欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • TB6549FG图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • TB6549FG 现货库存
  • 数量60030 
  • 厂家TOSHIBA/东芝 
  • 封装SOP 
  • 批号2023+ 
  • 专营原装正品量大可定货
  • QQ:2885134554QQ:2885134554 复制
    QQ:2885134398QQ:2885134398 复制
  • 0755-22669259 QQ:2885134554QQ:2885134398
  • TB6549FG图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TB6549FG 现货库存
  • 数量28600 
  • 厂家16+ 
  • 封装2879 
  • 批号21+ 
  • 原装现货库存,价格优势
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TB6549FG图
  • 无锡海明威电子科技有限公司

     该会员已使用本站9年以上
  • TB6549FG 现货库存
  • 数量102015 
  • 厂家东芝 
  • 封装【原装】 
  • 批号24+ 
  • ★★★㊣ 一级代理 原装现货★
  • QQ:1554146599QQ:1554146599 复制
  • 0510-87070646 QQ:1554146599
  • TB6549FG图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TB6549FG 现货库存
  • 数量6980 
  • 厂家TOSHIBA 
  • 封装HSOP20 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TB6549FG图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • TB6549FG
  • 数量5300 
  • 厂家TOSHIBA(东芝) 
  • 封装 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • TB6549FG图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TB6549FG
  • 数量85000 
  • 厂家TOSHIBA/东芝 
  • 封装1537+ 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TB6549FG图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • TB6549FG
  • 数量1500 
  • 厂家 
  • 封装SOP20 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • TB6549FG图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TB6549FG
  • 数量3690 
  • 厂家TOSHIBA/东芝 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TB6549FG图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • TB6549FG
  • 数量69800 
  • 厂家TOSHIBA/东芝 
  • 封装SOP24 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • TB6549FG图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • TB6549FG
  • 数量10000 
  • 厂家TOSHIBA 
  • 封装SOP24 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • TB6549FG图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TB6549FG
  • 数量55766 
  • 厂家TOSHIBA 
  • 封装HSOP20 
  • 批号2023+ 
  • 绝对原装正品现货,全新深圳原装进口现货
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • TB6549FG(EL)图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • TB6549FG(EL)
  • 数量10086 
  • 厂家Toshiba 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • TB6549FG图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • TB6549FG
  • 数量12245 
  • 厂家TOSHIBA/东芝 
  • 封装HSOP20 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • TB6549FG/F图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • TB6549FG/F
  • 数量5400 
  • 厂家TOSHIBA 
  • 封装SOP 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • TB6549FG图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • TB6549FG
  • 数量12300 
  • 厂家TOSHIBA/东芝 
  • 封装HSOP20 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • TB6549FG图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • TB6549FG
  • 数量10000 
  • 厂家TOSHIBA 
  • 封装HSOP 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • TB6549FG(EL)图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • TB6549FG(EL)
  • 数量5000 
  • 厂家Toshiba 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • TB6549FG图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • TB6549FG
  • 数量865000 
  • 厂家TOSHIBA/东芝 
  • 封装1537+ 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • TB6549FG图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • TB6549FG
  • 数量3000 
  • 厂家TOSHIBA 
  • 封装HSOP20 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • TB6549FG图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TB6549FG
  • 数量2879 
  • 厂家TOSHIBA/东芝 
  • 封装SOP 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TB6549FG图
  • 深圳市湘达电子有限公司

     该会员已使用本站10年以上
  • TB6549FG
  • 数量2800 
  • 厂家TOSHIBA/东芝 
  • 封装HSOP20 
  • 批号20+ 
  • 绝对全新原装现货,欢迎来电查询
  • QQ:215672808QQ:215672808 复制
  • 0755-83229772 QQ:215672808
  • TB6549FG(O,EL)图
  • 深圳市和谐世家电子有限公司

     该会员已使用本站13年以上
  • TB6549FG(O,EL)
  • 数量167 
  • 厂家Toshiba Semiconductor and Storage 
  • 封装20-HSOP 
  • 批号最新批号 
  • 只做原装
  • QQ:1158840606QQ:1158840606 复制
  • 0755+84501032 QQ:1158840606
  • TB6549FG图
  • 深圳市诚达吉电子有限公司

     该会员已使用本站2年以上
  • TB6549FG
  • 数量6039 
  • 厂家TOSHIBA 
  • 封装HSOP20 
  • 批号2024+ 
  • 原装正品 一手现货 假一赔百
  • QQ:2881951980QQ:2881951980 复制
  • 15873513267 QQ:2881951980
  • TB6549FG(OEL)图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • TB6549FG(OEL)
  • 数量30000 
  • 厂家ADI 
  • 封装SOP 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • TB6549FG图
  • 深圳市特拉特科技有限公司

     该会员已使用本站2年以上
  • TB6549FG
  • 数量15000 
  • 厂家TOSHIBA 
  • 封装HSOP 
  • 批号22+ 
  • 一级代理,公司优势产品,可开增值票
  • QQ:709809857QQ:709809857 复制
  • 0755-82531732 QQ:709809857
  • TB6549FG图
  • 深圳市双微电子科技有限公司

     该会员已使用本站10年以上
  • TB6549FG
  • 数量1020 
  • 厂家TOSHIBA 
  • 封装SOP20 
  • 批号20+ 
  • 询货请加QQ 全新原装 现货库存
  • QQ:1965209269QQ:1965209269 复制
    QQ:1079402399QQ:1079402399 复制
  • 15889219681 QQ:1965209269QQ:1079402399
  • TB6549FG图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TB6549FG
  • 数量6500000 
  • 厂家东芝 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • TB6549FG图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • TB6549FG
  • 数量5800 
  • 厂家TOSHIBA 
  • 封装HSOP20 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • TB6549FG图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • TB6549FG
  • 数量20000 
  • 厂家TOSHIBA 
  • 封装HSOP20 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521

产品型号TB6549FG的概述

TB6549FG芯片概述 TB6549FG是一款专为电机控制应用设计的集成电路,利用其高级功能实现了在小型电机、步进电机以及直流电机等的高效驱动。该芯片具有多样化的调速和启停模式,广泛应用于家电、自动化设备及机器人等领域。其灵活的控制方式使得电机驱动系统能够在不同条件下保持高性能和高效能。 TB6549FG的详细参数 TB6549FG的购买者通常关心的几个关键参数包括: - 电源电压范围:TB6549FG适用于4.5V至45V的电源电压,为设计者在多种应用场景下提供了灵活性。 - 驱动电流:最大输出电流可达1.5A,能够满足多数小型电动机的需求。 - PWM频率:其支持的PWM频率从1kHz到40kHz,能实现精细的电机控制。 - 工作温度:工作温度范围为-20℃到+85℃,确保其在不同环境下的稳定性。 - 封装类型:TB6549FG采用HTSOP封装,便于在高度集成的PCB设计中使用...

产品型号TB6549FG的Datasheet PDF文件预览

TB6549F/FG/P/PG/HQ  
Toshiba Bi-CMOS Integrated Circuit Silicon Monolithic  
TB6549F/FG, TB6549P/PG, TB6549HQ  
Full-Bridge Driver IC for DC Motors  
The TB6549F/FG/P/PG/HQ is a full-bridge driver IC for DC  
motors that uses an LDMOS structure for output transistors.  
TB6549F/FG  
High-efficiency drive is possible through the use of a MOS  
process with low ON-resistance and a PWM drive system. Four  
modes, CW, CCW, short brake, and stop, can be selected using  
IN1 and IN2.  
Features  
Power supply voltage: 30 V (max)  
Output current: 3.5 A (max) (F/FG,P/PG type) / 4.5 A (max.)  
(HQ type)  
TB6549P/PG  
Low ON-resistance: 0.5 (typ.)  
PWM control capability  
Standby system  
Function modes: CW/CCW/short brake/stop  
Built-in overcurrent protection  
Built-in thermal shutdown circuit  
Package: HSOP-20/DIP-16  
TB6549HQ  
HZIP-25-1.00F  
TB6549FG/PG/HQ:  
The TB6549FG/PG is a Pb-free product.  
The TB6549HQ is a Sn-Ag plated product including Pb.  
The following conditions apply to solderability:  
*Solderability  
1. Use of Sn-37Pb solder bath  
*solder bath temperature = 230ºC  
*dipping time = 5 seconds  
Weight  
HSOP20-P-450-1.00: 0.79 g (typ.)  
DIP16-P-300-2.54A: 1.11 g (typ.)  
HZIP-25-1.00F: 7.7g (typ.)  
*number of times = once  
*use of R-type flux  
2. Use of Sn-3.0Ag-0.5Cu solder bath  
*solder bath temperature = 245ºC  
*dipping time = 5 seconds  
*number of times = once  
*use of R-type flux  
1
2007-3-6  
TB6549F/FG/P/PG/HQ  
Pin Assignment  
HSOP20-P-450-1.00  
DIP16-P-300-2.54A  
N.C.  
CcpA  
CcpB  
CcpC  
N.C.  
V
CcpA  
CcpB  
CcpC  
S-GND  
S-GND  
IN1  
V
V
CC  
CC  
reg  
N.C.  
V
reg  
SB  
SB  
S-GND  
S-GND  
N.C.  
S-GND  
(Fin)  
S-GND  
(Fin)  
PWM  
N.C.  
IN1  
N.C.  
IN2  
OUT2  
P-GND  
PWM  
N.C.  
OUT1  
IN2  
N.C.  
OUT1  
OUT2  
P-GND  
Note: This product has a MOS structure and is sensitive to electrostatic discharge. When handling this product,  
ensure that the environment is protected against electrostatic discharge by using an earth strap, a conductive  
mat and an ionizer. Ensure also that the ambient temperature and relative humidity are maintained at  
reasonable levels.  
2
2007-3-6  
TB6549F/FG/P/PG/HQ  
Block Diagram  
V
SB  
PWM  
OUT2  
V
OUT1  
reg  
CC  
5 V  
Control logic  
OSC  
Overcurrent  
detecting circuit  
T
SD  
Charge pump circuit  
CcpA  
CcpB  
CcpC  
IN1 IN2  
S-GND  
P-GND  
Pin Functions  
Pin No.  
Pin Name  
Functional Description  
No Connection  
Remarks  
F/FG  
1
P/PG  
1
HQ  
(NC)  
CcpA  
CcpB  
CcpC  
(NC)  
(NC)  
IN1  
2
14  
15  
16  
23  
24  
Capacitor connection pin for charge pump A Connect a capacitor for charge pump  
Capacitor connection pin for charge pump B Connect a capacitor for charge pump  
Capacitor connection pin for charge pump C Connect a capacitor for charge pump  
3
2
4
3
5
6
No Connection  
6
No Connection  
7
Control signal input 1  
Control signal input 2  
No Connection  
Input 0/5-V signal  
Input 0/5-V signal  
8
7
IN2  
9
8
(NC)  
OUT1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
FIN  
25  
1
Output pin 1  
Connect to motor coil pin  
9
P-GND Power GND  
10  
11  
14  
15  
16  
2,5  
OUT2  
(NC)  
PWM  
(NC)  
(NC)  
SB  
Output pin 2  
Connect to motor coil pin  
No Connection  
3
PWM control signal input pin  
No Connection  
Input 0/5-V PWM signal  
10  
11  
No Connection  
H: Start, L: Standby  
Connect a capacitor to S-GND  
Standby pin  
V
5 V output pin  
reg  
(NC)  
No Connection  
12  
7,16  
V
Power supply input pin  
V
= 10 to 27 V  
CC (ope)  
CC  
4, 5, 12,  
13  
S-GND GND pin  
*) (HQ type) 4, 6, 8, 9, 13, 17, 18, 20, 21, 22 ;N.C.  
3
2007-3-6  
TB6549F/FG/P/PG/HQ  
Absolute Maximum Ratings (Ta = 25°C)  
Characteristic  
Supply voltage  
Symbol  
Rating  
Unit  
V
V
30  
CC  
F, P  
3.5  
(Note1)  
(Note2 )  
I
(パルス)  
O
HQ  
F, P  
HQ  
4.5  
2.0  
Output current  
A
I
(DC)  
O
3.5  
Input voltage  
Vin  
-0.35.5  
2.5  
V
F/FG  
P/PG  
HQ  
(Note3)  
(Note4)  
(Note5)  
(Note6)  
Power dissipation  
2.7  
P
W
D
3.2  
40  
Operating temperature  
Storage temperature  
T
20~85  
55~150  
°C  
°C  
opr  
T
stg  
Note1: The absolute maximum ratings must be observed strictly. Make sure that no characteristic listed above ever  
exceeds the absolute maximum rating.  
Note2: t=100ms  
Note3: This value is obtained for a 115 × 75 × 1.6 mm PCB mounting with 30% copper area.  
Note4: This value is obtained for a 50 × 50 × 1.6 mm PCB mounting with 50% copper area.  
Note5: IC only.  
Note6: Infinite heat sink.  
Operating Range (Ta = 25°C)  
Characteristic  
Symbol  
Rating  
Unit  
Supply voltage  
PWM frequency  
V
10 to 27  
100  
V
CC  
f
kHz  
CLK  
4
2007-3-6  
TB6549F/FG/P/PG/HQ  
Electrical Characteristics (V = 24 V, Ta = 25°C)  
CC  
Test  
Circuit  
Characteristic  
Symbol  
Test Condition  
Stop mode  
Min  
Typ.  
Max  
Unit  
I
I
I
I
2
4
6
8
10  
8
CC1  
CC2  
CC3  
CC4  
CW/CCW mode  
Short break mode  
(Standby mode)  
Supply current  
1
mA  
4
1
2
V
5.5  
0.8  
INH  
Input voltage  
2
1
V
INL  
V
μA  
V
Hysteresis  
voltage  
Control circuit  
V
V
(Not tested)  
0.2  
IN (HYS)  
I
V
V
= 5 V  
= 0 V  
2
50  
75  
5
INH  
IN  
IN  
Input current  
Input voltage  
I
INL  
5.5  
0.8  
PWMH  
3
3
V
PWML  
Hysteresis  
voltage  
V
(Not tested)  
0.2  
PWM(HYS)  
PWM input circuit  
I
V
V
= 5 V  
= 0 V  
50  
75  
5
PWMH  
PWM  
PWM  
Input current  
μA  
I
PWML  
PWM frequency  
f
Duty = 50%  
100  
kHz  
PWM  
3
Minimum clock  
pulse width  
tw(  
2
μs  
PWM)  
INSH  
V
2
5.5  
0.8  
Input voltage  
2
1
V
INSL  
V
Hysteresis  
voltage  
Standby circuit  
V
(Not tested)  
0.2  
IN (HYS)  
I
V
V
= 5 V  
= 0 V  
50  
75  
5
INSH  
IN  
IN  
Input current  
μA  
Ω
I
INSL  
I
I
= 0.2 A  
= 1.5 A  
1.0  
1.0  
1.75  
1.75  
150  
10  
o
o
Output ON-resistance  
Output leakage current  
Diode forward voltage  
R
4
5
6
on (U + L)  
I
V
V
= 30 V  
(Note 1)  
L (U)  
CC  
CC  
μA  
V
I
= 30 V  
L (L)  
V
I
I
= 1.5 A  
1.3  
1.3  
5
1.7  
1.7  
5.5  
F (U)  
o
o
V
= 1.5 A  
F (L)  
Internal reference voltage  
V
4
No load  
4.5  
V
reg  
SD (OFF)  
Overcurrent detection offset time  
I
(Not tested)  
50  
μs  
C
= 0.22 μF, C = 0.01 μF  
2
1
Charge pump rising time  
t
7
1
3
ms  
°C  
ONG  
(Note 2)  
Thermal shutdown circuit operating  
temperature  
T
(Not tested)  
160  
SD  
Note 1: Include the current in the circuit.  
Note 2: C is a capacitor between CcpA and GND. C is a capacitor between CcpB and CcpC.  
1
2
5
2007-3-6  
TB6549F/FG/P/PG/HQ  
Component Description  
1. Control Input/PWM Input Circuit  
V
V
DD  
DD  
IN1  
(IN2, PWM)  
100 kΩ  
The input signals are shown below. Input at the CMOS and TTL levels can be provided. Note that the  
input signals have a hysteresis of 0.2 V (typ.).  
V
V
: 2 to V  
: GND to 0.8 V  
V
INH  
reg  
INL  
The PWM input frequency should be 100 kHz or less.  
Input/Output Function  
Input  
Output  
IN1  
IN2  
SB  
PWM  
OUT1  
OUT2  
Mode  
H
L
H
H
H
L
L
Short brake  
H
L
L
L
H
L
L
L
CW/CCW  
Short brake  
CCW/CW  
L
H
H
L
H
H
H
L
H
L
H
L
Short brake  
H
L
OFF  
L
L
Stop  
(high impedance)  
H
L
OFF  
H/L  
H/L  
Standby  
(high impedance)  
PWM control function  
Motor speed can be controlled by inputting the 0/5-V PWM signal to the PWM pin.  
When PWM control is provided, normal operation and short brake operation are repeated.  
If the upper and lower power transistors in the output circuit were ON at the same time, a penetrating  
current would be produced. To prevent this current from being produced, a dead time of 300 ns (design  
target value) is provided in the IC when either of the transistors changes from ON to OFF, or vice versa.  
Therefore, PWM control by synchronous rectification is enabled without an OFF time being inserted by  
external input. Note that a dead time is also provided in the IC at the time of transition between CW  
and CCW or between CW (CCW) and short brake mode, thereby eliminating the need for an OFF time.  
6
2007-3-6  
TB6549F/FG/P/PG/HQ  
V
V
V
CC  
CC  
CC  
OUT1  
M
OUT1  
M
OUT1  
M
GND  
GND  
GND  
PWM ON  
t1  
PWM ON OFF  
t2 = 300 ns (typ.)  
PWM OFF  
t3  
V
V
CC  
CC  
OUT1  
M
OUT1  
M
GND  
GND  
PWM OFF ON  
t4 = 300 ns (typ.)  
PWM ON  
t5  
V
CC  
t1  
t5  
Output Voltage Waveform  
(OUT1)  
t3  
GND  
t4  
t2  
Note: Be sure to set the pin PWM to High when the PWM control function is not used.  
2. Standby Circuit  
V
V
DD  
DD  
SB  
100 kΩ  
All circuits are turned off except the standby circuit and the charge pump circuit under the standby  
condition.  
The input voltage range is shown below. Input at CMOS and TTL level is possible. The input signal has  
0.2 V (typ.) hysteresis.  
V
V
: 2 to V  
: GND to 0.8 V  
V
INSH  
reg  
INSL  
Do not attempt to the control the output by inputting PWM signals to the standby pin. Doing so may  
cause the output signal to become unstable, resulting in destruction of the IC.  
The charge pump circuit is turned ON/OFF by the switch of the input signal from the standby pin. If  
the switching cycle is shorter than 50 ms, the charge pump circuit will not operate with precise timing.  
Therefore the switching cycle of the standby pin should be longer than 50 ms.  
When the Standby condition is changed to Operation Mode, set IN1 and IN2 to Low level (Stop Mode) at  
first. Then switch IN1 and IN2 to High level when the charge pump circuit reaches the stable condition,  
i.e., when VcpA is about V  
+ 5 V.  
CC  
7
2007-3-6  
TB6549F/FG/P/PG/HQ  
3. Internal Constant-Voltage (5 V) Circuit  
V
CC  
V
CC  
V
reg  
This IC includes a 5 V power supply for control circuit.  
A capacitor for prevention of oscillation should be connected to S-GND associated with the pin V  
.
reg  
No other loads should be connected to pin V  
.
reg  
This IC has a power monitoring function and turns the output OFF when V  
goes down to 3.0 V  
reg  
(design target value) or less. With a hysteresis of 0.3 V (design target value), the output are turned ON  
when V again reaches 3.3 V (design target value).  
reg  
4. Charge Pump Circuit  
V
CcpA  
CcpB  
CcpC  
CC  
This IC has a charge pump circuit for driving the gate for the upper power transistor in the output  
circuit. A voltage of V + 5 V (typ.) is generated by connecting an external capacitor to this IC.  
CC  
It takes about 2 ms to boost V  
up V  
+ 5 V (typ.) after the switching of the input signal from the  
CPA  
CC  
standby pin (while CcpA = 0.22 μF, and CcpB and CcpC are connected through 0.01 μF).  
The proper capacitance of the external capacitor varies depending on the V value. Thus, determine  
CC  
the constant by referring to the following data. The value of the capacitor between CcpB and CcpC  
should be such that, while the motor is being driven, the voltage on the CcpA pin will be kept constant,  
typically at V  
+ 5 V. (If a reduced V  
level causes the voltage on CcpA to start to fall, please adjust  
CC  
CC  
this capacitance value accordingly.)  
<External capacitor>  
V
Between CcpB and CcpC Between CcpA and GND  
CC  
10 V~15 V  
15 V~27 V  
0.01 μF~0.047 μF  
0.01 μF  
0.22 μF  
0.22 μF  
Reference oscillation is performed by using the internal capacitor.  
8
2007-3-6  
TB6549F/FG/P/PG/HQ  
5. Output Circuit  
V
CC  
OUT1  
(OUT2)  
P-GND  
This IC uses Nch MOS transistors as the upper and lower transistors in the output circuit.  
As output R is 1 Ω (sum for the upper and lower parts/typ.), this IC is a device of the low-R type.  
on  
on  
The switching characteristics of the output transistors are shown below.  
PWM Input  
t
pLH  
t
pHL  
90%  
50%  
90%  
50%  
Output Voltage  
(OUT1/OUT2)  
10%  
10%  
t
t
r
f
<Typical Value>  
Item  
Typical Value  
Unit  
t
t
350  
800  
60  
pLH  
pHL  
ns  
t
r
t
100  
f
<Actual Measured Waveform>  
t
pLH  
(350 ns)  
t
pLH  
(800 ns)  
PWM input  
Output voltage  
t
r
(60 ns)  
t
(100 ns)  
f
*: OUT 1, OUT 2; open  
9
2007-3-6  
TB6549F/FG/P/PG/HQ  
6. V Power Supply Section  
CC  
The V  
power supply delivers a voltage to the output circuit, charge pump circuit, and internal 5 V  
CC  
circuit.  
The operating voltage range is shown below:  
= 10 to 27 V  
V
CC (opr.)  
This IC has a power monitoring function for preventing an output malfunction on power-up. However,  
Toshiba recommends that IN1, IN2, and SB be set to the Low level at power-on.  
7. GND Sections  
This IC includes two separate GND sections: S-GND for controlling and P-GND for outputting. Be sure  
to short-circuit these two GNDs as close to TB6549 as possible.  
8. Power Monitoring Circuit  
This circuit turns the output OFF when V  
becomes 3.0 V (design target value) or less. At this time,  
reg  
V
CC  
= 4.6 V (typ.).  
With a hysteresis of 0.3 V (design target value), the output turns back ON when V  
(design target value) after this circuit starts operating.  
exceeds 3.3 V  
reg  
9. Thermal Shutdown (T ) Circuit  
SD  
This IC includes a thermal shutdown circuit, which turns the output OFF when the junction temperature  
(Tj) exceeds 160°C (typ.). The output turns back ON automatically. The thermal hysteresis is 20°C.  
T
SD  
= 160°C (design target value)  
ΔT  
= 20°C (design target value)  
SD  
10. Overcurrent Detection (I ) Circuit  
SD  
This IC includes a circuit to detect current flowing through the output power transistors. The current limit  
is set to 5 A (typ.). The circuit detects a current flowing through each of the four output power transistors.  
If the current in any one output power transistor exceeds the set limit, this circuit turns all the outputs  
OFF.  
This circuit includes a timer that causes the outputs to be OFF for 50 μs (typ.) after detection of an  
overcurrent and then turn back ON automatically. If the overcurrent continues to flow, this ON-OFF  
operation is repeated. Note that to prevent a malfunction due to a glitch, an insensitive period of 10 μs  
(typ.) is provided.  
I
LIM  
Output Current  
0
50 μs  
50 μs  
(typ.)  
(typ.)  
10 μs  
10 μs  
(typ.)  
(typ.)  
Insensitive period  
The set limit is 5 A (typ.) as a design target value. The distributions shown below exist because of the  
variations in thermal characteristics of different ICs. These distributions should be fully considered in the  
motor torque design.  
Also, output peak current should be less than 3 A because of the variations below,  
Detected current: Approximately from 3.5 to 6.5 A  
10  
2007-3-6  
TB6549F/FG/P/PG/HQ  
Test Circuit  
1. Icc1, Icc2, Icc3, Icc4, I  
, I  
, I  
, I  
INH INL INSH INSL  
A
24V  
I
CC  
CcpA CcpB CcpC  
PWM  
V
V
CC  
reg  
5V  
5V/0V  
5V/0V  
5V/0V  
OUT1  
OUT2  
A
IN1  
IN2  
SB  
TB6549F/FG/P/PG/HQ  
I
IN  
A
I
IN  
A
I
INS  
S-GND  
P-GND  
Icc1: IN1 = 0 V, IN2 = 0 V, SB = 5 V  
Icc2: IN1 = 5 V, IN2 = 5 V, SB = 5 V or IN1 = 0 V, IN2 = 5 V, SB = 5 V  
Icc3: IN1 = 5 V, IN2 = 5 V, SB = 5 V  
Icc4: IN1 = 5 V/0 V, IN2 = 5 V/0 V, SB = 0 V  
I
I
I
I
: IN1 = 5 V, and IN2 = 5 V  
: IN2 = 0 V, and IN2 = 0 V  
INH  
INL  
: SB = 5 V  
INSH  
: SB = 0 V  
INSL  
2.  
V
, V  
, V  
, V  
INH INL INSH INSL  
24V  
CcpA CcpB CcpC  
PWM  
V
V
CC  
reg  
5V  
OUT1  
2V/0.8V  
0.8V/2V  
2V/0.8V  
IN1  
IN2  
SB  
TB6549F/FG/P/PG/HQ  
OUT2  
V
V
S-GND  
P-GND  
V
, V  
: IN1 = IN2 = SB = 2 V. Verify that OUT1 = OUT2 = L.  
INH INSH  
V
INL  
: IN1 = 0.8 V, IN2 = SB = 2 V. Verify that OUT1 = L, OUT2 = H. IN1 = SB = 2 V, IN2 = 0.8 V. Verify  
that OUT1 = OUT2 = L.  
V
INSL  
: IN1 = IN2 = 2 V, SB = 0.8 V. Verify that the output function is high impedance.  
11  
2007-3-6  
TB6549F/FG/P/PG/HQ  
3.  
V
, V  
, I  
, I  
, f  
, tw  
PWMH PWML PWMH PWML PWM (PWM)  
24V  
CcpA CcpB CcpC  
V
V
CC  
reg  
5V/0V  
A
PWM  
I
PWM  
2V/0.8V  
100kHz  
5V  
OUT1  
IN1  
TB6549F/FG/P/PG/HQ  
0V  
5V  
IN2  
OUT2  
V
V
SB  
S-GND  
P-GND  
V
, V  
, V  
, f  
: PWM = 2 V/0.8 V, 100 kHz; duty: 50 % (rectangular wave). Verify OUT1.  
PWMH PWML PWM  
V
: PWM = 5 V or PWM = 0 V.  
PWMH PWML  
tw  
: PWM = 2 V/0.8 V, 100 kHz; duty: 20 % (2 μs) (2 μs/rectangular wave). Verify OUT1.  
(PWM)  
4. Ron (H + L), Vreg  
24V  
V
I
O
V
CcpA CcpB CcpC  
PWM  
V
V
CC  
reg  
5V  
5V/0V  
0V/5V  
5V  
OUT1  
IN1  
IN2  
SB  
TB6549F/FG/P/PG/HQ  
OUT2  
I
O
V
S-GND  
P-GND  
Ron (H + L): Measure Vds (the sum of upper and lower sides) at IO = 0.2 A, and convert to resistor. Do the  
same at IO = 1.5 A.  
Vreg: Vreg pin voltage.  
12  
2007-3-6  
TB6549F/FG/P/PG/HQ  
5.  
I
, I  
L (U) L (L)  
30V  
A
I
L(L)  
CcpA CcpB CcpC  
PWM  
V
V
CC  
reg  
5V  
0V  
0V  
5V  
OUT1  
OUT2  
IN1  
IN2  
SB  
TB6549F/FG/P/PG/HQ  
A
I
L(H)  
S-GND  
P-GND  
6.  
V
, V  
F (U) F (L)  
24V  
V
I
O
V
F(H)  
V
CcpA CcpB CcpC  
V
V
CC  
reg  
5V  
0V  
0V  
5V  
PWM  
IN1  
OUT1  
OUT2  
TB6549F/FG/P/PG/HQ  
IN2  
I
O
V
V
F(L)  
SB  
S-GND  
P-GND  
V
, V  
: IO = 1.5 A.  
F (U) F (L)  
13  
2007-3-6  
TB6549F/FG/P/PG/HQ  
7.  
t
ONG  
24V  
V
CcpA CcpB CcpC  
PWM  
V
V
CC  
reg  
5V  
OUT1  
0V  
0V  
IN1  
IN2  
SB  
TB6549F/FG/P/PG/HQ  
OUT2  
0V 5V  
S-GND  
P-GND  
t : SB = 0 V 5 V. Measure the time taken to boost the CcpA voltage up to about 29 V (24 V + 5 V).  
ONG  
14  
2007-3-6  
TB6549F/FG/P/PG/HQ  
P
Ta (TB6549P/PG)  
P
Ta (TB6549F/FG)  
D
D
3.0  
2.4  
1.8  
1.2  
0.6  
0
(1)  
(1) When mounted on a PCB  
(50 × 50 × 1.6 mm glass-epoxy  
PCB mounting with 50% copper  
area)  
Thermal resistance  
6
4
2
0
R
R
= 13°C/W  
th (j-c)  
= 130°C/W  
th (j-a)  
Note: 50 × 50 × 1 mm3  
(2) IC only  
Fe heat sink  
(2)  
Infinite heat sink  
(Note)  
No heat sink  
0
40  
80  
120  
160  
200  
240  
0
50  
100  
150  
200  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
P
TaTB6549HQ)  
D
80  
60  
40  
20  
0
Infinite heat sink  
Rθj-c = 1°C/W  
HEAT SINK (RθHS = 3.5°C/W)  
Rθj-c + RθHS = 4.5°C/W  
IC only  
Rθj-a = 39°C/W  
25  
0
50  
75  
100  
125  
150  
Ambient temperature Ta (°C)  
External Attachments  
Recommended  
Value  
Symbol  
Use  
Remarks  
C
Charge pump  
Charge pump  
Prevention of V  
0.22 μF  
0.01 μF  
1
2
V
V
= 24 V (Note)  
CC  
CC  
C
0.033 μF  
= 12 V (Note)  
C
3
C
4
C
5
oscillation  
reg  
0.1 μF to 1.0 μF  
0.001 μF to 1 μF  
50 μF to 100 μF  
Absorption of power noise  
Absorption of power noise  
Note: The recommended values for charge pumps depend on the V  
Charge Pump Circuit.  
value. Refer to Component Description 4,  
CC  
15  
2007-3-6  
TB6549F/FG/P/PG/HQ  
Typical Application Diagram  
Note 4  
Note 1  
C
2
C
5
C
3
C
4
C
1
5 V  
24V  
18/15  
2/1  
20/16  
3/2  
4/3  
CcpA CcpB CcpC  
V
V
V
reg  
CC  
DD  
14/11  
7/6  
PWM  
IN1  
PWM  
10/8  
OUT1  
OUT2  
PORT1  
PORT2  
TB6549F/FG/P/PG/HQ  
M
8/7  
IN2  
12/10  
Note 2  
17/14  
PORT3  
GND  
SB  
S-GND  
P-GND  
FIN/4,5,12,13  
11/9  
Note 5  
Note 3  
TB6549F/FG/P/PG/HQ  
Microcontroller  
TB6549F/FG: Pins 1, 5, 6, 9, 13, 15, 16, and 19 are not connected.  
TB6549HQ: Pins 4, 6, 8, 9, 13, 17, 18, 20, 21, 22 are not connected.  
Note 1: Connect V  
to the IC.  
and P-GND through the power supply capacitor. This capacitor should be as close as possible  
CC  
Note 2: When connecting the motor pins through the capacitor for reducing noise, connect a resistor to the capacitor  
for limiting the charge current. The switching loss increases for PWM control. Therefore, whenever  
practicable, avoid connecting the capacitor if PWM control is required.  
Note 3: Short-circuit S-GND and P-GND as close to the TB6549 as possible.  
Note 4: Connect the capacitor C to S-GND.  
3
Note 5: Connect the capacitors C and C as close to the TB6549 as possible, and the capacitor C as close to  
1
2
1
S-GND.  
Note 6: Pins 4, 5, 12, and 13 of the P/PG type are connected to the bed of the chip. Therefore expanding the round  
area of these pins improves the heat radiation effect.  
Note 7: Pins 2 and 5 of HQ type must be shorted outside.  
Usage Precautions  
Utmost care is necessary in the design of the output, V , V , and GND lines since the IC may be destroyed by  
CC  
M
short-circuiting between outputs, air contamination faults, or faults due to improper grounding, or by short-circuiting  
between contiguous pins.  
Be sure to install the IC correctly. The IC may be destroyed if installed wrongly (e.g., in reverse).  
16  
2007-3-6  
TB6549F/FG/P/PG/HQ  
Package Dimensions  
Weight: 0.79 g (typ.)  
17  
2007-3-6  
TB6549F/FG/P/PG/HQ  
Package Dimensions  
Weight: 1.11 g (typ.)  
18  
2007-3-6  
TB6549F/FG/P/PG/HQ  
Package Dimensions  
HZIP-25-1.00F  
Weight: 7.7 g (typ.)  
19  
2007-3-6  
TB6549F/FG/P/PG/HQ  
Notes on Contents  
1. Block Diagrams  
Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified  
for explanatory purposes.  
2. Equivalent Circuits  
The equivalent circuit diagrams may be simplified or some parts of them may be omitted for  
explanatory purposes.  
3. Timing Charts  
Timing charts may be simplified for explanatory purposes.  
4. Application Circuits  
The application circuits shown in this document are provided for reference purposes only. Thorough  
evaluation is required, especially at the mass production design stage.  
Toshiba does not grant any license to any industrial property rights by providing these examples of  
application circuits.  
5. Test Circuits  
Components in the test circuits are used only to obtain and confirm the device characteristics. These  
components and circuits are not guaranteed to prevent malfunction or failure from occurring in the  
application equipment.  
IC Usage Considerations  
Notes on handling of ICs  
[1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be  
exceeded, even for a moment. Do not exceed any of these ratings.  
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result  
injury by explosion or combustion.  
[2] Use an appropriate power supply fuse to ensure that a large current does not continuously flow in  
case of over current and/or IC failure. The IC will fully break down when used under conditions that  
exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal  
pulse noise occurs from the wiring or load, causing a large current to continuously flow and the  
breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case  
of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location,  
are required.  
[3] If your design includes an inductive load such as a motor coil, incorporate a protection circuit into  
the design to prevent device malfunction or breakdown caused by the current resulting from the  
inrush current at power ON or the negative current resulting from the back electromotive force at  
power OFF. IC breakdown may cause injury, smoke or ignition.  
Use a stable power supply with ICs with built-in protection functions. If the power supply is  
unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause  
injury, smoke or ignition.  
[4] Do not insert devices in the wrong orientation or incorrectly.  
Make sure that the positive and negative terminals of power supplies are connected properly.  
Otherwise, the current or power consumption may exceed the absolute maximum rating, and  
exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result  
injury by explosion or combustion.  
In addition, do not use any device that is applied the current with inserting in the wrong orientation  
or incorrectly even just one time.  
20  
2007-3-6  
TB6549F/FG/P/PG/HQ  
Points to remember on handling of ICs  
(1) Over current Protection Circuit  
Over current protection circuits (referred to as current limiter circuits) do not necessarily protect  
ICs under all circumstances. If the Over current protection circuits operate against the over current,  
clear the over current status immediately.  
Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings  
can cause the over current protection circuit to not operate properly or IC breakdown before  
operation. In addition, depending on the method of use and usage conditions, if over current  
continues to flow for a long time after operation, the IC may generate heat resulting in breakdown.  
(2) Thermal Shutdown Circuit  
Thermal shutdown circuits do not necessarily protect ICs under all circumstances. If the thermal  
shutdown circuits operate against the over temperature, clear the heat generation status  
immediately.  
Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings  
can cause the thermal shutdown circuit to not operate properly or IC breakdown before operation.  
(3) Heat Radiation Design  
In using an IC with large current flow such as power amp, regulator or driver, please design the  
device so that heat is appropriately radiated, not to exceed the specified junction temperature (TJ)  
at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat  
radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown.  
In addition, please design the device taking into considerate the effect of IC heat radiation with  
peripheral components.  
(4) Back-EMF  
When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor’s  
power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the  
device’s motor power supply and output pins might be exposed to conditions beyond maximum ratings. To avoid  
this problem, take the effect of back-EMF into consideration in system design.  
21  
2007-3-6  
TB6549F/FG/P/PG/HQ  
RESTRICTIONS ON PRODUCT USE  
070122EBA_R6  
The information contained herein is subject to change without notice. 021023_D  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc. 021023_A  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk. 021023_B  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patents or other rights of  
TOSHIBA or the third parties. 070122_C  
Please use this product in compliance with all applicable laws and regulations that regulate the inclusion or use of  
controlled substances.  
Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws  
and regulations. 060819_AF  
The products described in this document are subject to foreign exchange and foreign trade control laws. 060925_E  
22  
2007-3-6  
配单直通车
TB6549FG产品参数
型号:TB6549FG
生命周期:Obsolete
IHS 制造商:MARKTECH OPTOELECTRONICS
包装说明:,
Reach Compliance Code:unknown
风险等级:5.64
Is Samacsys:N
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!