欢迎访问ic37.com |
会员登录 免费注册
发布采购

CY22394FC 参数 Datasheet PDF下载

CY22394FC图片预览
型号: CY22394FC
PDF下载: 下载PDF文件 查看货源
内容描述: 三锁相环串行可编程闪存的可编程时钟发生器 [Three-PLL Serial-Programmable Flash-Programmable Clock Generator]
分类和应用: 时钟发生器闪存
文件页数/大小: 19 页 / 512 K
品牌: CYPRESS [ CYPRESS SEMICONDUCTOR ]
 浏览型号CY22394FC的Datasheet PDF文件第1页浏览型号CY22394FC的Datasheet PDF文件第2页浏览型号CY22394FC的Datasheet PDF文件第3页浏览型号CY22394FC的Datasheet PDF文件第4页浏览型号CY22394FC的Datasheet PDF文件第6页浏览型号CY22394FC的Datasheet PDF文件第7页浏览型号CY22394FC的Datasheet PDF文件第8页浏览型号CY22394FC的Datasheet PDF文件第9页  
CY22393, CY22394, CY22395
Operation
The CY22393, CY22394, and CY22395 are a family of parts
designed as upgrades to the existing CY22392 device. These
parts have similar performance to the CY22392, but provide
advanced features to meet the needs of more demanding
applications.
The clock family has three PLLs which, when combined with the
reference, allow up to four independent frequencies to be output
on up to six pins. These three PLLs are completely
programmable.
The input load capacitors are placed on-die to reduce external
component cost. These capacitors are true parallel-plate
capacitors for ultra-linear performance. These were chosen to
reduce the frequency shift that occurs when nonlinear load
capacitance interacts with load, bias, supply, and temperature
changes. Nonlinear (FET gate) crystal load capacitors must not
be used for MPEG, POTS dial tone, communications, or other
applications that are sensitive to absolute frequency
requirements.
The value of the load capacitors is determined by six bits in a
programmable register. The load capacitance can be set with a
resolution of 0.375pF for a total crystal load range of 6pF to 30pF.
For driven clock inputs, the input load capacitors can be
completely bypassed. This allows the clock chip to accept driven
frequency inputs up to 166 MHz. If the application requires a
driven input, leave XTALOUT floating.
Configurable PLLs
PLL1 generates a frequency that is equal to the reference
divided by an 8-bit divider (Q) and multiplied by an 11-bit divider
in the PLL feedback loop (P). The output of PLL1 is sent to two
locations: the cross point switch and the PECL output
(CY22394). The output of PLL1 is also sent to a /2, /3, or /4
synchronous post-divider that is output through CLKE. The
frequency of PLL1 can be changed using serial programming or
by external CMOS inputs, S0, S1, and S2. See the following
section on
for more detail.
PLL2 generates a frequency that is equal to the reference
divided by an 8-bit divider (Q) and multiplied by an 11-bit divider
in the PLL feedback loop (P). The output of PLL2 is sent to the
cross point switch. The frequency of PLL2 is changed using
serial programming.
PLL3 generates a frequency that is equal to the reference
divided by an 8-bit divider (Q) and multiplied by an 11-bit divider
in the PLL feedback loop (P). The output of PLL3 is sent to the
cross point switch. The frequency of PLL3 is changed using
serial programming.
Digital VCXO
The serial programming interface is used to dynamically change
the capacitor load value on the crystal. A change in crystal load
capacitance corresponds with a change in the reference
frequency.
For special pullable crystals specified by Cypress, the
capacitance pull range is +150 ppm to –150 ppm from midrange.
Be aware that adjusting the frequency of the reference affects all
frequencies on all PLLs in a similar manner since all frequencies
are derived from the single reference.
Output Configuration
Under normal operation there are four internal frequency
sources that are routed through a programmable cross point
switch to any of the four programmable 7-bit output dividers. The
four sources are: reference, PLL1, PLL2, and PLL3. The
following is a description of each output.
CLKA’s output originates from the cross point switch and goes
through a programmable 7-bit post divider. The 7-bit post divider
derives its value from one of the two programmable registers.
See the section on “General Purpose Inputs”
information.
CLKB’s output originates from the cross point switch and goes
through a programmable 7-bit post divider. The 7-bit post divider
derives its value from one of the two programmable registers.
See the section on “General Purpose Inputs”
information.
CLKC’s output originates from the cross point switch and goes
through a programmable 7-bit post divider. The 7-bit post divider
derives its value from one programmable register.
CLKD’s output originates from the cross point switch and goes
through a programmable 7-bit post divider. The 7-bit post divider
derives its value from one programmable register. For the
CY22394, CLKD is brought out as the complimentary version of
a LV PECL Clock referenced to CLKE, bypassing both the cross
point switch and 7-bit post divider.
CLKE’s output originates from PLL1 and goes through a post
divider that may be programmed to /2, /3, or /4. For the CY22394,
CLKE is brought out as a low voltage PECL Clock, bypassing the
post divider.
XBUF is the buffered reference.
Page 5 of 19
General Purpose Inputs
S2 is a general purpose input that is programmed to allow for two
different frequency settings. Options that switches with this
general purpose input are as follows: the frequency of PLL1, the
output divider of CLKB, and the output divider of CLKA.
The two frequency settings are contained within an eight-row
frequency table. The values of SCLK (S1) and SDAT (S0) pins
are latched during start up and used as the other two indexes
into this array.
CLKA and CLKB have seven-bit dividers that point to one of the
two programmable settings (register 0 and register 1). Both
clocks share a single register control and both must be set to
register 0, or both must be set to register 1.
For example, the part may be programmed to use S0, S1, and
S2 (0,0,0 to 1,1,1) to control eight different values of P and Q on
PLL1. For each PLL1 P and Q setting, one of the two CLKA and
CLKB divider registers can be chosen. Any divider change as a
result of switching S0, S1, or S2 is guaranteed to be glitch free.
Crystal Input
The input crystal oscillator is an important feature of this family
of parts because of its flexibility and performance features.
The oscillator inverter has programmable drive strength. This
allows for maximum compatibility with crystals from various
manufacturers, process, performance, and quality.
Document #: 38-07186 Rev. *D