupt priority bit  
2
Serial I/O (I C) interrupt priority bit high.  
Serial Port interrupt priority bit high.  
Timer 1 interrupt priority bit high.  
External interrupt 1 priority bit high.  
Timer 0 interrupt priority bit high.  
External interrupt 0 priority bit high.  
SU01462  
Figure 12. IPH Registers  
7
6
5
4
3
2
1
0
IEN1 (E8H)  
ET2  
Priority Bit = 1 assigns higher priority  
Priority Bit = 0 assigns lower priority  
BIT  
SYMBOL FUNCTION  
IEN1.7  
IEN1.6  
IEN1.5  
IEN1.4  
IEN1.3  
IEN1.2  
IEN1.1  
IEN1.0  
ET2  
Timer 2 interrupt enable bit.  
SU01095  
Figure 13. IEN1 Registers  
20  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
be quickly toggled simply by executing an INC AUXR1 instruction  
without affecting the GF2 bit.  
Reduced EMI Mode  
The AO bit (AUXR.0) in the AUXR register when set disables the  
ALE output.  
The ENBOOT bit determines whether the BOOTROM is enabled or  
disabled. This bit will automatically be set if the status byte is  
non zero during reset or PSEN is pulled low, ALE floats high, and  
Reduced EMI Mode  
EA > V on the falling edge of reset. Otherwise, this bit will be  
cleared during reset.  
IH  
AUXR (8EH)  
7
6
5
4
3
2
1
0
EXTRAM  
AO  
AUXR.1  
AUXR.0  
EXTRAM  
AO  
DPS  
BIT0  
Turns off ALE output.  
AUXR1  
DPTR1  
DPTR0  
Dual DPTR  
DPH  
DPL  
The dual DPTR structure (see Figure 14) is a way by which the chip  
will specify the address of an external data memory location. There  
are two 16-bit DPTR registers that address the external memory,  
and a single bit called DPS = AUXR1/bit0 that allows the program  
code to switch between them.  
(83H)  
(82H)  
EXTERNAL  
DATA  
MEMORY  
SU00745A  
Figure 14.  
New Register Name: AUXR1#  
SFR Address: A2H  
DPTR Instructions  
Reset Value: xxxxxxx0B  
The instructions that refer to DPTR refer to the data pointer that is  
currently selected using the AUXR1/bit 0 register. The six  
instructions that use the DPTR are as follows:  
AUXR1 (A2H)  
7
6
5
4
3
2
0
1
0
INC DPTR  
Increments the data pointer by 1  
ENBOOT  
GF2  
DPS  
MOV DPTR, #data16 Loads the DPTR with a 16-bit constant  
Where:  
DPS = AUXR1/bit0 = Switches between DPTR0 and DPTR1.  
MOV A, @ A+DPTR  
MOVX A, @ DPTR  
Move code byte relative to DPTR to ACC  
Move external RAM (16-bit address) to  
ACC  
Select Reg  
DPS  
DPTR0  
DPTR1  
0
1
MOVX @ DPTR , A  
JMP @ A + DPTR  
Move ACC to external RAM (16-bit  
address)  
Jump indirect relative to DPTR  
The DPS bit status should be saved by software when switching  
between DPTR0 and DPTR1.  
The data pointer can be accessed on a byte-by-byte basis by  
specifying the low or high byte in an instruction which accesses the  
SFRs. See application note AN458 for more details.  
The GF2 bit is a general purpose user-defined flag. Note that bit 2 is  
not writable and is always read as a zero. This allows the DPS bit to  
21  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
ECF bit in the CMOD register is set, The CF bit can only be cleared  
by software. Bits 0 through 4 of the CCON register are the flags for  
the modules (bit 0 for module 0, bit 1 for module 1, etc.) and are set  
by hardware when either a match or a capture occurs. These flags  
also can only be cleared by software. The PCA interrupt system  
shown in Figure 17.  
Programmable Counter Array (PCA)  
The Programmable Counter Array available on the and P89C668 is  
a special 16-bit Timer that has five 16-bit capture/compare modules  
associated with it. Each of the modules can be programmed to  
operate in one of four modes: rising and/or falling edge capture,  
software timer, high-speed output, or pulse width modulator. Each  
module has a pin associated with it in port 1. Module 0 is connected  
to P1.3(CEX0), module 1 to P1.4(CEX1), etc. The basic PCA  
configuration is shown in Figure 15.  
Each module in the PCA has a special function register associated  
with it. These registers are: CCAPM0 for module 0, CCAPM1 for  
module 1, etc. (see Figure 20). The registers contain the bits that  
control the mode that each module will operate in. The ECCF bit  
(CCAPMn.0 where n=0, 1, 2, 3, or 4 depending on the module)  
enables the CCF flag in the CCON SFR to generate an interrupt  
when a match or compare occurs in the associated module. PWM  
(CCAPMn.1) enables the pulse width modulation mode. The TOG  
bit (CCAPMn.2) when set causes the CEX output associated with  
the module to toggle when there is a match between the PCA  
counter and the module’s capture/compare register. The match bit  
MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON  
register to be set when there is a match between the PCA counter  
and the module’s capture/compare register.  
The PCA timer is a common time base for all five modules and can  
be programmed to run at: 1/6 the oscillator frequency, 1/2 the  
oscillator frequency, the Timer 0 overflow, or the input on the ECI pin  
(P1.2). The timer count source is determined from the CPS1 and  
CPS0 bits in the CMOD SFR as follows (see Figure 18):  
CPS1 CPS0 PCA Timer Count Source  
0
0
1
1
0
1
0
1
1/6 oscillator frequency  
1/2 oscillator frequency  
Timer 0 overflow  
External Input at ECI pin  
In the CMOD SFR are three additional bits associated with the PCA.  
They are CIDL which allows the PCA to stop during idle mode,  
WDTE which enables or disables the watchdog function on  
module 4, and ECF which when set causes an interrupt and the  
PCA overflow flag CF (in the CCON SFR) to be set when the PCA  
timer overflows. These functions are shown in Figure 16.  
The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5)  
determine the edge that a capture input will be active on. The CAPN  
bit enables the negative edge, and the CAPP bit enables the positive  
edge. If both bits are set both edges will be enabled and a capture will  
occur for either transition. The last bit in the register ECOM  
(CCAPMn.6) when set enables the comparator function. Figure 21  
shows the CCAPMn settings for the various PCA functions.  
The watchdog timer function is implemented in module 4 (see  
Figure 25).  
There are two additional registers associated with each of the PCA  
modules. They are CCAPnH and CCAPnL and these are the  
registers that store the 16-bit count when a capture occurs or a  
compare should occur. When a module is used in the PWM mode  
these registers are used to control the duty cycle of the output.  
The CCON SFR contains the run control bit for the PCA and the  
flags for the PCA timer (CF) and each module (refer to Figure 19).  
To run the PCA the CR bit (CCON.6) must be set by software. The  
PCA is shut off by clearing this bit. The CF bit (CCON.7) is set when  
the PCA counter overflows and an interrupt will be generated if the  
16 BITS  
P1.3/CEX0  
P1.4/CEX1  
P1.5/CEX2  
P3.4/CEX3  
MODULE 0  
MODULE 1  
MODULE 2  
MODULE 3  
MODULE 4  
16 BITS  
PCA TIMER/COUNTER  
TIME BASE FOR PCA MODULES  
MODULE FUNCTIONS:  
16-BIT CAPTURE  
16-BIT TIMER  
P3.5/CEX4  
SU01416  
16-BIT HIGH SPEED OUTPUT  
8-BIT PWM  
WATCHDOG TIMER (MODULE 4 ONLY)  
Figure 15. Programmable Counter Array (PCA)  
22  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
TO PCA  
MODULES  
OSC/6  
OSC/2  
OVERFLOW  
INTERRUPT  
CH  
CL  
16–BIT UP COUNTER  
TIMER 0  
OVERFLOW  
EXTERNAL INPUT  
(P1.2/ECI)  
00  
01  
10  
11  
DECODE  
IDLE  
CMOD  
(C1H)  
CIDL  
CF  
WDTE  
––  
––  
––  
––  
CPS1  
CCF2  
CPS0  
ECF  
CCON  
(C0H)  
CR  
CCF4  
CCF3  
CCF1  
CCF0  
SU01096  
Figure 16. PCA Timer/Counter  
CCON  
(C0H)  
CF  
CR  
––  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
PCA TIMER/COUNTER  
MODULE 0  
IE.7  
EA  
IE.6  
EC  
TO  
MODULE 1  
MODULE 2  
INTERRUPT  
PRIORITY  
DECODER  
MODULE 3  
MODULE 4  
CCAPMn.0  
ECCFn  
CMOD.0  
ECF  
SU01097  
Figure 17. PCA Interrupt System  
23  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
CMOD Address = C1H  
Reset Value = 00XX X000B  
CIDL  
WDTE  
CPS1  
CPS0  
ECF  
Bit:  
Function  
7
6
5
4
3
2
1
0
Symbol  
CIDL  
Counter Idle control: CIDL = 0 programs the PCA Counter to continue functioning during idle Mode. CIDL = 1 programs  
it to be gated off during idle.  
WDTE  
Watchdog Timer Enable: WDTE = 0 disables Watchdog Timer function on PCA Module 4. WDTE = 1 enables it.  
Not implemented, reserved for future use.*  
CPS1  
CPS0  
PCA Count Pulse Select bit 1.  
PCA Count Pulse Select bit 0.  
CPS1  
CPS0  
Selected PCA Input**  
0
0
1
1
0
1
0
1
0
1
2
3
Internal clock, f  
÷ 6  
÷ 2  
OSC  
Internal clock, f  
OSC  
Timer 0 overflow  
External clock at ECI/P1.2 pin (max. rate = f  
÷ 4)  
OSC  
ECF  
PCA Enable Counter Overflow interrupt: ECF = 1 enables CF bit in CCON to generate an interrupt. ECF = 0 disables  
that function of CF.  
NOTE:  
*
User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the  
new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.  
**  
f
= oscillator frequency  
OSC  
SU01098  
Figure 18. CMOD: PCA Counter Mode Register  
CCON Address = 0C0H  
Reset Value = 00X0 0000B  
Bit Addressable  
CF  
CR  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
Bit:  
7
6
5
4
3
2
1
0
Symbol  
CF  
Function  
PCA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD is  
set. CF may be set by either hardware or software but can only be cleared by software.  
CR  
PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared by software to turn the PCA  
counter off.  
Not implemented, reserved for future use*.  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
PCA Module 4 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.  
PCA Module 3 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.  
PCA Module 2 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.  
PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.  
PCA Module 0 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.  
NOTE:  
*
User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the  
new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.  
SU01099  
Figure 19. CCON: PCA Counter Control Register  
24  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
CCAPMn Address  
CCAPM0  
CCAPM1  
CCAPM2  
CCAPM3  
CCAPM4  
0C2H  
0C3H  
0C4H  
0C5H  
0C6H  
Reset Value = X000 0000B  
Not Bit Addressable  
ECOMn CAPPn  
CAPNn  
MATn  
TOGn  
PWMn  
ECCFn  
Bit:  
7
6
5
4
3
2
1
0
Symbol  
Function  
Not implemented, reserved for future use*.  
ECOMn  
CAPPn  
CAPNn  
MATn  
Enable Comparator. ECOMn = 1 enables the comparator function.  
Capture Positive, CAPPn = 1 enables positive edge capture.  
Capture Negative, CAPNn = 1 enables negative edge capture.  
Match. When MATn = 1, a match of the PCA counter with this module’s compare/capture register causes the CCFn bit  
in CCON to be set, flagging an interrupt.  
TOGn  
Toggle. When TOGn = 1, a match of the PCA counter with this module’s compare/capture register causes the CEXn  
pin to toggle.  
PWMn  
ECCFn  
Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.  
Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate an interrupt.  
NOTE:  
*User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new  
bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.  
SU01100  
Figure 20. CCAPMn: PCA Modules Compare/Capture Registers  
X
X
X
X
X
X
X
X
ECOMn CAPPn CAPNn  
MATn  
TOGn  
PWMn  
ECCFn  
MODULE FUNCTION  
0
X
X
X
1
1
1
1
0
1
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
0
X
0
0
0
0
0
0
1
0
0
X
X
X
X
X
0
No operation  
16-bit capture by a positive-edge trigger on CEXn  
16-bit capture by a negative trigger on CEXn  
16-bit capture by a transition on CEXn  
16-bit Software Timer  
16-bit High Speed Output  
8-bit PWM  
X
Watchdog Timer  
Figure 21. PCA Module Modes (CCAPMn Register)  
PCA Capture Mode  
counter and the module’s capture registers. To activate this mode  
the TOG, MAT, and ECOM bits in the module’s CCAPMn SFR must  
be set (see Figure 24).  
To use one of the PCA modules in the capture mode either one or  
both of the CCAPM bits CAPN and CAPP for that module must be  
set. The external CEX input for the module (on port 1) is sampled for  
a transition. When a valid transition occurs the PCA hardware loads  
the value of the PCA counter registers (CH and CL) into the  
module’s capture registers (CCAPnL and CCAPnH). If the CCFn bit  
for the module in the CCON SFR and the ECCFn bit in the CCAPMn  
SFR are set then an interrupt will be generated. Refer to Figure 22.  
Pulse Width Modulator Mode  
All of the PCA modules can be used as PWM outputs. Figure 25  
shows the PWM function. The frequency of the output depends on  
the source for the PCA timer. All of the modules will have the same  
frequency of output because they all share the PCA timer. The duty  
cycle of each module is independently variable using the module’s  
capture register CCAPLn. When the value of the PCA CL SFR is  
less than the value in the module’s CCAPLn SFR the output will be  
low, when it is equal to or greater than the output will be high. When  
CL overflows from FF to 00, CCAPLn is reloaded with the value in  
CCAPHn. the allows updating the PWM without glitches. The PWM  
and ECOM bits in the module’s CCAPMn register must be set to  
enable the PWM mode.  
16-bit Software Timer Mode  
The PCA modules can be used as software timers by setting both  
the ECOM and MAT bits in the modules CCAPMn register. The PCA  
timer will be compared to the module’s capture registers and when a  
match occurs an interrupt will occur if the CCFn (CCON SFR) and  
the ECCFn (CCAPMn SFR) bits for the module are both set (see  
Figure 23).  
High Speed Output Mode  
In this mode the CEX output (on port 1) associated with the PCA  
module will toggle each time a match occurs between the PCA  
25  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
CCON  
(0C0H)  
CF  
CR  
––  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
PCA INTERRUPT  
PCA TIMER/COUNTER  
(TO CCFn)  
CH  
CL  
CAPTURE  
CEXn  
CCAPnH  
CCAPnL  
CCAPMn, n= 0 to 4  
(C2H – C6H)  
––  
ECOMn  
0
CAPPn  
CAPNn  
MATn  
0
TOGn  
0
PWMn  
ECCFn  
0
SU01101  
Figure 22. PCA Capture Mode  
CCON  
(C0H)  
CF  
CR  
––  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
WRITE TO  
CCAPnH  
RESET  
PCA INTERRUPT  
CCAPnH  
CCAPnL  
WRITE TO  
CCAPnL  
(TO CCFn)  
0
1
ENABLE  
MATCH  
16–BIT COMPARATOR  
CH  
CL  
PCA TIMER/COUNTER  
CCAPMn, n= 0 to 4  
(C2H – C6H)  
––  
ECOMn  
CAPPn  
0
CAPNn  
0
MATn  
TOGn  
0
PWMn  
0
ECCFn  
SU01102  
Figure 23. PCA Compare Mode  
26  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
CCON  
(C0H)  
CF  
CR  
––  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
WRITE TO  
CCAPnH  
RESET  
PCA INTERRUPT  
CCAPnH  
CCAPnL  
WRITE TO  
CCAPnL  
(TO CCFn)  
0
1
MATCH  
ENABLE  
16–BIT COMPARATOR  
TOGGLE  
CEXn  
CH  
CL  
PCA TIMER/COUNTER  
CCAPMn, n: 0..4  
(C2H – C6H)  
––  
ECOMn  
CAPPn  
0
CAPNn  
0
MATn  
TOGn  
PWMn  
0
ECCFn  
1
SU01103  
Figure 24. PCA High Speed Output Mode  
CCAPnH  
CCAPnL  
0
CL < CCAPnL  
ENABLE  
8–BIT  
CEXn  
COMPARATOR  
CL >= CCAPnL  
1
CL  
OVERFLOW  
PCA TIMER/COUNTER  
CCAPMn, n: 0..4  
(C2H – C6H)  
––  
ECOMn  
CAPPn  
0
CAPNn  
MATn  
0
TOGn  
0
PWMn  
ECCFn  
0
0
SU01104  
Figure 25. PCA PWM Mode  
27  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
CMOD  
(C1H)  
CIDL  
WDTE  
––  
––  
MODULE 4  
MATCH  
––  
CPS1  
CPS0  
ECF  
WRITE TO  
CCAP4L  
RESET  
CCAP4H  
CCAP4L  
WRITE TO  
CCAP4H  
1
0
ENABLE  
16–BIT COMPARATOR  
RESET  
CH  
CL  
PCA TIMER/COUNTER  
CCAPM4  
(C6H)  
––  
ECOMn  
CAPPn  
0
CAPNn  
0
MATn  
1
TOGn  
X
PWMn  
0
ECCFn  
X
SU01105  
Figure 26. PCA Watchdog Timer m(Module 4 only)  
PCA Watchdog Timer  
The first two options are more reliable because the watchdog  
timer is never disabled as in option #3. If the program counter ever  
goes astray, a match will eventually occur and cause an internal  
reset. The second option is also not recommended if other PCA  
modules are being used. Remember, the PCA timer is the time  
base for all modules; changing the time base for other modules  
would not be a good idea. Thus, in most applications the first  
solution is the best option.  
An on-board watchdog timer is available with the PCA to improve the  
reliability of the system without increasing chip count. Watchdog  
timers are useful for systems that are susceptible to noise, power  
glitches, or electrostatic discharge. Module 4 is the only PCA module  
that can be programmed as a watchdog. However, this module can  
still be used for other modes if the watchdog is not needed.  
Figure 26 shows a diagram of how the watchdog works. The user  
pre-loads a 16-bit value in the compare registers. Just like the other  
compare modes, this 16-bit value is compared to the PCA timer  
value. If a match is allowed to occur, an internal reset will be  
generated. This will not cause the RST pin to be driven high.  
Figure 27 shows the code for initializing the watchdog timer.  
Module 4 can be configured in either compare mode, and the WDTE  
bit in CMOD must also be set. The user’s software then must  
periodically change (CCAP4H,CCAP4L) to keep a match from  
occurring with the PCA timer (CH,CL). This code is given in the  
WATCHDOG routine in Figure 27.  
In order to hold off the reset, the user has three options:  
1. periodically change the compare value so it will never match the  
PCA timer,  
This routine should not be part of an interrupt service routine,  
because if the program counter goes astray and gets stuck in an  
infinite loop, interrupts will still be serviced and the watchdog will  
keep getting reset. Thus, the purpose of the watchdog would be  
2. periodically change the PCA timer value so it will never match  
the compare values, or  
3. disable the watchdog by clearing the WDTE bit before a match  
occurs and then re-enable it.  
defeated. Instead, call this subroutine from the main program within  
16  
2
count of the PCA timer.  
28  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
INIT_WATCHDOG:  
MOV CCAPM4, #4CH  
MOV CCAP4L, #0FFH  
MOV CCAP4H, #0FFH  
; Module 4 in compare mode  
; Write to low byte first  
; Before PCA timer counts up to  
; FFFF Hex, these compare values  
; must be changed  
ORL CMOD, #40H  
; Set the WDTE bit to enable the  
; watchdog timer without changing  
; the other bits in CMOD  
;
;********************************************************************  
;
; Main program goes here, but CALL WATCHDOG periodically.  
;
;********************************************************************  
;
WATCHDOG:  
CLR EA  
; Hold off interrupts  
MOV CCAP4L, #00  
MOV CCAP4H, CH  
SETB EA  
; Next compare value is within  
; 255 counts of the current PCA  
; timer value  
RET  
Figure 27. PCA Watchdog Timer Initialization Code  
29  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
For example:  
MOV @R0,#data  
Expanded Data RAM Addressing  
The P89C668 has internal data memory that is mapped into four  
separate segments: the lower 128 bytes of RAM, upper 128 bytes of  
RAM, 128 bytes Special Function Register (SFR), and 7936 bytes  
expanded RAM (ERAM).  
where R0 contains 0A0H, accesses the data byte at address 0A0H,  
rather than P2 (whose address is 0A0H).  
The ERAM can be accessed by indirect addressing, with EXTRAM  
bit cleared and MOVX instructions. This part of memory is physically  
located on-chip, logically occupies the first 7936-bytes of external  
data memory.  
The four segments are:  
1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are  
directly and indirectly addressable.  
2. The Upper 128 bytes of RAM (addresses 80H to FFH) are  
indirectly addressable only.  
With EXTRAM = 0, the ERAM is indirectly addressed, using the  
MOVX instruction in combination with any of the registers R0, R1 of  
the selected bank or DPTR. An access to ERAM will not affect ports  
P0, P3.6 (WR#) and P3.7 (RD#). P2 SFR is output during external  
addressing. For example, with EXTRAM = 0,  
3. The Special Function Registers, SFRs, (addresses 80H to FFH)  
are directly addressable only.  
4. The 7936-bytes expanded RAM (ERAM, 00H – 1EFFH) are  
indirectly accessed by move external instruction, MOVX, and  
with the EXTRAM bit cleared, see Figure 28.  
MOVX @R0,#data  
where R0 contains 0A0H, access the ERAM at address 0A0H rather  
than external memory. An access to external data memory locations  
higher than 7936 (i.e., 1F00H to FFFFH) will be performed with the  
MOVX DPTR instructions in the same way as in the standard  
80C51, so with P0 and P2 as data/address bus, and P3.6 and P3.7  
as write and read timing signals. Refer to Figure 29.  
The Lower 128 bytes can be accessed by either direct or indirect  
addressing. The Upper 128 bytes can be accessed by indirect  
addressing only. The Upper 128 bytes occupy the same address  
space as the SFR. That means they have the same address, but are  
physically separate from SFR space.  
With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar  
to the standard 80C51. MOVX @ Ri will provide an 8-bit address  
multiplexed with data on Port 0 and any output port pins can be  
used to output higher order address bits. This is to provide the  
external paging capability. MOVX @DPTR will generate a 16-bit  
address. Port 2 outputs the high-order eight address bits (the  
contents of DPH) while Port 0 multiplexes the low-order eight  
address bits (DPL) with data. MOVX @Ri and MOVX @DPTR will  
generate either read or write signals on P3.6 (WR) and P3.7 (RD).  
When an instruction accesses an internal location above address  
7FH, the CPU knows whether the access is to the upper 128 bytes  
of data RAM or to SFR space by the addressing mode used in the  
instruction. Instructions that use direct addressing access SFR  
space. For example:  
MOV 0A0H,#data  
accesses the SFR at location 0A0H (which is P2). Instructions that  
use indirect addressing access the Upper 128 bytes of data RAM.  
The stack pointer (SP) may be located anywhere in the 256 bytes  
RAM (lower and upper RAM) internal data memory. The stack may  
not be located in the ERAM.  
AUXR  
Address = 8EH  
Reset Value = xxxx xx10B  
Not Bit Addressable  
6
5
4
3
2
EXTRAM  
AO  
Bit:  
Function  
Disable/Enable ALE  
7
1
0
Symbol  
AO  
AO  
0
Operating Mode  
ALE is emitted at a constant rate of / the oscillator frequency.  
1
3
1
ALE is active only during a MOVX or MOVC instruction.  
EXTRAM  
Internal/External RAM (00H – 1EFFH) access using MOVX @Ri/@DPTR  
EXTRAM  
Operating Mode  
0
1
Internal ERAM (00H–1EFFH) access using MOVX @Ri/@DPTR  
External data memory access.  
Not implemented, reserved for future use*.  
NOTE:  
*User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new  
bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.  
SU01106  
Figure 28. AUXR: Auxiliary Register  
30  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
1FFF  
FF  
FF  
FFFF  
UPPER  
128 BYTES  
INTERNAL RAM  
SPECIAL  
FUNCTION  
REGISTER  
EXTERNAL  
DATA  
MEMORY  
80  
80  
ERAM  
7936 BYTES  
1F00  
1EFF  
LOWER  
128 BYTES  
INTERNAL RAM  
100  
00  
00  
0000  
SU01107  
Figure 29. Internal and External Data Memory Address Space with EXTRAM = 0  
HARDWARE WATCHDOG TIMER (ONE-TIME  
ENABLED WITH RESET-OUT FOR P89C668)  
The WDT is intended as a recovery method in situations where the  
CPU may be subjected to software upset. The WDT consists of a  
14-bit counter and the WatchDog Timer reset (WDTRST) SFR. The  
WDT is disabled at reset. To enable the WDT, user must write 01EH  
and 0E1H in sequence to the WDTRST, SFR location 0A6H. When  
WDT is enabled, it will increment every machine cycle while the  
oscillator is running and there is no way to disable the WDT except  
through reset (either hardware reset or WDT overflow reset). When  
WDT overflows, it will drive an output reset HIGH pulse at the  
RST-pin (see the note below).  
Using the WDT  
To enable the WDT, user must write 01EH and 0E1H in sequence to  
the WDTRST, SFR location 0A6H. When WDT is enabled, the user  
needs to service it by writing to 01EH and 0E1H to WDTRST to  
avoid WDT overflow. The 14-bit counter overflows when it reaches  
16383 (3FFFH) and this will reset the device. When WDT is  
enabled, it will increment every machine cycle while the oscillator is  
running. This means the user must reset the WDT at least every  
16383 machine cycles. To reset the WDT, the user must write 01EH  
and 0E1H to WDTRST. WDTRST is a write only register. The WDT  
counter cannot be read or written. When WDT overflows, it will  
generate an output RESET pulse at the reset pin (see note below).  
The RESET pulse duration is 98 × T  
, where T  
= 1/f  
.
OSC  
OSC  
OSC  
To make the best use of the WDT, it should be serviced in those  
sections of code that will periodically be executed within the time  
required to prevent a WDT reset.  
31  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
1, 2, 3  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Operating temperature under bias  
RATING  
UNIT  
0 to +70 or –40 to +85  
–65 to +150  
0 to +13.0  
–0.5 to +6.5  
15  
°C  
°C  
V
Storage temperature range  
Voltage on EA/V pin to V  
PP  
SS  
Voltage on any other pin to V  
V
SS  
Maximum I per I/O pin  
mA  
W
OL  
Power dissipation (based on package heat transfer limitations, not device power consumption)  
1.5  
NOTES:  
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section  
of this specification is not implied.  
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static  
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V unless otherwise noted.  
SS  
32  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
DC ELECTRICAL CHARACTERISTICS  
T
amb  
= 0 °C to +70 °C, 5 V ± 10% or –40 °C to +85 °C; 5 V ±5%; V = 0 V  
SS  
LIMITS  
SYM-  
BOL  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
MAX  
1
MIN  
–0.5  
–0.5  
TYP  
V
V
V
Input low voltage  
4.5 V < V < 5.5 V  
0.2 V –0.1  
V
V
V
IL  
CC  
CC  
11  
Input low voltage to P1.6/SCL, P1.7/SDA  
Input high voltage (ports 0, 1, 2, 3, EA)  
0.3V  
DD  
IL2  
IH  
0.2V +0.  
V
+0.5  
CC  
CC  
9
V
V
Input high voltage, XTAL1, RST  
0.7V  
V
+0.5  
V
V
IH1  
CC  
DD  
CC  
11  
Input high voltage, P1.6/SCL, P1.7/SDA  
0.7V  
6.0  
IH2  
V
OL  
= 4.5 V  
= 1.6 mA  
CC  
8
V
Output low voltage, ports 1, 2, 3  
0.4  
V
OL  
2
I
I
V
CC  
= 4.5 V  
7, 8  
V
OL1  
V
OL2  
V
OH  
Output low voltage, port 0, ALE, PSEN  
0.45  
0.4  
V
V
V
2
= 3.2 mA  
OL  
Output low voltage, P1.6/SCL, P1.7/SDA  
I
OL  
= 3.0 mA  
V
CC  
= 4.5 V  
= –30 µA  
3
Output high voltage, ports 1, 2, 3  
V
V
– 0.7  
– 0.7  
CC  
I
OH  
Output high voltage (port 0 in external bus mode),  
V
CC  
= 4.5 V  
= –3.2 mA  
V
OH1  
V
CC  
9
3
ALE , PSEN  
I
OH  
I
I
I
I
I
Logical 0 input current, ports 1, 2, 3  
Logical 1-to-0 transition current, ports 1, 2, 3  
Input leakage current, port 0  
V
V
= 0.4 V  
= 2.0 V  
–1  
–75  
–650  
±10  
10  
µA  
µA  
µA  
µA  
IL  
IN  
IN  
6
TL  
LI  
See Note 4  
0.45 < V < V – 0.3  
IN  
CC  
0 V < VI < 6 V  
0 V < V < 5.5 V  
Input leakage current, P1.6/SCL, P1.7/SDA  
L2  
CC  
DD  
Power supply current (see Figure 37):  
Active mode (see Note 5)  
See Note 5  
Idle mode (see Note 5)  
Power-down mode or clock stopped (see  
Figure 44 for conditions)  
T
= 0 °C to 70 °C  
= –40 °C to +85 °C  
20  
60  
100  
125  
µA  
µA  
mA  
amb  
T
amb  
Programming and erase mode  
Internal reset pull-down resistor  
f
= 20 MHz  
osc  
R
C
40  
225  
15  
kΩ  
RST  
IO  
10  
Pin capacitance (except EA)  
pF  
NOTES:  
1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.  
2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I can exceed these conditions provided that no  
OL  
single output sinks more than 5mA and no more than two outputs exceed the test conditions.  
3. Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the V –0.7 specification when the  
OH  
CC  
address bits are stabilizing.  
4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its  
maximum value when V is approximately 2 V.  
IN  
5. See Figures 41 through 44 for I test conditions and Figure 37 for I vs Freq.  
CC  
CC  
Active mode:  
Idle mode:  
6. This value applies to T  
I
I
= (2.8 × FREQ. + 8.0)mA for all devices, in 6 clock mode; (1.4 × FREQ. + 8.0)mA in 12 clock mode.  
= (1.2 × FREQ. +1.0)mA in 6 clock mode; (0.6 × FREQ. +1.0)mA in 12 clock mode.  
= 0 °C to +70 °C.  
CC(MAX)  
CC(MAX)  
amb  
7. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.  
8. Under steady state (non-transient) conditions, I must be externally limited as follows:  
OL  
Maximum I per port pin:  
15 mA (*NOTE: This is 85 °C specification.)  
OL  
Maximum I per 8-bit port:  
26 mA  
71 mA  
OL  
Maximum total I for all outputs:  
OL  
If I exceeds the test condition, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
OL  
OL  
test conditions.  
9. ALE is tested to V  
, except when ALE is off then V is the voltage specification.  
OH  
OH1  
10.Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF. Pin capacitance of ceramic package is less than 15 pF  
(except EA is 25 pF).  
2
11. The input threshold voltage of P1.6 and P1.7 (SIO1) meets the I C specification, so an input voltage below 1.5 V will be recognized as a logic 0  
while an input voltage above 3.0 V will be recognized as a logic 1.  
33  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
AC ELECTRICAL CHARACTERISTICS (6 CLOCK MODE)  
1, 2, 3  
T
amb  
= 0 °C to +70 °C, V = 5 V ± 10% or –40 °C to +85 °C, V = 5 V ±5%, V = 0 V  
CC CC SS  
4
4
VARIABLE CLOCK  
20 MHz CLOCK  
SYMBOL FIGURE  
PARAMETER  
MIN  
MAX  
MIN  
0
MAX  
UNIT  
MHz  
ns  
1/t  
CLCL  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
Oscillator frequency  
ALE pulse width  
0
20  
20  
t
t
t
t
t
t
t
t
t
t
t
t
–40  
10  
5
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
0.5t  
0.5t  
–20  
–20  
ns  
AVLL  
LLAX  
LLIV  
CLCL  
5
ns  
CLCL  
2t  
–65  
35  
15  
ns  
CLCL  
0.5t  
1.5t  
–20  
–45  
5
ns  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
30  
ns  
CLCL  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
1.5t  
–60  
ns  
CLCL  
0
0
ns  
0.5t  
2.5t  
–20  
–80  
5
ns  
CLCL  
45  
10  
ns  
CLCL  
10  
ns  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
32  
RD pulse width  
3t  
3t  
–100  
–100  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
CLCL  
RD low to valid data in  
Data hold after RD  
2.5t  
–90  
35  
CLCL  
0
0
Data float after RD  
t
–20  
5
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
4t  
CLCL  
–150  
–165  
50  
4.5t  
60  
AVDV  
LLWL  
CLCL  
1.5t  
–50 1.5t  
+50  
25  
25  
0
125  
CLCL  
CLCL  
2t  
–75  
AVWL  
QVWX  
WHQX  
QVWH  
RLAZ  
WHLH  
CLCL  
0.5t  
0.5t  
–25  
–20  
CLCL  
5
CLCL  
Data valid to WR high  
RD low to address float  
RD or WR high to ALE high  
3.5t  
–130  
CLCL  
45  
31, 32  
31, 32  
0
0
0.5t  
–20 0.5t  
+20  
5
45  
CLCL  
CLCL  
External Clock  
t
t
t
t
34  
34  
34  
34  
High time  
Low time  
Rise time  
Fall time  
20  
20  
t
–t  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
CLCL CLCX  
t
–t  
CLCL CHCX  
5
5
Shift Register  
t
t
t
t
t
33  
33  
33  
33  
33  
Serial port clock cycle time  
6t  
300  
117  
20  
ns  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
5t  
–133  
CLCL  
QVXH  
XHQX  
XHDX  
XHDV  
t
–30  
CLCL  
0
0
5t  
CLCL  
–133  
117  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.  
3. Interfacing the microcontroller to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.  
4. Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.  
34  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
AC ELECTRICAL CHARACTERISTICS (6 CLOCK MODE) (Continued)  
1, 2  
T
amb  
= 0 °C to +70 °C, V = 5 V ± 10% or –40 °C to +85 °C, V = 5 V ± 5%, V = 0 V  
CC CC SS  
SYMBOL  
PARAMETER  
INPUT  
OUTPUT  
2
I C Interface  
4
4
4
t
t
t
t
t
t
t
t
t
t
t
t
t
t
START condition hold time  
SCL low time  
7 t  
> 4.0 µs  
> 4.7 µs  
> 4.0 µs  
HD;STA  
LOW  
CLCL  
CLCL  
CLCL  
8 t  
7 t  
SCL high time  
HIGH  
5
SCL rise time  
1 µs  
RC  
6
SCL fall time  
0.3 µs  
250 ns  
250 ns  
250 ns  
0 ns  
< 0.3 µs  
FC  
Data set-up time  
> 10 t  
– t  
SU;DAT1  
SU;DAT2  
SU;DAT3  
HD;DAT  
SU;STA  
SU;STO  
BUF  
CLCL  
RD  
4
SDA set-up time (before rep. START cond.)  
SDA set-up time (before STOP cond.)  
Data hold time  
> 1 µs  
> 4 t  
CLCL  
> 4 t  
– t  
CLCL  
FC  
4
4
4
4
Repeated START set-up time  
STOP condition set-up time  
Bus free time  
7 t  
7 t  
7 t  
> 4.7 µs  
> 4.0 µs  
> 4.7 µs  
CLCL  
CLCL  
4
4
CLCL  
7
5
SDA rise time  
1 µs  
RD  
7
6
SDA fall time  
300 ns  
< 0.3 µs  
FD  
NOTES:  
1. Parameters are valid over operating temperature range and voltage range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.  
3. These values are characterized but not 100% production tested.  
4. At 100 kbit/s. At other bit rates this value is inversely proportional to the bit-rate of 100 kbit/s.  
5. Determined by the external bus-line capacitance and the external bus-line pull-resistor, this must be < 1 µs.  
6. Spikes on the SDA and SCL lines with a duration of less than 3 t  
SCL = 400 pF.  
will be filtered out. Maximum capacitance on bus-lines SDA and  
CLCL  
7. t  
= 1/f  
= one oscillator clock period at pin XTAL1.  
CLCL  
OSC  
35  
2001 Jul 27  
Philips Semiconductors  
Preliminary data  
80C51 8-bit Flash microcontroller family  
64KB ISP Flash with 8KB RAM  
P89C668  
AC ELECTRICAL CHARACTERISTICS (12 CLOCK MODE)  
1, 2, 3  
T
amb  
= 0 °C to +70 °C, V = 5 V ± 10%, or –40 °C to +85 °C, V = 5 V ±5%, V = 0 V  
CC CC SS  
4
4
VARIABLE CLOCK  
33 MHz CLOCK  
SYMBOL FIGURE  
PARAMETER  
MIN  
MAX  
MIN  
0
MAX  
UNIT  
MHz  
ns  
1/t  
CLCL  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
Oscillator frequency  
ALE pulse width  
0
33  
33  
t
t
t
t
t
t
t
t
t
t
t
2t  
–40  
21  
5
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
t
–25  
ns  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
–25  
5
ns  
4t  
3t  
–65  
–60  
55  
30  
ns  
CLCL  
t
–25  
5
ns  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
3t  
–45  
45  
ns  
CLCL  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
ns  
CLCL  
0
0
ns  
t
–25  
5
ns  
CLCL  
5t  
–80  
70  
10  
ns  
CLCL  
10  
ns  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
31, 32  
32  
RD pulse width  
6t  
–100  
–100  
82  
82  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
5t  
2t  
–90  
–28  
60  
CLCL  
0
0
Data float after RD  
32  
90  
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
8t  
–150  
–165  
CLCL  
CLCL  
9t  
105  
140  
AVDV  
LLWL  
3t  
–50  
–75  
3t  
CLCL  
+50  
40  
45  
0
CLCL  
4t  
AVWL  
QVWX  
WHQX  
QVWH  
RLAZ  
WHLH  
CLCL  
t
t
–30  
–25  
CLCL  
CLCL  
5
Data valid to WR high  
RD low to address float  
RD or WR high to ALE high  
7t  
–130  
80  
CLCL  
31, 32  
31, 32  
0
0
t
–25  
t
+25  
5
55  
CLCL  
CLCL  
External Clock  
t
t
t
t
34  
34  
34  
34  
High time  
Low time  
Rise time  
Fall time  
17  
17  
t
–t  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
CLCL CLCX  
t
–t  
CLCL CHCX  
5
5
Shift Register  
t
t
t
t
t
33  
33  
33  
33  
33  
Serial port clock cycle time