欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • X4C105V图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • X4C105V 现货库存
  • 数量28600 
  • 厂家0128+ 
  • 封装4200 
  • 批号21+ 
  • 原装现货库存,价格优势
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • X4C105V图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • X4C105V
  • 数量7450 
  • 厂家XOR 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • X4C105V图
  • 北京耐芯威科技有限公司

     该会员已使用本站12年以上
  • X4C105V
  • 数量
  • 厂家21+ 
  • 封装5000 
  • 批号 
  • 原装正品,公司现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 96-010-62104931 QQ:2880824479QQ:1344056792
  • X4C105V图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • X4C105V
  • 数量60000 
  • 厂家XICOR 
  • 封装TSSOP20 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • X4C105V20图
  • 集好芯城

     该会员已使用本站13年以上
  • X4C105V20
  • 数量1068 
  • 厂家Renesas Electronics America Inc 
  • 封装 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • X4C105V图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • X4C105V
  • 数量3500 
  • 厂家XICOR 
  • 封装TSSOP20 
  • 批号23+ 
  • 全新原装现货特价销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • X4C105V-AN图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • X4C105V-AN
  • 数量5097 
  • 厂家XICOR 
  • 封装TSSOP20 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • X4C105V图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • X4C105V
  • 数量36731 
  • 厂家XICOR 
  • 封装TSSOP20 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • X4C105V20图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • X4C105V20
  • 数量5000 
  • 厂家Intersil 
  • 封装20-TSSOP 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • X4C105VAN图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • X4C105VAN
  • 数量10000 
  • 厂家XICOR 
  • 封装TSSOP20 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • X4C105V图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • X4C105V
  • 数量8000 
  • 厂家XICOR 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • X4C105V20-3AT1图
  • 深圳市芳益电子科技有限公司

     该会员已使用本站10年以上
  • X4C105V20-3AT1
  • 数量1175 
  • 厂家INTERSIL 
  • 封装TSSOP 
  • 批号2023+ 
  • 原装现货库存 低价出售 欢迎加Q详谈 诚信经营 可长期合作
  • QQ:498361569QQ:498361569 复制
    QQ:389337416QQ:389337416 复制
  • 0755-13631573466 QQ:498361569QQ:389337416
  • X4C105V20-3A图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • X4C105V20-3A
  • 数量26976 
  • 厂家INTERSIL 
  • 封装TSSOP20 
  • 批号2018+ 
  • ★★代理原装现货,特价热卖!★★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • X4C105V20图
  • 深圳市赛科世纪电子有限公司

     该会员已使用本站11年以上
  • X4C105V20
  • 数量54447 
  • 厂家INTERSIL 
  • 封装TSSOP-20 
  • 批号22+ 
  • 代理新到原装现货,特价,13006691066
  • QQ:124766973QQ:124766973 复制
  • 13006691066 QQ:124766973
  • X4C105V20图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • X4C105V20
  • 数量6500000 
  • 厂家瑞萨/英特矽尔 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • X4C105V图
  • 深圳市顺兴源微电子商行

     该会员已使用本站7年以上
  • X4C105V
  • 数量9000000 
  • 厂家INTERSIL 
  • 封装TSSOP20 
  • 批号16+ 
  • 原装现货,低价出售
  • QQ:3475025894QQ:3475025894 复制
    QQ:3504055308QQ:3504055308 复制
  • 0755-82723655 QQ:3475025894QQ:3504055308
  • X4C105VAN图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • X4C105VAN
  • 数量22314 
  • 厂家INTERSIL 
  • 封装TSSOP-20 
  • 批号2020+ 
  • 全新原装特价热卖
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • X4C105V图
  • 深圳市浩兴林电子有限公司

     该会员已使用本站16年以上
  • X4C105V
  • 数量5000 
  • 厂家XICOR 
  • 封装TSSOP 
  • 批号2017+ 
  • 优势库存现货,部分无铅
  • QQ:382716594QQ:382716594 复制
    QQ:351622092QQ:351622092 复制
  • 0755-82532799 QQ:382716594QQ:351622092
  • X4C105V图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • X4C105V
  • 数量20000 
  • 厂家XICOR 
  • 封装TSSOP20 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • X4C105V图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • X4C105V
  • 数量12000 
  • 厂家 
  • 封装TSSOP20 
  • 批号19+ 
  • 全新原装挺实单欢迎来撩/可开票
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • X4C105V20-3AT1图
  • 深圳市澳亿芯电子

     该会员已使用本站13年以上
  • X4C105V20-3AT1
  • 数量
  • 厂家INTERSIL 
  • 封装TSSOP 
  • 批号 
  • QQ:634389814QQ:634389814 复制
  • 0755-83227826 QQ:634389814
  • X4C105V图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • X4C105V
  • 数量15000 
  • 厂家XICOR 
  • 封装TSSOP 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • X4C105V20T1图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • X4C105V20T1
  • 数量65000 
  • 厂家INTERSIL 
  • 封装TSSOP20 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • X4C105V图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • X4C105V
  • 数量16924 
  • 厂家XICOR 
  • 封装TSSOP20 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • X4C105V20-3A图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • X4C105V20-3A
  • 数量15000 
  • 厂家Renesas Electronics America Inc 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • X4C105V20-3AT1图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • X4C105V20-3AT1
  • 数量15000 
  • 厂家Renesas Electronics America Inc 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • X4C105V20I图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • X4C105V20I
  • 数量15000 
  • 厂家Renesas Electronics America Inc 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号X4C105V的概述

芯片X4C105V的概述 X4C105V是一款集成电路芯片,该芯片设计用于多种电子应用,因其灵活性和高效能而受到广泛关注。该芯片主要以低功耗、高速度的特性著称,非常适合在嵌入式系统、通信设备以及消费电子产品中使用。X4C105V的应用领域十分广泛,从智能家居设备到工业自动化都能找到它的身影。 该芯片的设计考虑了用户对于性能、成本及能耗的平衡,提供了多种接口和丰富的功能配置,用户可以根据需求灵活选择。这使得X4C105V成为市场上非常有竞争力的选择。通过针对不同应用场景的性能优化,几乎所有对性能有要求的电子设备都能从中受益。 芯片X4C105V的详细参数 X4C105V芯片的技术参数包括但不限于以下几个方面: 1. 工作电压:2.7V 到 5.5V,适合于多种电源环境。 2. 工作温度范围:-40°C 到 +85°C,适用于苛刻环境。 3. 处理速度:最高可达 100 MHz,支持高频率...

产品型号X4C105V20的Datasheet PDF文件预览

DATASHEET  
X4C105  
FN8124  
Rev 2.00  
July 3, 2008  
4k, NOVRAM/EEPROM CPU Supervisor with NOVRAM and Output Ports  
The low voltage X4C105 combines several functions into  
one device. The first is a 2-wire, 4k-bit serial EEPROM  
memory with write protection. A Write Protect (WP) pin  
provides hardware protection for the upper half of this  
memory against inadvertent writes.  
Features  
• 4k-bit serial EEPROM  
- 400kHz serial interface speed  
- 16-byte page write mode  
• One nibble NOVRAM  
A one nibble NOVRAM is provided and occupies a single  
location. This allows access of 4-bits in a single 150ns cycle.  
This is useful for tracking system operation or process  
status. The NOVRAM memory is completely isolated from  
the serial memory section.  
- 120ns NOVRAM access speed  
- AUTOSTORE  
- Direct/bus access of NOVRAM bits  
• Four output ports  
A low voltage detect circuit activates a RESET pin when VCC  
drops below 3V. This signal also blocks new read or write  
operations and initiates a NOVRAM AUTOSTORE. The  
AUTOSTORE operation is powered by an external capacitor  
to ensure that the value in the NOVRAM is always  
maintained in the event of a power failure.  
• Operates at 3.3V ± 10%  
• Low voltage reset when VCC < 3V  
- 3% accurate thresholds available  
- Output signal shows low voltage condition  
- Activates NOVRAM AUTOSTORE  
- Internal block on EEPROM operation  
The four NOVRAM bits also appear on four separate output  
pins to allow continuous control of external circuitry, such as  
ASICs.  
• Max EEPROM/NOVRAM nonvolatile write cycle: 5ms  
• High reliability  
Intersil EEPROMs are designed and tested for applications  
requiring extended endurance. Inherent data retention is  
greater than 100 years.  
- 1,000,000 endurance cycles  
- Guaranteed data retention: 100 years  
- 20 Ld TSSOP package  
Ordering Information  
PART  
NUMBER  
PART  
MARKING  
VCC LIMITS  
(V)  
VTRIP  
(V)  
TEMP RANGE  
(°C)  
PACKAGE  
20 Ld TSSOP  
20 Ld TSSOP  
X4C105V20  
X4C105V  
X4C105V I  
3.3V ±10%  
2.8 to 2.95  
0 to +70  
X4C105V20I  
-40 to +85  
FN8124 Rev 2.00  
July 3, 2008  
Page 1 of 15  
X4C105  
Block Diagram  
WP  
WRITE CONTROL LOGIC  
O0  
O1  
O2  
O3  
HV GENERATION  
TIMING AND CONTROL  
EEPROM  
MEMORY  
OUTPUT  
BUFFERS  
AND  
LATCHES  
STATIC RAM  
MEMORY  
SCL  
COMMAND  
D0  
D1  
D2  
D3  
4k-BITS  
SDA  
S1  
DECODE  
EEPROM  
ARRAY  
I/O  
BUFFERS  
AND  
CONTROL  
LOGIC  
S2  
CONTROL  
LOGIC AND  
TIMING  
CE  
OE  
WE  
Y DECODER  
DATA REGISTER  
CAP  
LOW VOLTAGE DETECT  
POWER-ON RESET  
VOLTAGE  
MONITOR  
SUPPLY  
V
CC  
V
SS  
RESET  
Pinout  
Device Description  
X4C105  
(20 LD TSSOP)  
TOP VIEW  
Serial Memory Section  
The device contains a 4k-bit EEPROM memory array with an  
internal address counter that allows it to be read sequentially,  
through its entire address space after receiving only 1 full  
address. The serial interface includes a current address read  
that requires no input address, but allows reading of the entire  
array starting from the address plus one of the last read or  
write. The address counter is also used for the write operation  
where the user may enter up to a page of data (16 bytes) after  
supplying only 1 full address.  
V
1
2
20  
CAP  
S1  
CC  
19  
18  
WP  
3
S2  
SCL  
4
17 SDA  
16  
CE  
5
D0  
15 D1  
WE  
OE  
6
7
14  
13  
12  
D2  
D3  
O0  
RESET  
O3  
8
A WP pin provides hardware write protection. The WP pin  
active (HIGH) prevents writes to the top half of the memory.  
O2  
9
V
10  
11 O1  
SS  
This section is a 4k-bit version of an industry standard 24C04  
device.  
Pin Descriptions  
NOVRAM Section  
PIN  
DESCRIPTION  
The X4C105 also contains a single nibble of NOVRAM, with  
parallel access. This memory is completely isolated from the  
serial memory section. The NOVRAM is intended to connect to  
the system memory bus and uses standard CE, OE, and WE  
pins to control access.  
VSS  
SDA  
Ground  
Serial Data  
Power  
VCC  
SCL  
Serial Clock  
Write Protect  
A NOVRAM (or nonvolatile RAM) consists of an SRAM part  
and an EEPROM part. The SRAM is saved to EEPROM only  
when power fails and the EEPROM is recalled to SRAM only  
on power-up.  
WP  
S1, S2  
CAP  
Device Select Inputs  
External AUTOSTORE Capacitor  
NOVRAM I/Os  
Output Ports  
D0, D1, D2, D3  
RESET  
CE  
The X4C105 has four output only ports. These are active  
whenever power is applied to the device. The state of the output  
pin reflects the value in the respective SRAM bit. As such, these  
port pins provide a nonvolatile state. The conditions on the pins  
are restored when power is re-applied to the device. This can be  
valuable as a DIP switch replacement for controlling the  
conditions of an ASIC or other system logic.  
Low Voltage Detect Output  
NOVRAM Chip Enable  
NOVRAM Read Signal  
NOVRAM Write signal  
NOVRAM Outputs  
OE  
WE  
O0, O1, O2, O3  
FN8124 Rev 2.00  
July 3, 2008  
Page 2 of 15  
X4C105  
Low Voltage Detection  
Serial Interface  
When the internal low voltage detect circuitry senses that  
Serial Interface Conventions  
VCC is low, several things happen:  
The device supports a bidirectional bus oriented protocol.  
The protocol defines any device that sends data onto the  
bus as a transmitter, and the receiving device as the  
receiver. The device controlling the transfer is called the  
master and the device being controlled is called the slave.  
The master always initiates data transfers, and provides the  
clock for both transmit and receive operations. Therefore,  
the devices in this family operate as slaves in all  
applications.  
• The RESET pin goes active.  
• The contents of the SRAM are automatically saved to the  
“shadow” EEPROM.  
• Internal circuitry switches to provide power for the  
AUTOSTORE operation from the CAP pin so the store  
operation can complete even in the event of a catastrophic  
power failure. To insure this, it is recommended that a  
47µF capacitor be used on the CAP pin. The capacitor is  
continuously charged during normal operation to provide  
the necessary charge to complete the store operation.  
Other internal circuits are turned off to minimize current  
consumption during the store operations.  
Serial Clock and Data  
Data states on the SDA line can change only during SCL  
LOW. SDA state changes during SCL HIGH are reserved for  
indicating start and stop conditions. See Figure 2.  
• Communication to the device is interrupted and any  
command is aborted. If a serial nonvolatile store is in  
progress when power fails, the operation is completed and  
is followed by a NOVRAM AUTOSTORE cycle.  
Serial Start Condition  
All commands are preceded by the start condition, which is a  
HIGH to LOW transition of SDA when SCL is HIGH. The  
device continuously monitors the SDA and SCL lines for the  
start condition and will not respond to any command until  
this condition has been met. See Figure 3.  
Capacitor Backup Circuit  
The diagram in Figure 1 shows a representation of the  
capacitor backup circuit.  
TO INTERNAL  
VOLTAGE SUPPLY  
V
CC  
V
TRIP  
HIGH WHEN  
> V  
V
CC  
TRIP  
LOW WHEN  
V
< V - 0.2V  
CC  
TRIP  
START  
NOVRAM  
AUTOSTORE  
CAP  
FIGURE 1. CAPACITOR BACK-UP CIRCUIT  
SCL  
SDA  
DATA STABLE  
DATA CHANGE  
DATA STABLE  
FIGURE 2. VALID DATA CHANGES ON THE SDA BUS  
FN8124 Rev 2.00  
July 3, 2008  
Page 3 of 15  
 
 
X4C105  
In the read mode, the device will transmit eight bits of data,  
release the SDA line, then monitor the line for an acknowledge.  
If an acknowledge is detected and no stop condition is  
generated by the master, the device will continue to transmit  
data. The device will terminate further data transmissions if an  
acknowledge is not detected. The master must then issue a  
stop condition to return the device to standby mode and place  
the device into a known state.  
Serial Stop Condition  
All communications must be terminated by a stop condition,  
which is a LOW to HIGH transition of SDA when SCL is HIGH.  
The stop condition is also used to place the device into the  
standby power mode after a read sequence. A stop condition  
can only be issued after the transmitting device has released  
the bus. See Figure 2.  
Serial Acknowledge  
Serial Write Operations  
Acknowledge is a software convention used to indicate  
successful data transfer. The transmitting device, either master  
or slave, will release the bus after transmitting eight bits. During  
the ninth clock cycle, the receiver will pull the SDA line LOW to  
acknowledge that it received the eight bits of data. Refer to  
Figure 4.  
Byte Write  
For a write operation, the device requires the slave address byte  
and a word address byte. This gives the master access to any  
one of the words in the array. After receipt of the word address  
byte, the device responds with an acknowledge, and awaits the  
next eight bits of data. After receiving the 8 bits of the data byte,  
the device again responds with an acknowledge. The master then  
terminates the transfer by generating a stop condition, at which  
time the device begins the internal write cycle to the nonvolatile  
memory. During this internal write cycle, the device inputs are  
disabled, so the device will not respond to any requests from the  
master. The SDA output is at high impedance. See Figure 5.  
The device will respond with an acknowledge after recognition  
of a start condition and if the correct device identifier and select  
bits are contained in the slave address byte. If a write operation  
is selected, the device will respond with an acknowledge after  
the receipt of each subsequent eight bit word. The device will  
acknowledge all incoming data and address bytes, except for  
the slave address byte when the device identifier and/or select  
bits are incorrect or when the device is busy, such as during a  
nonvolatile write.  
An attempted write to a protected block of memory will  
suppress the acknowledge bit and the operation will terminate.  
SCL  
SDA  
START  
STOP  
FIGURE 3. VALID START AND STOP CONDITIONS  
SCL  
FROM  
MASTER  
1
8
9
DATA OUTPUT  
FROM  
TRANSMITTER  
DATA OUTPUT  
FROM  
RECEIVER  
START  
ACKNOWLEDGE  
FIGURE 4. ACKNOWLEDGE RESPONSE FROM RECEIVE  
FN8124 Rev 2.00  
July 3, 2008  
Page 4 of 15  
 
X4C105  
The master terminates the data byte loading by issuing a stop  
condition, which causes the device to begin the nonvolatile  
write cycle. As with the byte write operation, all inputs are  
disabled until completion of the internal write cycle. Refer to  
Figure 7 for the address, acknowledge, and data transfer  
sequence.  
Page Write  
The device is capable of a page write operation. It is initiated in  
the same manner as the byte write operation; but instead of  
terminating the write cycle after the first data byte is  
transferred, the master can transmit an unlimited number of 8-  
bit bytes. After the receipt of each byte, the device will respond  
with an acknowledge, and the address is internally  
Stops and Write Modes  
incremented by one. The page address remains constant.  
When the counter reaches the end of the page, it “rolls over”  
and goes back to ‘0’ on the same page. This means that the  
master can write 16 bytes to the page starting at any location  
on that page. If the master begins writing at location 10, and  
loads 12 bytes, then the first 5 bytes are written to locations 10  
through 15, and the last 7 bytes are written to locations 0  
through 6. Afterwards, the address counter would point to  
location 7 of the page that was just written. See Figure 6. If the  
master supplies more than 16 bytes of data, then new data  
over-writes the previous data, one byte at a time.  
Stop conditions that terminate write operations must be sent by  
the master after sending at least 1 full data byte plus the  
subsequent ACK signal. If a stop is issued in the middle of a  
data byte, or before 1 full data byte plus its associated ACK is  
sent, then the device will reset itself without performing the  
write. The contents of the array will not be affected.  
S
SIGNALS  
FROM THE  
S
T
BYTE  
SLAVE  
ADDRESS  
T
A
ADDRESS  
DATA  
O
MASTER  
R
P
T
SDA BUS  
0
A
C
K
A
C
K
A
C
K
SIGNALS  
FROM THE  
SLAVE  
FIGURE 5. BYTE WRITE SEQUENCE  
.
7 BYTES  
5 BYTES  
ADDRESS POINTER  
ADDRESS  
10  
ADDRESS  
n - 1  
ADDRESS = 6  
ENDS HERE  
ADDR = 7  
FIGURE 6. WRITING 12 BYTES TO A 16-BYTE PAGE STARTING AT LOCATION 10  
(1 < n < 16)  
S
SIGNALS  
FROM THE  
MASTER  
S
T
O
P
T
A
R
T
BYTE  
ADDRESS  
SLAVE  
ADDRESS  
DATA  
(1)  
DATA  
(n)  
SDA BUS  
0
A
C
K
A
C
K
A
C
K
A
C
K
SIGNALS  
FROM THE  
SLAVE  
FIGURE 7. PAGE WRITE OPERATION  
FN8124 Rev 2.00  
July 3, 2008  
Page 5 of 15  
 
 
X4C105  
Serial Read Operations  
BYTE LOAD  
COMPLETED BY  
ISSUING STOP  
Read operations are initiated in the same manner as write  
operations with the exception that the R/W bit of the slave  
address byte is set to one. There are three basic read  
operations: current address read, random read, and sequential  
read.  
ISSUE START  
Current Address Read  
ISSUE SLAVE  
ADDRESS BYTE  
ISSUE STOP  
Internally the device contains an address counter that  
maintains the address of the last word read incremented by  
one. Therefore, if the last read was to address n, the next read  
operation would access data from address n+1. On power-up,  
the address of the address counter is undefined, requiring a  
read or write operation for initialization.  
NO  
ACK  
RETURNED?  
YES  
Upon receipt of the slave address byte with the R/W bit set to  
one, the device issues an acknowledge and then transmits the  
eight bits of the data byte. The master terminates the read  
operation when it does not respond with an acknowledge during  
the ninth clock and then issues a stop condition. Refer to Figure  
9 for the address, acknowledge, and data transfer sequence.  
NO  
HIGH VOLTAGE  
CYCLE COMPLETE.  
CONTINUE  
ISSUE STOP  
COMMAND  
YES  
It should be noted that the ninth clock cycle of the read  
operation is not a “don’t care.” To terminate a read operation,  
the master must either issue a stop condition during the ninth  
cycle or hold SDA HIGH during the ninth clock cycle and then  
issue a stop condition.  
CONTINUE NORMAL  
READ OR WRITE  
COMMAND  
PROCEED  
Random Read  
FIGURE 8. ACKNOWLEDGE POLLING SEQUENCE  
A random read operation allows the master to access any  
memory location in the array. Prior to issuing the slave address  
byte with the R/W bit set to one, the master must first perform a  
“dummy” write operation. The master issues the start condition  
and the slave address byte, receives an acknowledge, then  
issues the word address byte. After acknowledging receipts of  
the word address byte, the master immediately issues another  
start condition and the slave address byte with the R/W bit set  
to one. This is followed by an acknowledge from the device  
and then by the eight bit word. The master terminates the read  
operation by not responding with an acknowledge and then  
issuing a stop condition. Refer to Figure 10 for the address,  
acknowledge and data transfer sequence.  
Acknowledge Polling  
The disabling of the inputs during high voltage cycles can be  
used to take advantage of the typical 5ms write cycle time.  
Once the stop condition is issued to indicate the end of the  
master’s byte load operation, the device initiates the internal  
non volatile write cycle. Acknowledge polling can be initiated  
immediately. To do this, the master issues a start condition  
followed by the slave address byte for a write or read  
operation. If the device is still busy with the high voltage cycle  
then no ACK will be returned. If the device has completed the  
write operation, an ACK will be returned and the host can then  
proceed with the read or write operation. Refer to the flow chart  
in Figure 8.  
The device offers a similar operation, called “Set Current  
Address,” where the device ends the transmission and issues a  
stop instead of the second start, shown in Figure 10. The device  
S
S
T
O
P
SLAVE  
ADDRESS  
T
A
R
T
SIGNALS  
FROM THE  
MASTER  
SDA BUS  
1
A
C
K
SIGNALS  
FROM THE  
SLAVE  
DATA  
FIGURE 9. CURRENT ADDRESS READ SEQUENCE  
FN8124 Rev 2.00  
July 3, 2008  
Page 6 of 15  
 
 
X4C105  
goes into standby mode after the stop and all bus activity will be  
ignored until a start is detected. This operation loads the new  
address into the address counter. The next current address read  
operation will then read from the newly loaded address. This  
operation could be useful if the master knows the next address it  
needs to read, but is not ready for the data.  
• a device type identifier that is always ‘1010’.  
• two bits that provide the device select bits.  
• one bit that becomes the MSB of the address.  
• one bit of the slave command byte is a R/W bit. The R/W bit  
of the slave address byte defines the operation to be  
performed. When the R/W bit is a one, then a read operation  
is selected. A zero selects a write operation. Refer to Figure  
11.  
Sequential Read  
Sequential reads can be initiated as either a current address  
read or random address read. The first data byte is transmitted  
as with the other modes; however, the master now responds  
with an acknowledge, indicating it requires additional data. The  
device continues to output data for each acknowledge received.  
The master terminates the read operation by not responding  
with an acknowledge and then issuing a stop condition.  
After loading the entire slave address byte from the SDA bus,  
the device compares the device select bits with the status of  
the device select pins. Upon a correct compare, the device  
outputs an acknowledge on the SDA line.  
Slave Byte  
The data output is sequential, with the data from address n  
followed by the data from address n + 1. The address counter  
for read operations increments through all page and column  
addresses, allowing the entire memory contents to be serially  
read during one operation. At the end of the address space the  
1
0
1
0
S2  
S1  
A8  
R/W  
Word Address  
The word address is either supplied by the master or obtained  
from an internal counter. The internal counter is undefined on a  
power-up condition.  
counter “rolls over” to address 0000 and the device continues  
H
to output data for each acknowledge received. Refer to Figure  
11 for the acknowledge and data transfer sequence.  
Write Protect Operations  
The WP pin provides write protection. The WP pin protects the  
upper half of the array.  
Serial Device Addressing  
Slave Address Byte  
TABLE 1. WRITE PROTECTED AREAS  
Following a start condition, the master must output a slave  
address byte. This byte consists of several parts:  
WP PIN  
SERIAL MEMORY WRITE PROTECTION  
LOW Writes possible to all locations  
HIGH No writes to 100H-1FFH, writes possible to 000H to 0FFH  
S
T
A
R
T
S
S
T
O
P
T
SIGNALS  
FROM THE  
MASTER  
SLAVE  
ADDRESS  
BYTE  
ADDRESS  
SLAVE  
ADDRESS  
A
R
T
SDA BUS  
0
1
A
C
K
A
C
K
A
C
K
SIGNALS  
FROM THE  
SLAVE  
DATA  
FIGURE 10. RANDOM ADDRESS READ SEQUENCE  
SIGNALS  
FROM THE  
MASTER  
SLAVE  
ADDRESS  
S
T
O
P
A
C
K
A
C
K
A
C
K
SDA BUS  
1
A
C
K
SIGNALS  
FROM THE  
SLAVE  
DATA  
(2)  
DATA  
(n - 1)  
DATA  
(1)  
DATA  
(n)  
(“n” IS ANY INTEGER GREATER THAN 1)  
FIGURE 11. SEQUENTIAL READ SEQUENCE  
FN8124 Rev 2.00  
July 3, 2008  
Page 7 of 15  
 
X4C105  
Absolute Maximum Ratings  
Thermal Information  
Temperature Under Bias . . . . . . . . . . . . . . . . . . . . .-65°C to +135°C  
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Voltage on any Pin with Respect to GND . . . . . . . . . . -1.0V to 7.0V  
DC Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Thermal Resistance (Typical, Note 1)  
JA (°C/W)  
110  
20 Lead TSSOP. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTE:  
1. JA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
Electrical Specifications VCC = 3.0V to 3.6V at -40°C to +85°C, unless otherwise specified. Parameters with MIN and/or MAX limits are  
100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are  
not production tested.  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
CC1 (Note 2) Active Supply Current Serial  
VIL = VCC x 0.1, VIH = VCC x 0.9, fSCL = 400kHz, SDA = Read/Write  
2.0  
mA  
Read or Serial Write (Does Not Operation, CE, OE, WE, D0 - D3 = VIH; O0 - O3, RESET = Open  
Include the Nonvolatile Store  
Operation)  
CAP is tied to VCC; VCC > VTRIP  
I
I
CC2 (Note 2) Average Active Supply Current VIL = VCC x 0.1, VIH = VCC x 0.9, SCL, SDA = VIH; WP, S1, S2 = VIL,  
During Serial Nonvolatile Store CE, OE, WE, D0 - D3 = VIH; O0 - O3, RESET = Open CAP is tied to  
3.0  
3.0  
3.0  
3.0  
50  
mA  
mA  
mA  
mA  
µA  
Operation  
VCC. Test during the N.V. write cycle.  
CC3 (Note 2) Active Supply Current Volatile  
NOVRAM Read  
VIL = VCC x 0.1, VIH = VCC x 0.9, SCL, SDA = VIH; WP, S1, S2 = VIL,  
WE = VIH; CE, OE = VIL, D0 - D3, O0 - O3, RESET = Open CAP is  
tied to VCC; VCC > VTRIP  
ICC4 (Note 2) Active Supply Current Volatile  
NOVRAM Write  
VIL = VCC x 0.1, VIH = VCC x 0.9, SCL, SDA = VIH; WP, S1, S2 =VIL,  
OE = VIH; CE, WE = VIL,D0-D3 = VIL or VIH, O0 - O3, RESET = Open  
CAP is tied to VCC; VCC > VTRIP  
I
I
CC5 (Note 2) Average Active Supply Current  
VIL = VCC x 0.1, VIH = VCC x 0.9, SCL, SDA, VIH; WP, S1, S2 = VIL,  
Over NOVRAM Store or Active WE, CE, OE = VIH; D0 - D3, O0 - O3, RESET = Open CAP is tied  
Current During Recall  
to VCC, VCC < VTRIP for Store; VCC > VTRIP for Recall  
SB1 (Note 2) Standby Current  
VIL = VCC x 0.1, VIH = VCC x 0.9, SCL, SDA, CE, WE, OE, D0 - D3,  
= VIH, WP = VIL, O0 - O3,RESET = Open; CAP is tied to VCC  
ILI  
Input Leakage Current  
Output Leakage Current  
VIN = GND to VCC  
10  
10  
µA  
µA  
V
ILO  
VSDA = GND to VCC; Device is in Standby (Note 3)  
VIL (Note 4) Input LOW voltage  
IH (Note 4) Input HIGH voltage  
-0.5  
VCC x 0.3  
V
VCC x 0.7 VCC + 0.5  
0.05 x VCC  
0.4  
V
VHYS  
VOL  
Schmitt Trigger Input Hysteresis  
V
Output LOW Voltage  
Output HIGH Voltage  
IOL = 2.0mA, VCC = 3.3V  
IOH = -1mA, VCC = 3.3V  
V
VOH  
VCC - 0.4  
V
NOTES:  
2. The device enters the active state after any start, and remains active until: 9 clock cycles later if the device select bits in the slave address byte  
are incorrect; 200ns after a stop ending a read operation; or tWC after a stop ending a write operation.  
3. The device goes into standby: 200ns after any stop, except those that initiate a high voltage write cycle; tWC after a stop that initiates a high voltage  
cycle; or 9 clock cycles after any start that is not followed by the correct device select bits in the slave address byte.  
4. VIL min and VIH max are for reference only and are not tested.  
Capacitance TA = +25°C, f = 1.0 MHz, VCC = 3.0V to 3.6V.  
SYMBOL  
CI/O  
PARAMETER  
Input/Output Capacitance (SDA, D0 - D3, O0 - O3)  
Input Capacitance (SCL, WP, CE, WE, OE, S1, S2)  
TEST CONDITIONS  
VI/O = 0V  
TYP  
8
UNIT  
pF  
CIN  
VIN = 0V  
6
pF  
FN8124 Rev 2.00  
July 3, 2008  
Page 8 of 15  
 
 
 
 
X4C105  
Serial Nonvolatile Write Cycle Timing  
TYP  
SYMBOL  
PARAMETER  
MIN  
(Note 5)  
MAX  
UNIT  
t
WC (Note 5) Write Cycle Time  
3
5
ms  
NOTE:  
5. tWC is the time from a valid stop condition at the end of a write sequence to the end of the self-timed internal nonvolatile write cycle. It is the  
minimum cycle time to be allowed for any nonvolatile write by the user, unless acknowledge polling is used.  
Equivalent AC Output Load Circuit for V = 3.0V to  
3.6V  
Serial Memory AC Characteristics  
CC  
Serial AC Test Conditions  
3.3V  
Input pulse levels  
VCC x 0.1 to VCC x 0.9  
10ns  
FOR V = 0.4V  
OL  
Input rise and fall times  
Input and output timing levels  
Output load  
1533  
AND I = 2mA  
OL  
VCC x 0.5  
SDA  
Standard output load  
100pF  
Electrical Specifications TA = -40°C to +85°C, VCC = +3.0V to +3.6V, unless otherwise specified. Parameters with MIN and/or MAX limits  
are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and  
are not production tested.  
400kHz OPTION  
SYMBOL  
fSCL  
PARAMETER  
MIN  
MAX  
400  
50  
UNIT  
kHz  
ns  
SCL Clock Frequency  
0
tIN  
Pulse Width of Spikes to be Suppressed by the Input Filter  
SCL Low to SDA Data Out Valid  
Time the Bus Must be Free Before a New Transmission Can Start  
Clock Low Time  
0
tAA  
0.1  
0.9  
µs  
tBUF  
1.3  
µs  
tLOW  
1.3  
µs  
tHIGH  
Clock High Time  
0.6  
µs  
tSU:STA  
tHD:STA  
tSU:DAT  
tHD:DAT  
tSU:STO  
tDH  
Start Condition Set-up Time  
Start Condition Hold Time  
0.6  
µs  
0.6  
µs  
Data In Set-up Time  
100  
ns  
Data In Hold Time  
0
µs  
Stop Condition Set-up Time  
Data Output Hold Time  
0.6  
µs  
50  
ns  
tR  
SDA and SCL Rise Time  
20 + 0.1Cb (Note 6)  
300  
300  
ns  
tF  
SDA And SCL Fall Time  
20 + 0.1Cb (Note 6)  
ns  
tSU: S1, S2,WP  
tHD: S1, S2,WP  
Cb  
S1, S2 and WP Set-up Time  
S1, S2 and WP Hold Time  
0.4  
0.4  
ms  
ms  
pF  
Capacitive Load for Each Bus Line  
400  
NOTES:  
6. Cb = total capacitance of one bus line in pF.  
FN8124 Rev 2.00  
July 3, 2008  
Page 9 of 15  
 
 
X4C105  
Serial Timing Diagrams  
Bus Timing  
t
t
t
t
R
F
HIGH  
LOW  
SCL  
t
SU:DAT  
t
t
t
SU:STO  
SU:STA  
HD:DAT  
t
HD:STA  
SDA IN  
t
t
t
BUF  
AA  
DH  
SDA OUT  
S1, S2 and WP Pin Timing  
START  
SCL  
CLK 1  
CLK 9  
SLAVE ADDRESS BYTE  
SDA IN  
t
t
HD: S1, S2, WP  
SU: S1, S2, WP  
S1, S2 AND WP  
Write Cycle Timing  
SCL  
TH  
SDA  
8
BIT OF LAST BYTE  
ACK  
t
WC  
STOP  
START  
CONDITION  
CONDITION  
NOVRAM Equivalent AC Load Circuits  
NOVRAM AC Characteristics  
NOVRAM AC Conditions of Test  
3.3V  
Input pulse levels  
VCC x 0.1 to VCC x 0.9  
10ns  
Input rise and fall times  
Input and output timing levels  
1596  
V
CC x 0.5  
3093  
30pF  
FN8124 Rev 2.00  
July 3, 2008  
Page 10 of 15  
X4C105  
NOVRAM Read Cycle Specifications  
t
RC  
tCE  
CE  
tOE  
OE  
t
WES  
t
WEH  
WE  
t
OHZ  
t
OLZ  
t
OH  
t
LZ  
t
HZ  
D0 - D3  
Electrical Specifications  
Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature  
limits established by characterization and are not production tested.  
VCC = 3.0V TO 3.6V  
-40°C TO +85°C  
SYMBOL  
PARAMETER  
MIN  
MAX  
120  
50  
UNIT  
ns  
tRC  
tCE  
Read Cycle Time  
Chip Enable Access Time  
Output Enable Access Time  
ns  
tOE  
50  
ns  
tOH  
Output Hold From CE or OE High  
Write Enable High Set-ups Time  
Write Enable High Hold Time  
0
25  
25  
0
ns  
tWES  
tWEH  
ns  
ns  
t
LZ (Note 7) Chip Enable to Output in Low Z  
OLZ (Note 7) Output Enable to Output in Low Z  
HZ (Note 7) Chip Disable to Output in High Z  
OHZ (Note 7) Output Disable to Output in High Z  
tSOE (Note 7) OE Setup Prior to Operation in 2-wire Mode  
HOE (Note 7) OE Hold Following Operation in 2-wire Mode  
NOTE:  
ns  
t
0
ns  
t
0
50  
50  
ns  
t
0
ns  
100  
100  
ms  
ms  
t
7. tLZ and tOLZ min.; tSOE and tHOE min; and tHZ and tOHZ are periodically sampled and not 100% tested. tHZ max. and tOHZ max. are measured,  
with CL = 5pF, from the point when CE or OE return high (whichever occurs first) to the time when the outputs are no longer driven.  
Electrical Specifications  
VCC = 3.0V to 3.6V, TA = -40°C to +85°C. Parameters with MIN and/or MAX limits are 100% tested at +25°C,  
unless otherwise specified. Temperature limits established by characterization and are not production  
tested.  
SYMBOL  
PARAMETER  
MIN  
120  
170  
50  
MAX  
UNIT  
ns  
tWC  
tWC1  
tOES  
tOEH  
Write Cycle Time  
Write Cycle Time  
ns  
Output Enable HIGH Set-up Time  
Output Enable HIGH Hold Time  
ns  
50  
ns  
FN8124 Rev 2.00  
July 3, 2008  
Page 11 of 15  
 
X4C105  
Electrical Specifications  
VCC = 3.0V to 3.6V, TA = -40°C to +85°C. Parameters with MIN and/or MAX limits are 100% tested at +25°C,  
unless otherwise specified. Temperature limits established by characterization and are not production  
tested. (Continued)  
SYMBOL  
PARAMETER  
MIN  
50  
0
MAX  
UNIT  
ns  
tCW  
tCE  
Chip Enable to End of Write Input  
Write Set-up time  
ns  
tCH  
Write Hold Time  
0
ns  
tWP  
tWP1  
tWPH  
tDS  
Write Pulse Width  
50  
100  
50  
40  
0
ns  
Write Pulse Width  
ns  
Write Pulse HIGH Recovery Time  
Data Set-up to End of Write  
Data Hold Time  
ns  
ns  
tDH  
ns  
tNDO  
New Data Output  
50  
50  
ns  
tSOE (Note 8) OE Set-up Prior to Operation In 2-wire Mode  
100  
100  
ms  
ms  
ns  
t
HOE (Note 8) OE Hold Following Operation in 2-wire Mode  
tWZ  
tOW  
Write Enable to Output in HIGH-Z  
Output Active From End of Write  
0
0
0
ns  
t
CHZ (Note 8) Chip Disable to Output in High Z  
OHZ (Note 8) Output Disable to Output in High Z  
NOTE:  
50  
50  
ns  
t
ns  
8. tLZ and tOLZ min.; tSOE and tHOE min; and tHZ and tOHZ are periodically sampled and not 100% tested. tHZ max and tOHZ max are measured, with  
CL = 5pF, from the point when CE or OE return high (whichever occurs first) to the time when the outputs are no longer driven.  
NOVRAM WE Controlled Write Cycle  
OE  
t
OES  
t
CH  
t
CW  
CE  
t
t
OEH  
t
CE  
WP  
WE  
t
WPH  
t
WC  
t
t
DS  
DH  
D0-D3  
DATA VALID  
(DATA I/O)  
t
NDO  
O0-O3  
NEW VALID DATA  
PREVIOUS VALID DATA  
(DATA OUT)  
FN8124 Rev 2.00  
July 3, 2008  
Page 12 of 15  
 
X4C105  
NOVRAM CE Controlled Write Cycle  
OE  
t
t
OES  
t
CW  
OEH  
CE  
t
t
CE  
CH  
t
WP  
t
WE  
WPH  
t
WC  
t
t
DH  
DS  
D0-D3  
DATA VALID  
(DATA IN)  
t
NDO  
O0-O3  
PREVIOUS VALID DATA  
NEW VALID DATA  
(DATA OUT)  
Low Voltage Detect/Power Cycle Parameters Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise  
specified. Temperature limits established by characterization and are not production  
tested.  
SYMBOLS  
VTRIP  
tRPD  
PARAMETERS  
MIN  
TYP  
MAX  
2.95  
500  
UNIT  
V
Reset Trip Voltage-blank  
2.80  
2.875  
VCC Detect to Reset Active  
ns  
ms  
µs  
µs  
ns  
V
tPURST  
tF  
Power-up Reset Time-Out Delay (tPURST Option 1)-Default  
VCC Fall Time From VCC = 3V to VCC = 2.5V  
VCC Rise Time From VCC = 2.5V to VCC = 3V  
Output Pins Valid after VCC Exceeds VTRIP  
Reset valid VCC  
100  
100  
100  
200  
400  
tR  
tOVT  
200  
VRVALID  
1
FN8124 Rev 2.00  
July 3, 2008  
Page 13 of 15  
X4C105  
Low Voltage Detect and Output Pin Recall  
V
TRIP  
V
CC  
t
PURST  
t
t
RPD  
PURST  
t
F
t
R
V
RVALID  
RST  
t
OVT  
t
OVT  
V
(min)  
CC  
DATA VALID  
DATA VALID  
O0-O3  
© Copyright Intersil Americas LLC 2005-2008. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8124 Rev 2.00  
July 3, 2008  
Page 14 of 15  
X4C105  
Packaging Information  
20-Lead Plastic, TSSOP, Package Type V  
.025 (.65) BSC  
.169 (4.3)  
.177 (4.5)  
.252 (6.4) BSC  
.193 (4.9)  
.200 (5.1)  
.047 (1.20)  
.0075 (.19)  
.0118 (.30)  
.002 (.05)  
.006 (.15)  
.010 (.25)  
Gage Plane  
0° - 8°  
Seating Plane  
.019 (.50)  
.029 (.75)  
Detail A (20X)  
.031 (.80)  
.041 (1.05)  
See Detail “A”  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
FN8124 Rev 2.00  
July 3, 2008  
Page 15 of 15  
配单直通车
X4C105V20产品参数
型号:X4C105V20
是否Rohs认证: 不符合
生命周期:Transferred
包装说明:PLASTIC, TSSOP-20
Reach Compliance Code:unknown
风险等级:5.75
Is Samacsys:N
可调阈值:NO
模拟集成电路 - 其他类型:POWER SUPPLY SUPPORT CIRCUIT
JESD-30 代码:R-PDSO-G20
JESD-609代码:e0
长度:6.5 mm
信道数量:1
功能数量:1
端子数量:20
最高工作温度:70 °C
最低工作温度:
封装主体材料:PLASTIC/EPOXY
封装代码:TSSOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, THIN PROFILE, SHRINK PITCH
认证状态:Not Qualified
座面最大高度:1.2 mm
最大供电电压 (Vsup):3.63 V
最小供电电压 (Vsup):2.97 V
标称供电电压 (Vsup):3.3 V
表面贴装:YES
温度等级:COMMERCIAL
端子面层:Tin/Lead (Sn/Pb)
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
宽度:4.4 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!