欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • TPA3136D2PWPR
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • TPA3136D2PWPR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TPA3136D2PWPR 现货库存
  • 数量5000 
  • 厂家TI 
  • 封装HTSSOP28 
  • 批号23+ 
  • 全新原装,欢迎查询
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TPA3136D2PWPR图
  • 集好芯城

     该会员已使用本站13年以上
  • TPA3136D2PWPR 现货库存
  • 数量26406 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TPA3136D2PWPR图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • TPA3136D2PWPR 现货库存
  • 数量28500 
  • 厂家TI【原装正品】 
  • 封装TSSOP28 
  • 批号▊ NEW ▊ 
  • ▊▊★代理TI▊▊全系列销售【100%全新原装正品】★长期供应,量大可订,价格优惠!
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • TPA3136D2PWPR图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • TPA3136D2PWPR 现货库存
  • 数量5300 
  • 厂家TI/德州仪器? 
  • 封装HTSSOP28 
  • 批号24+ 
  • 全新原装★真实库存★含13点增值税票!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • TPA3136D2PWPR图
  • 深圳市积美福电子科技有限公司

     该会员已使用本站4年以上
  • TPA3136D2PWPR 现货库存
  • 数量2000 
  • 厂家TI/德州仪器 
  • 封装HTSSOP-28 
  • 批号21+ 
  • 原装现货,假一罚十!!!
  • QQ:647176908QQ:647176908 复制
    QQ:499959596QQ:499959596 复制
  • 0755-83228296 QQ:647176908QQ:499959596
  • TPA3136D2PWPR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TPA3136D2PWPR 现货库存
  • 数量23200 
  • 厂家TI 
  • 封装N/A 
  • 批号21+ 
  • 全新原装有现货库存--价格有优势
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TPA3136D2PWPR图
  • 深圳市嘉胜威科技有限公司

     该会员已使用本站7年以上
  • TPA3136D2PWPR 现货库存
  • 数量11990 
  • 厂家TI 
  • 封装HTSSOP28 
  • 批号22+ 
  • 专注品牌推广原盒原装进口现货
  • QQ:611095588QQ:611095588 复制
  • 0755-82736771 QQ:611095588
  • TPA3136D2PWPR图
  • 深圳市欧昇科技有限公司

     该会员已使用本站2年以上
  • TPA3136D2PWPR 现货库存
  • 数量168 
  • 厂家TI/德州仪器 
  • 封装HTSSOP28 
  • 批号16+ 
  • 公司只做原装现货支持实单
  • QQ:2885528234QQ:2885528234 复制
  • -0755-83220848 QQ:2885528234
  • TPA3136D2PWPR图
  • 深圳德田科技有限公司

     该会员已使用本站7年以上
  • TPA3136D2PWPR 现货库存
  • 数量9000 
  • 厂家原厂原装 
  • 封装NA 
  • 批号22+ 
  • 原装现货质量保证,可出样品可开税票
  • QQ:229754250QQ:229754250 复制
  • 0755-83254070 QQ:229754250
  • TPA3136D2PWPR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TPA3136D2PWPR 现货库存
  • 数量2000 
  • 厂家TI 
  • 封装HTSSOP (PWP) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TPA3136D2PWPR图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • TPA3136D2PWPR 现货库存
  • 数量18500 
  • 厂家TI(德州仪器) 
  • 封装HTSSOP-28 
  • 批号23+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • TPA3136D2PWPR图
  • 深圳市世鹏电子科技有限公司

     该会员已使用本站13年以上
  • TPA3136D2PWPR 现货热卖
  • 数量20000 
  • 厂家TI 
  • 封装HTSSOP28 
  • 批号21+ 
  • 专业TI德州仪器原装芯片供应商!
  • QQ:80034248QQ:80034248 复制
    QQ:100633298QQ:100633298 复制
  • 0755-83987638 88877298 QQ:80034248QQ:100633298
  • TPA3136D2PWPR图
  • 深圳市西昂特科技有限公司

     该会员已使用本站13年以上
  • TPA3136D2PWPR 优势库存
  • 数量30000 
  • 厂家TI/德州仪器 
  • 封装HTSSOP-28 
  • 批号21+ 
  • 原厂原装现货
  • QQ:2881291855QQ:2881291855 复制
    QQ:1158574719QQ:1158574719 复制
  • 0755-82524647 QQ:2881291855QQ:1158574719
  • TPA3136D2PWPR图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • TPA3136D2PWPR
  • 数量5300 
  • 厂家TI(德州仪器) 
  • 封装HTSSOP-28 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • TPA3136D2PWPR图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • TPA3136D2PWPR
  • 数量3253 
  • 厂家TI/德州仪器 
  • 封装HTSSOP 
  • 批号22+ 
  • 支持检测.现货价优!
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • TPA3136D2PWPR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • TPA3136D2PWPR
  • 数量5000 
  • 厂家TI 
  • 封装HTSSOP28 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • TPA3136D2PWPR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TPA3136D2PWPR
  • 数量3028 
  • 厂家TI/德州仪器 
  • 封装HTSSOP28 
  • 批号21+ 
  • 羿芯诚只做原装 原厂渠道 价格优势
  • QQ:2881498351QQ:2881498351 复制
  • 0755-22968581 QQ:2881498351
  • TPA3136D2PWPR图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • TPA3136D2PWPR
  • 数量12245 
  • 厂家TI/德州仪器 
  • 封装HTSSOP28 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • TPA3136D2PWPR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TPA3136D2PWPR
  • 数量8500 
  • 厂家TI(德州仪器) 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • TPA3136D2PWPR图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • TPA3136D2PWPR
  • 数量5600 
  • 厂家TI 
  • 封装TSSOP28 
  • 批号23+ 
  • 只做原装正品,深圳现货
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • TPA3136D2PWPR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TPA3136D2PWPR
  • 数量4250 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TPA3136D2PWPR图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • TPA3136D2PWPR
  • 数量44300 
  • 厂家TI 
  • 封装HTSSOP28 
  • 批号2019+ 
  • TI一级代理专营品牌绝对进口原装假一赔十
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • TPA3136D2PWPR图
  • 集好芯城

     该会员已使用本站13年以上
  • TPA3136D2PWPR
  • 数量17689 
  • 厂家TI/德州仪器 
  • 封装HTSSOP28 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TPA3136D2PWPR?图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPA3136D2PWPR?
  • 数量16300 
  • 厂家TI 
  • 封装HTSSOP28 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • TPA3136D2PWPR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPA3136D2PWPR
  • 数量11631 
  • 厂家TI/德州仪器 
  • 封装HTSSOP28 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TPA3136D2PWPR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TPA3136D2PWPR
  • 数量13048 
  • 厂家TI(德州仪器) 
  • 封装HTSSOP-28 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • TPA3136D2PWPR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TPA3136D2PWPR
  • 数量30000 
  • 厂家TI 
  • 封装HTSSOP28 
  • 批号23+ 
  • 代理全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • TPA3136D2PWPR图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • TPA3136D2PWPR
  • 数量58384 
  • 厂家TI 
  • 封装HTSSOP-28 
  • 批号24+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • TPA3136D2PWPR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TPA3136D2PWPR
  • 数量52274 
  • 厂家TI 
  • 封装HTSSOP 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • TPA3136D2PWPR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TPA3136D2PWPR
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装HTSSOP-28 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • TPA3136D2PWPR图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • TPA3136D2PWPR
  • 数量8800 
  • 厂家TI/德州仪器 
  • 封装HTSSOP 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:3533288158QQ:3533288158 复制
    QQ:408391813QQ:408391813 复制
  • 0755-84876394 QQ:3533288158QQ:408391813
  • TPA3136D2PWPR图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • TPA3136D2PWPR
  • 数量19873 
  • 厂家TI【原装正品】 
  • 封装TSSOP28 
  • 批号▊ NEW ▊ 
  • ▊▊★代理TI全系列销售【100%全新原装正品】★长期供应,量大可订,价格优惠!
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • TPA3136D2PWPR图
  • 深圳市积美福电子科技有限公司

     该会员已使用本站4年以上
  • TPA3136D2PWPR
  • 数量2000 
  • 厂家TI/德州仪器 
  • 封装HTSSOP-28 
  • 批号21+ 
  • 自己原包装现货 实单|原装| 现货
  • QQ:647176908QQ:647176908 复制
    QQ:499959596QQ:499959596 复制
  • 0755-83228296 QQ:647176908QQ:499959596
  • TPA3136D2PWPR图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • TPA3136D2PWPR
  • 数量865000 
  • 厂家TI/德州仪器 
  • 封装HTSSOP28 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • TPA3136D2PWPR图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • TPA3136D2PWPR
  • 数量9328 
  • 厂家TI-德州仪器 
  • 封装TSSOP-28 
  • 批号▉▉:2年内 
  • ▉▉¥17一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • TPA3136D2PWPR图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • TPA3136D2PWPR
  • 数量900 
  • 厂家Texas Instruments 
  • 封装28-HTSSOP 
  • 批号23+ 
  • ▉原装正品▉力挺实单全系列可订
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050

产品型号TPA3136D2PWPR的概述

TPA3136D2PWPR芯片概述 TPA3136D2PWPR是一款来自德州仪器(Texas Instruments, TI)的高效音频放大器芯片。该芯片特别适用于便携设备、家庭影院、电视和其他需要高性能音频放大的应用场景。TPA3136D2采用了D类放大技术,这种技术使得其在功率转换效率方面达到惊人的90%以上,显著降低了功耗和发热。该芯片的输出功率可达到两路25W,能够驱动多种负载,适应不同的应用需求。 TPA3136D2PWPR的详细参数 TPA3136D2PWPR的主要技术参数包括: 1. 输出功率:在4Ω负载下,提供最大25W的输出功率;在8Ω负载下,输出功率约为12.5W。 2. 供电电压:芯片支持的供电范围为9V至30V,适应各种电源设计需求。 3. 功率效率:当驱动典型的负载(如8Ω扬声器)时,效率可达到90%。 4. 工作温度范围:芯片的工作温度范围为-40°C到85...

产品型号TPA3136D2PWPR的Datasheet PDF文件预览

Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
具有超低 EMI TPA3136D2TPA3136AD2 10W 无电感器立体声 (BTL)  
D 类音频放大器  
1 特性  
3 说明  
1
电源电压为 12V、总谐波失真 + 噪声 (THD+N) 为  
10%、负载为 6时的功率为 2 × 10W/通道  
TPA3136D2TPA3136AD2 器件一款高效 D 类音频  
功率放大器,适用于以高达 10W 的功率驱动阻抗为  
68(每通道)的桥接式立体声扬声器。  
电源电压为 13VTHD+N 10%、负载为 8时  
的功率为 2 × 10W/通道  
借助采用扩展频谱控制方案的高级 EMI 抑制技术,既  
能实现在输出端使用成本较低的铁氧体磁珠滤波器,同  
时能够满足 EMC 要求,降低了系统成本。  
D 类运行(负载为 8)时效率高达 90%,无需散  
热器  
1W/4Ω/1kHz 条件下,THD+N <0.05%  
TPA3136D2TPA3136AD2 器件不仅针对短路和过载  
提供全面的保护,而且 SpeakerGuard™扬声器保护电  
路包括一个功率限制器和一个直流检测电路,可以保护  
所连接的扬声器。直流检测及引脚至引脚、引脚接地和  
引脚至电源短路保护电路可以防止扬声器在生产过程中  
发生输出直流和引脚短路。同时充分保护输出,防止  
GNDPVCC、输出至输出短路。短路保护和热保护具  
有自动恢复功能。  
宽电源电压范围允许在 4.5VTPA3136AD2 为  
8V)至 14.4V 范围内运行  
无电感器运行  
通过扩展频谱技术增强了 EMI 性能  
SpeakerGuard™扬声器保护包括功率限制器和直  
流保护  
可靠的引脚对引脚、引脚对地、引脚对电源短路保  
护和热保护  
26dB 固定增益  
TPA3136D2TPA3136AD2 器件可驱动阻抗低至 4Ω  
的立体声扬声器。TPA3136D2TPA3136AD2 的效率  
在负载为 8时高达 90%,无需外部散热器,而且  
TPA3136D2TPA3136AD2 将在双层印刷电路板  
(PCB) 上实现全功率输出。  
单端或差动模拟输入  
启动时无喀哒声  
2 应用  
电视  
器件信息(1)  
蓝牙、无线扬声器  
迷你扬声器  
USB 扬声器  
消费类音频设备  
器件型号  
TPA3136D2  
TPA3136AD2  
封装  
HTSSOP (28)  
HTSSOP (28)  
封装尺寸(标称值)  
9.70mm × 4.40mm  
9.70mm × 4.40mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
TPA3136D2  
Ferrite  
Bead  
Filter  
RIGHT  
LEFT  
Audio  
Source  
And Control  
Ferrite  
Bead  
Filter  
SD  
FAULT  
PBTL  
SELECT  
Power Supply  
4.5V-14.4V  
PBTL Mode Select  
PLIMIT  
Power Limiter Threshold Select  
110VAC->240VAC  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLOS938  
 
 
 
 
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
目录  
9.4 Device Functional Modes........................................ 16  
10 Application and Implementation........................ 17  
10.1 Application Information.......................................... 17  
10.2 Typical Applications ............................................. 17  
11 Power Supply Recommendations ..................... 24  
11.1 Power Supply Decoupling, CS ............................. 24  
12 Layout................................................................... 25  
12.1 Layout Guidelines ................................................. 25  
12.2 Layout Example .................................................... 26  
13 器件和文档支持 ..................................................... 27  
13.1 器件支持 ............................................................... 27  
13.2 文档支持 ............................................................... 27  
13.3 相关链接................................................................ 27  
13.4 接收文档更新通知 ................................................. 27  
13.5 支持资源................................................................ 27  
13.6 ....................................................................... 27  
13.7 静电放电警告......................................................... 27  
13.8 Glossary................................................................ 27  
14 机械、封装和可订购信息....................................... 28  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings ............................................................ 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 7  
7.6 Switching Characteristics.......................................... 7  
7.7 Typical Characteristics.............................................. 8  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 11  
9.1 Overview ................................................................. 11  
9.2 Functional Block Diagram ....................................... 12  
9.3 Feature Description................................................. 13  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision E (December 2017) to Revision F  
Page  
Changed the Functional Block Diagram, missing and unconnected lines .......................................................................... 12  
Changes from Revision D (March 2017) to Revision E  
Page  
Changed the Supply Voltage (AVCC to GND, PVCC to GND) MAX value From: 16 V To: 20 V in the Absolute  
Maximum Ratings................................................................................................................................................................... 6  
Changed Figure 18 .............................................................................................................................................................. 17  
Changed Figure 19 .............................................................................................................................................................. 18  
Changes from Revision C (March 2017) to Revision D  
Page  
Changed text From: "channel exceeds 14% (for example, +57%, –43%)." To: "channel exceeds 24% (±10%)." in the  
DC Detect section................................................................................................................................................................. 14  
Deleted text "The inputs must remain at or above the voltage..." from the DC Detect section............................................ 14  
Changes from Revision B (June 2016) to Revision C  
Page  
已添加 在数据表中添加了 TPA3136AD2 器件。 .................................................................................................................... 1  
Changes from Revision A (June 2016) to Revision B  
Page  
Updated Thermal Characteristics .......................................................................................................................................... 7  
Fixed Output Power characteristic to match initial description .............................................................................................. 7  
Fixed duplicate graph issue ................................................................................................................................................... 8  
2
版权 © 2016–2020, Texas Instruments Incorporated  
 
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
Changes from Original (May 2016) to Revision A  
Page  
Changed data sheet from Product Preview to Production Data ............................................................................................ 4  
Copyright © 2016–2020, Texas Instruments Incorporated  
3
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
5 Device Comparison Table  
DEVICE NAME  
DESCRIPTION  
15-W Filter-Free Class-D Stereo Amplifier with  
SpeakerGuard™  
TPA3110D2  
TPA3140D2  
10-W Inductor-Free Class-D Stereo Amplifier with  
Ultra Low EMI and AGL  
6 Pin Configuration and Functions  
PWP Package  
28-Pin HTSSOP  
(Top View)  
SD  
FAULT  
LINP  
LINN  
NC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
PVCC  
PVCC  
BSPL  
2
3
4
OUTPL  
GND  
5
NC  
6
OUTNL  
BSNL  
BSNR  
OUTNR  
GND  
AVCC  
GND  
GVDD  
PLIMIT  
RINN  
RINP  
NC  
7
Thermal  
Pad  
8
9
10  
11  
12  
13  
14  
OUTPR  
BSPR  
PVCC  
PVCC  
PBTL  
Not to scale  
Pin Functions  
PIN  
NUMBER  
I/O/P(1)  
DESCRIPTION  
NAME  
Shutdown logic input for audio amp (LOW = outputs Hi-Z, HIGH = outputs enabled). TTL logic levels  
with compliance to AVCC.  
SD  
1
I
Open drain output used to display short circuit or dc detect fault status. Voltage compliant to AVCC.  
Short circuit faults can be set to auto-recovery by connecting FAULT pin to SD pin. Otherwise, both  
short circuit faults and dc detect faults must be reset by cycling PVCC.  
FAULT  
2
O
LINP  
LINN  
NC  
3
I
I
Positive audio input for left channel. Biased at 3 V.  
Negative audio input for left channel. Biased at 3 V.  
No Connect Pin. Can be shorted to PVCC or shorted to GND or left open.  
Analog supply  
4
5, 6, 13  
I
AVCC  
GND  
7
8
P
P
Analog signal ground.  
(1) I = Input, O = Output, P = Power  
4
Copyright © 2016–2020, Texas Instruments Incorporated  
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
PIN  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
Pin Functions (continued)  
I/O/P(1)  
DESCRIPTION  
NAME  
GVDD  
PLIMIT  
RINN  
NUMBER  
9
O
I
High-side FET gate drive supply. Nominal voltage is 7 V.  
Power Limiter Control pin  
10  
11  
12  
14  
I
Negative audio input for right channel. Biased at 3 V.  
Positive audio input for right channel. Biased at 3 V.  
RINP  
I
PBTL  
I
Parallel BTL mode select pin. L=Stereo BTL mode, H=Mono PBTL mode  
Power supply for right channel H-bridge. Right channel and left channel power supply inputs are  
connected internally.  
PVCC  
15, 16  
P
BSPR  
OUTPR  
GND  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
I
Bootstrap I/O for right channel, positive high-side FET.  
Class-D H-bridge positive output for right channel.  
Power ground for the H-bridges.  
O
P
O
I
OUTNR  
BSNR  
BSNL  
Class-D H-bridge negative output for right channel.  
Bootstrap I/O for right channel, negative high-side FET.  
Bootstrap I/O for left channel, negative high-side FET.  
Class-D H-bridge negative output for left channel.  
Power ground for the H-bridges.  
I
OUTNL  
GND  
O
P
O
I
OUTPL  
BSPL  
Class-D H-bridge positive output for left channel.  
Bootstrap I/O for left channel, positive high-side FET.  
Power supply for left channel H-bridge. Right channel and left channel power supply inputs are  
connected internally.  
PVCC  
27, 28  
P
P
Thermal Pad  
Connect to GND for best thermal and electrical performance.  
Copyright © 2016–2020, Texas Instruments Incorporated  
5
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage  
Input current  
AVCC to GND, PVCC to GND  
To any pin except supply pins  
–0.3  
20  
10  
AVCC + 0.3  
10  
mA  
V
–0.3  
Voltage  
Voltage  
SD, FAULT to GND(2)  
V/ms  
V
RINN, RINP, LINN, LINP  
BTL, PVCC > 12 V  
BTL, PVCC 12 V  
PBTL, PVCC > 12 V  
PBTL, PVCC 12 V  
–0.3  
4.8  
3.2  
2.5  
1.8  
6.3  
Minimum load resistance, RL  
Ω
Continuous total power dissipation  
Operating free-air temperature range, TA  
Temperature range  
See the Thermal Information Table  
(3)  
–40  
–65  
–65  
85  
°C  
°C  
°C  
150  
150  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The voltage slew rate of these pins must be restricted to no more than 10 V/ms. For higher slew rates, use a 100 kΩ resister in series  
with the pins.  
(3) The TPA3136D2 incorporates an exposed thermal pad on the underside of the chip. This acts as a heatsink, and it must be connected  
to a thermally dissipating plane for proper power dissipation. Failure to do so may result in the device going into thermal protection  
shutdown. See TI Technical Briefs SLMA002 for more information about using the TSSOP thermal pad.  
7.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
(1)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Charged device model (CDM), per JEDEC specification JESD22-C101  
V(ESD) Electrostatic discharge  
V
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
VCC Supply voltage  
VCC Supply voltage  
TEST CONDITIONS  
MIN MAX UNIT  
PVCC, AVCC  
PVCC, AVCC  
SD, PBTL  
TPA3136  
4.5 14.4  
V
V
TPA3136A  
8
14.4  
AVC  
C
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
2
V
SD, PBTL  
0.8  
0.8  
50  
5
V
V
VOL Low-level output voltage  
FAULT, RPULL-UP=100 k, PVCC=14.4 V  
SD, PBTL, VI = 2 V, AVCC = 12 V  
SD, PBTL, VI = 0.8 V, AVCC = 12 V  
IIH  
IIL  
High-level input current  
Low-level input current  
µA  
µA  
°C  
TA  
Operating free-air  
temperature(1)  
–40  
85  
TJ  
Operating junction  
temperature(1)  
-40 150  
°C  
(1) The TPA3136D2, TPA3136AD2 incorporates an exposed thermal pad on the underside of the chip. This acts as a heatsink, and it must  
be connected to a thermally dissipating plane for proper power dissipation. Failure to do so may result in the device going into thermal  
protection shutdown. See TI Technical Briefs SLMA002 for more information about using the TSSOP thermal pad.  
6
Copyright © 2016–2020, Texas Instruments Incorporated  
 
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
7.4 Thermal Information  
TPA3136D2,  
TPA3136AD2  
THERMAL METRIC(1)  
UNIT  
PWP (HTSSOP)  
28 PINS  
RθJA  
Junction-to-ambient thermal resistance  
30.3  
33.5  
17.5  
0.9  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
7.2  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
TA = 25°C, AVCC = PVCC = 12 V, RL = 6 (unless otherwise noted).(1) Over operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
DC CHARACTERISTICS  
Class-D output offset voltage (measured  
differentially)  
| VOS  
ICC  
ICC(SD)  
rDS(on)  
|
VI = 0 V, Gain = 26 dB  
1.5  
35  
15  
40  
mV  
mA  
Quiescent supply current  
SD = 2 V, no load, 300 ohm Ferrite Bead + 1nF Output  
Filter  
Quiescent supply current in shutdown mode  
Drain-source on-state resistance  
SD = 0.8 V, no load  
40  
240  
240  
60  
µA  
IO = 500 mA, TJ = 25°C High Side  
Excluding Metal and  
Bond Wire Resistance  
mΩ  
Low side  
G
Gain  
25  
26  
14  
27  
dB  
ms  
µs  
V
ton  
Turn-on time  
Turn-off time  
Gate drive supply  
SD = 2 V  
tOFF  
GVDD  
SD = 0.8 V  
IGVDD = 2 mA  
2.5  
6.9  
6.4  
7.4  
VRINN = 3.1 V and VRINN = 2.9 V, or VRINN = 2.9 V and  
VRINN = 3.1 V  
tDCDET  
DC detect time  
950  
ms  
AC CHARACTERISTICS  
200-mVPP ripple at 1 kHz,  
Gain = 26 dB, Inputs ac-coupled to GND  
PSRR  
Power supply ripple rejection  
–65  
dB  
PO  
Continuous output power  
THD+N = 10%, f = 1 kHz  
10  
10  
W
W
W
PO  
Continuous output power  
THD+N = 10%, f = 1 kHz, PVCC = 13 V, RL = 8 Ω  
THD+N = 10%, f = 1 kHz, PVCC = 13 V, RL = 4 Ω  
f = 1 kHz, PO = 5 W (half-power)  
PO  
Continuous output power, PBTL (mono)  
Total harmonic distortion + noise  
20  
THD+N  
0.06%  
91  
µV  
dBV  
dB  
Vn  
Output integrated noise  
20 Hz to 22 kHz, A-weighted filter, Gain = 26 dB  
–81  
–75  
Crosstalk  
VO = 1 Vrms, Gain = 26 dB, f = 1 kHz  
Maximum output at THD+N < 1%, f = 1 kHz,  
Gain = 26 dB, A-weighted  
SNR  
OTE  
Signal-to-noise ratio  
102  
dB  
Thermal trip point  
Thermal hysteresis  
150  
15  
°C  
°C  
(1) Using the TPA3136D2 EVM (SLOU444), unless otherwise noted.  
7.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
NOM  
315  
MAX  
355  
UNIT  
fOSC, SS  
Oscillator frequency, Spread Spectrum ON  
255  
kHz  
Copyright © 2016–2020, Texas Instruments Incorporated  
7
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
7.7 Typical Characteristics  
All Measurements taken at 26dB closed loop gain, 1-kHz audio, T A= 25°C unless otherwise noted. Measurements were  
made with AES17 filter using the TPA3136D2 EVM, which is available at ti.com.  
10  
10  
1W  
2.5W  
5W  
1W  
2.5W  
5W  
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
50 100 200  
500 1k  
Frequency (Hz)  
2k  
5k 10k 20k  
20  
50 100 200  
500 1k  
Frequency (Hz)  
2k  
5k 10k 20k  
D001  
D002  
AVCC=PVCC = 12 V, Load = 6 Ω + 47 µH, 1 W, 2.5 W, 5 W  
AVCC=PVCC = 13 V, Load = 8 Ω + 66 µH, 1 W, 2.5 W, 5 W  
Figure 1. Total Harmonic Distortion vs Frequency (BTL)  
Figure 2. Total Harmonic Distortion vs Frequency (BTL)  
10  
10  
20 Hz  
1 kHz  
20 Hz  
1 kHz  
1
1
0.1  
0.1  
0.01  
10m 20m 50m 100m200m 500m  
Output Power (W)  
0.01  
10m 20m 50m 100m200m 500m  
Output Power (W)  
1
2
5
10 20  
1
2
5
10 20  
D003  
D004  
AVCC=PVCC = 12 V, Load = 6 Ω + 47 µH, 20 Hz, 1 kHz  
AVCC=PVCC = 13 V, Load = 8 Ω + 66 µH, 20 Hz, 1 kHz  
Figure 3. Total Harmonic Distortion + Noise vs Output  
Power (BTL)  
Figure 4. Total Harmonic Distortion + Noise vs Output  
Power (BTL)  
20  
16  
18  
16  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
2
2
0
0
4
5
6
7
8
9
Supply Voltage (V)  
10 11 12 13 14 15  
4
5
6
7
8
9
Supply Voltage (V)  
10 11 12 13 14 15  
D005  
D006  
AVCC=PVCC = 4.5 V to 14.4 V, Load = 6 Ω + 47 µH  
Figure 5. Output Power vs Supply Voltage (BTL)  
AVCC=PVCC = 4.5 V to 14.4 V, Load = 8 Ω + 66 µH  
Figure 6. Output Power vs Supply Voltage (BTL)  
8
Copyright © 2016–2020, Texas Instruments Incorporated  
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
Typical Characteristics (continued)  
All Measurements taken at 26dB closed loop gain, 1-kHz audio, T A= 25°C unless otherwise noted. Measurements were  
made with AES17 filter using the TPA3136D2 EVM, which is available at ti.com.  
36  
32  
28  
24  
20  
16  
12  
8
300  
240  
180  
120  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-60  
-120  
-180  
-240  
PVcc = 6V  
PVcc = 12V  
PVcc = 14.4V  
Gain  
Phase  
4
0
20  
50 100 200  
500 1k  
Frequency  
2k  
5k 10k 20k  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Total Output Power (W)  
D007  
D008  
AVCC=PVCC = 12 V, Load = 6 Ω + 47 µH (device pins)  
AVCC=PVCC = 6 V, 12 V, 14.4 V, Load = 6 Ω + 47 µH  
Figure 7. Gain/Phase vs Frequency (BTL)  
Figure 8. Efficiency vs Output Power (BTL)  
100  
0
Ch 2 to Ch1  
Ch 1 to Ch2  
-10  
-20  
90  
80  
70  
60  
50  
40  
30  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
20  
PVcc = 6V  
PVcc = 13V  
PVcc = 14.4V  
-100  
-110  
-120  
10  
0
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Power (W)  
20  
50 100 200  
500 1k  
Frequency (Hz)  
2k  
5k 10k 20k  
D009  
D010  
AVCC=PVCC= 6 V, 13 V, 14.4 V, Load = 8 Ω + 66 µH  
AVCC=PVCC = 12 V, 1 W, Load = 6 Ω + 47 µH  
Figure 9. Efficiency vs Output Power (BTL)  
Figure 10. Crosstalk vs Frequency (BTL)  
0
10  
1 W  
2.5 W  
5 W  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
20  
50 100 200  
500 1k  
Frequency (Hz)  
2k  
5k 10k 20k  
20  
50 100 200  
500 1k  
Frequency (Hz)  
2k  
5k 10k 20k  
D011  
D012  
AVCC=PVCC = 12 V, Load = 4 Ω + 33 µH  
AVCC=PVCC = 13 V, Load = 4 Ω + 33 µH, 1 W, 2.5 W, 5 W  
Figure 11. Supply Ripple Rejection Ratio vs Frequency  
(BTL)  
Figure 12. Total Harmonic Distortion + Noise vs Frequency  
(PBTL)  
Copyright © 2016–2020, Texas Instruments Incorporated  
9
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
All Measurements taken at 26dB closed loop gain, 1-kHz audio, T A= 25°C unless otherwise noted. Measurements were  
made with AES17 filter using the TPA3136D2 EVM, which is available at ti.com.  
10  
32  
28  
24  
20  
16  
12  
8
20 Hz  
1 kHz  
1
0.1  
0.01  
4
0
10m 20m 50m100m200m 500m 1  
Output Power (W)  
2
5
10 20  
4
5
6
7
8
9
Supply Voltage (V)  
10 11 12 13 14 15  
D013  
D014  
AVCC=PVCC = 13 V, Load = 4 Ω + 33 µH, 20 Hz, 1 kHz  
AVCC=PVCC = 4.5 V to 14.4 V, Load = 4 Ω + 33 µH  
Figure 13. Total Harmonic Distortion + Noise vs Output  
Power (PBTL)  
Figure 14. Output Power vs Supply Voltage (PBTL)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVcc = 6V  
PVcc = 13V  
PVcc = 14.4V  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Total Output Power (W)  
D015  
AVCC=PVCC = 6 V, 13 V, 14.4 V, Load = 4 Ω + 33 µH  
Figure 15. Efficiency vs Output Power (PBTL)  
8 Parameter Measurement Information  
All parameters are measured according to the conditions described in the Specifications section.  
Most audio analyzers will not give correct readings of Class-D amplifiers’ performance due to their sensitivity to  
out of band noise present at the amplifier output. An AES-17 pre analyzer filter is recommended to use for Class-  
D amplifier measurements. In absence of such filter, a 30-kHz low-pass filter (10 + 47 nF) can be used to  
reduce the out of band noise remaining on the amplifier outputs.  
10  
Copyright © 2016–2020, Texas Instruments Incorporated  
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
9 Detailed Description  
9.1 Overview  
To facilitate system design, the TPA3136D2, TPA3136AD2 needs only a single power supply between 4.5 V (8V  
for TPA3136AD2) and 14.4 V for operation. An internal voltage regulator provides suitable voltage levels for the  
gate driver, digital, and low-voltage analog circuitry. Additionally, all circuitry requiring a floating voltage supply,  
as in the high-side gate drive, is accommodated by built-in bootstrap circuitry with integrated boot strap diodes  
requiring only an external capacitor for each half-bridge.  
The audio signal path, including the gate drive and output stage, is designed as identical, independent full-  
bridges. All decoupling capacitors should be placed as close to their associated pins as possible. In general, the  
physical loop with the power supply pins, decoupling capacitors and GND return path to the device pins must be  
kept as short as possible and with as little area as possible to minimize induction (see reference board  
documentation for additional information).  
For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin  
(BSXX) to the power-stage output pin (OUTXX). When the power-stage output is low, the bootstrap capacitor is  
charged through an internal diode connected between the gate-drive power-supply pin (GVDD) and the bootstrap  
pins. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output potential  
and thus provides a suitable voltage supply for the high-side gate driver. In an application with PWM switching  
frequencies in the range of 315 kHz, use ceramic capacitors with at least 220-nF capacitance, size 0603 or 0805,  
for the bootstrap supply. These capacitors ensure sufficient energy storage, even during clipped low frequency  
audio signals, to keep the high-side power stage FET (LDMOS) fully turned on during the remaining part of its  
ON cycle.  
Special attention should be paid to the power-stage power supply; this includes component selection, PCB  
placement, and routing. For optimal electrical performance, EMI compliance, and system reliability, each PVCC  
pin should be decoupled with ceramic capacitors that are placed as close as possible to each supply pin. It is  
recommended to follow the PCB layout of the TPA3136D2, TPA3136AD2 reference design. For additional  
information on recommended power supply and required components, see the application diagrams in this data  
sheet.  
The PVCC power supply should have low output impedance and low noise. The power-supply ramp and SD  
release sequence is not critical for device reliability as facilitated by the internal power-on-reset circuit, but it is  
recommended to release SD after the power supply is settled for minimum turn on audible artifacts.  
Copyright © 2016–2020, Texas Instruments Incorporated  
11  
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
9.2 Functional Block Diagram  
GVDD  
BSPL  
PVCC  
PVCC  
OUTPL  
FB  
Gate  
Drive  
OUTPL  
PBTL Select  
OUTPL FB  
GND  
LINP  
LINN  
PWM  
Logic  
BSNL  
PLIMIT  
GVDD  
PVCC  
PVCC  
OUTNL FB  
FAULT  
OUTNL  
FB  
Gate  
Drive  
OUTNL  
GND  
TTL  
Buffer  
SD  
SD Detect  
DC Detect  
Startup  
Protection  
Logic  
Biases and  
References  
Spread Spectrum  
Control  
Ramp  
Generator  
Thermal  
Detect  
UVLO/  
OVLO  
LIMITER  
Reference  
BSNR  
PLIMIT  
GVDD  
PVCC  
AVDD  
PVCC  
LDO  
AVCC  
Regulator  
GVDD  
Gate  
Drive  
OUTNR  
GVDD  
+
OUTNR FB  
OUTNR  
FB  
œ
œ
œ
RINN  
RINP  
GND  
+
PWM  
Logic  
PLIMIT  
BSPR  
œ
GVDD  
+
+
+
PVCC  
PVCC  
OUTNR FB  
œ
Gate  
Drive  
PBTL Select  
OUTPR  
OUTPR  
FB  
PBTL  
Control  
PBTL  
GND  
12  
Copyright © 2016–2020, Texas Instruments Incorporated  
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
9.3 Feature Description  
9.3.1 Fixed Analog Gain  
The analog gain of the TPA3136D2, TPA3136AD2 is fixed to 26 dB.  
9.3.2 SD Operation  
The TPA3136D2, TPA3136AD2 device employs a shutdown mode of operation designed to reduce supply  
current (ICC) to the absolute minimum level during periods of nonuse for power conservation. The SD input pin  
should be held high (see specification table for trip point) during normal operation when the amplifier is in use.  
Pulling SD low causes the outputs to mute and the amplifier to enter a low-current state. Never leave SD  
unconnected, because amplifier operation would be unpredictable.  
For the best power-off pop performance, place the amplifier in the shutdown mode prior to removing the power  
supply voltage.  
9.3.3 PLIMIT  
The PLIMIT operation will, if selected, limit the output voltage level to a voltage level below the supply rail. In this  
case, the amplifier operates as if it was powered by a lower supply voltage, and thereby limiting the output power  
by voltage clipping. PLIMIT threshold is set by the PLIMIT pin voltage.  
Figure 16. PLIMIT Circuit Operation  
The PLIMIT circuit sets a limit on the output peak-to-peak voltage. The limiting is done by limiting the duty cycle  
to a fixed maximum value. The limit can be thought of as a "virtual" voltage rail which is lower than the supply  
connected to PVCC. The "virtual" rail is approximately four times the voltage at the PLIMIT pin. The output  
voltage can be used to calculate the maximum output power for a given maximum input voltage and speaker  
impedance.  
Copyright © 2016–2020, Texas Instruments Incorporated  
13  
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
Feature Description (continued)  
æ
ö2  
æ
ç
è
ö
÷
ø
RL  
´ V  
ç
÷
P
ç
÷
RL + 2 ´ RS  
è
ø
POUT  
=
for unclipped power  
2 ´ RL  
where  
POUT (10%THD) = 1.25 × POUT (unclipped)  
RL is the load resistance.  
RS is the total series resistance including RDS(on), and output filter resistance.  
VP is the peak amplitude, which is limited by "virtual" voltage rail.  
(1)  
9.3.4 Spread Spectrum and De-Phase Control  
The TPA3136D2, TPA3136AD2 device has built-in spread spectrum control of the oscillator frequency and de-  
phase of the PWM outputs to improve EMI performance. The spread spectrum schemes is internally fixed is  
always turned on.  
De-phase inverts the phase of the output PWM such that the idle output PWM waveforms of the two audio  
channels are inverted. De-phase does not affect the audio signal, or its polarity.  
9.3.5 GVDD Supply  
The GVDD Supply is used to power the gates of the output full bridge transistors. Add a 1-μF capacitor to ground  
at this pin.  
9.3.6 DC Detect  
The TPA3136D2, TPA3136AD2 device has circuitry which will protect the speakers from DC current which might  
occur due to defective capacitors on the input or shorts on the printed circuit board at the inputs. A DC detect  
fault will be reported on the FAULT pin as a low state. The DC Detect fault will also cause the amplifier to  
shutdown by changing the state of the outputs to Hi-Z.  
A DC Detect Fault is issued when the output differential duty-cycle of either channel exceeds 24% (±10%) for  
more than 950 msec at the same polarity. This feature protects the speaker from large DC currents or AC  
currents less than 2 Hz. To avoid nuisance faults due to the DC detect circuit, hold the SD pin low at power-up  
until the signals at the inputs are stable. Also, take care to match the impedance seen at the positive and  
negative inputs to avoid nuisance DC detect faults.  
The minimum differential input voltage required to trigger the DC detect is 130 mV.  
9.3.7 PBTL Select  
The TPA3136D2, TPA3136AD2 device offers the feature of parallel BTL operation with two outputs of each  
channel connected directly. If the PBTL (pin 14) is tied high, the positive and negative outputs of each channel  
(left and right) are synchronized and in phase. To operate in this PBTL (mono) mode, tie PBTL pin to VCC and  
apply the input signal to the RINP and RINN inputs and place the speaker between the LEFT and RIGHT outputs  
with OUTPL connected to OUTNL and OUTPR connected to OUTNR to parallel the output half bridges for  
highest power efficiency. For an example of the PBTL connection, see the schematic in the Typical Applications  
section.  
9.3.8 Short-Circuit Protection and Automatic Recovery Feature  
The TPA3136D2, TPA3136AD2 device has protection from overcurrent conditions caused by a short circuit on  
the output stage. The short circuit protection fault is reported on the FAULT pin as a low state. The amplifier  
outputs are switched to a Hi-Z state when the short circuit protection latch is engaged. The latch can be cleared  
by cycling the SD pin through the low state.  
If automatic recovery from the short circuit protection latch is desired, connect the FAULT pin directly to the SD  
pin. This allows the FAULT pin function to automatically drive the SD pin low which clears the short-circuit  
protection latch.  
14  
Copyright © 2016–2020, Texas Instruments Incorporated  
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
Feature Description (continued)  
9.3.9 Thermal Protection  
Thermal protection on the TPA3136D2, TPA3136AD2 device prevents damage to the device when the internal  
die temperature exceeds 150°C. There is a ±15°C tolerance on this trip point from device to device. Once the die  
temperature exceeds the thermal trip point, the device enters into the shutdown state and the outputs are  
disabled. This is a latched fault.  
Thermal protection faults are reported on the FAULT pin.  
If automatic recovery from the thermal protection latch is desired, connect the FAULT pin directly to the SD pin.  
This allows the FAULT pin function to automatically drive the SD pin low which clears the thermal protection  
latch.  
Copyright © 2016–2020, Texas Instruments Incorporated  
15  
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
9.4 Device Functional Modes  
The TPA3136D2, TPA3136AD2 device is running in BD-modulation.  
This is a modulation scheme that allows operation without the classic LC reconstruction filter when the amp is  
driving an inductive load with short speaker wires. Each output is switching from 0 volts to the supply voltage.  
The OUTPx and OUTNx are in phase with each other with no input so that there is little or no current in the  
speaker. The duty cycle of OUTPx is greater than 50% and OUTNx is less than 50% for positive output voltages.  
The duty cycle of OUTPx is less than 50% and OUTNx is greater than 50% for negative output voltages. The  
voltage across the load sits at 0 V throughout most of the switching period, reducing the switching current, which  
reduces any I2R losses in the load.  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
-
OUTP OUTN  
0V  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
OUTP-OUTN  
-
PVCC  
0A  
Speaker  
Current  
Figure 17. BD Mode Modulation  
16  
Copyright © 2016–2020, Texas Instruments Incorporated  
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TPA3136D2, TPA3136AD2 device is designed for use in inductor free applications with limited distance wire  
length) between amplifier and speakers like in TV sets, sound docks and Bluetooth speakers. The TPA3136D2,  
TPA3136AD2 device can either be configured in stereo or mono mode, depending on output power conditions.  
Depending on output power requirements and necessity for (speaker) load protection, the built in PLIMIT circuit  
can be used to control system power, see functional description of these features.  
10.2 Typical Applications  
PVCC  
FB1  
PVCCL  
OUTPL  
3.1A  
C7  
1000pF  
C2  
100 µF  
C3  
0.1µF  
C4  
1000pF  
C6  
1000pF  
R2  
68  
PVCC  
GND  
GND  
GND  
6R  
GND  
PVCCR  
GND  
C8  
100 µF  
C9  
0.1µF  
C10  
1000pF  
FB2  
OUTNL  
C11  
3.1A  
LINP  
LINN  
GND  
GND  
GND  
IN_LEFT  
C13  
1000pF  
C14  
1000pF  
1µF  
C15  
PVCC  
U1  
AVCC  
7
9
25  
23  
OUTPL  
OUTNL  
OUTPL  
OUTNL  
R4  
68  
R5  
R6  
1µF  
GND  
GVDD  
C1  
1µF  
20  
18  
OUTNR  
OUTPR  
39k  
56k  
OUTNR  
OUTPR  
28  
27  
PVCCL  
PVCCL  
C16  
1µF  
GND  
GND  
26  
22  
21  
17  
C17  
0.22µF  
C18  
0.22µF  
C19  
0.22µF  
C20  
0.22µF  
BSPL  
BSNL  
BSNR  
BSPR  
16  
15  
GND  
PVCCR  
PVCCR  
GND  
FB3  
GND  
OUTNR  
LINP  
LINN  
3
4
LINP  
LINN  
3.1A  
C22  
1000pF  
C23  
1000pF  
RINN  
RINP  
11  
12  
C24  
RINN  
RINP  
RINP  
RINN  
IN_RIGHT  
1µF  
C25  
R8  
68  
PVCC  
R9  
SD  
1
10  
14  
2
FAULT  
GND  
SD  
FAULT  
6R  
PLIMIT  
PBTL  
PLIMIT  
PBTL  
1µF  
24  
19  
PGND  
PGND  
100k  
GND  
GND  
5
6
8
NC  
NC  
NC  
GND  
PAD  
FB4  
13  
29  
OUTPR  
/SHUTDOWN  
3.1A  
C28  
1000pF  
TPA3136D2  
C27  
1000pF  
GND  
GND  
GND  
R11  
68  
GND  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 18. Stereo Class-D Amplifier with BTL Output and Single-Ended Inputs with Spread Spectrum  
Modulation  
Copyright © 2016–2020, Texas Instruments Incorporated  
17  
 
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
Typical Applications (continued)  
PVCC  
L1  
10µH  
C2  
100 µF  
C3  
0.1µF  
C4  
1000pF  
C6  
0.68uF  
PVCC  
GND  
GND  
GND  
GND  
C8  
100 µF  
C9  
0.1µF  
C10  
1000pF  
GND  
GND  
GND  
PVCC  
U1  
AVCC  
7
9
25  
23  
OUTPL  
OUTNL  
R5  
R6  
GVDD  
4R  
C1  
1µF  
20  
18  
39k  
56k  
OUTNR  
OUTPR  
28  
27  
PVCCL  
PVCCL  
C16  
1µF  
GND  
26  
22  
21  
17  
C17  
0.47µF  
BSPL  
BSNL  
BSNR  
BSPR  
16  
15  
PVCCR  
PVCCR  
GND  
GND  
C19  
0.47µF  
3
4
LINP  
LINN  
11  
12  
C24  
RINN  
RINP  
RINP  
RINN  
IN  
1µF  
C25  
PVCC  
R9  
SD  
1
10  
14  
2
FAULT  
SD  
FAULT  
PLIMIT  
PLIMIT  
PBTL  
1µF  
24  
19  
PGND  
PGND  
PVCC  
100k  
GND  
5
6
8
NC  
NC  
NC  
GND  
PAD  
L2  
R10  
100k  
13  
29  
/SHUTDOWN  
10µH  
TPA3136D2  
C27  
0.68uF  
GND  
GND  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 19. Stereo Class-D Amplifier with PBTL Output and Single-Ended Input with Spread Spectrum  
Modulation  
10.2.1 Design Requirements  
10.2.1.1 PCB Material Recommendation  
FR-4 Glass Epoxy material with 1 oz. (35 µm) is recommended for use with the TPA3136D2, TPA3136AD2. The  
use of this material can provide for higher power output, improved thermal performance, and better EMI margin  
(due to lower PCB trace inductance). It is recommended to use several GND underneath the device thermal pad  
for thermal coupling to a bottom side copper GND plane for best thermal performance.  
10.2.1.2 PVCC Capacitor Recommendation  
The large capacitors used in conjunction with each full-bridge, are referred to as the PVCC Capacitors. These  
capacitors should be selected for proper voltage margin and adequate capacitance to support the power  
requirements. In practice, with a well designed system power supply, 100 μF, 16 V will support most applications  
with 12-V power supply. 25-V capacitor rating is recommended for power supply voltage higher than 12 V. For  
The PVCC capacitors should be low ESR type because they are used in a circuit associated with high-speed  
switching.  
10.2.1.3 Decoupling Capacitor Recommendations  
In order to design an amplifier that has robust performance, passes regulatory requirements, and exhibits good  
audio performance, good quality decoupling capacitors should be used. In practice, X7R should be used in this  
application.  
The voltage of the decoupling capacitors should be selected in accordance with good design practices.  
Temperature, ripple current, and voltage overshoot must be considered. This fact is particularly true in the  
selection of the ceramic capacitors that are placed on the power supply to each full-bridge. They must withstand  
the voltage overshoot of the PWM switching, the heat generated by the amplifier during high power output, and  
the ripple current created by high power output. A minimum voltage rating of 16 V is required for use with a 12-V  
power supply.  
18  
Copyright © 2016–2020, Texas Instruments Incorporated  
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
Typical Applications (continued)  
10.2.2 Detailed Design Procedure  
A rising-edge transition on SD input allows the device to start switching. It is recommended to ramp the PVCC  
voltage to its desired value before releasing SD for minimum audible artifacts.  
The device is non-inverting the audio signal from input to output.  
The GVDD pin is not recommended to be used as a voltage source for external circuitry.  
10.2.2.1 Ferrite Bead Filter Considerations  
Using the Advanced Emissions Suppression Technology in the TPA3136D2, TPA3136AD2 amplifier it is possible  
to design a high efficiency Class-D audio amplifier while minimizing interference to surrounding circuits. It is also  
possible to accomplish this with only a low-cost ferrite bead filter. In this case it is necessary to carefully select  
the ferrite bead used in the filter.  
One important aspect of the ferrite bead selection is the type of material used in the ferrite bead. Not all ferrite  
material is alike, so it is important to select a material that is effective in the 10 to 100 MHz range which is key to  
the operation of the Class-D amplifier. Many of the specifications regulating consumer electronics have  
emissions limits as low as 30 MHz. It is important to use the ferrite bead filter to block radiation in the 30-MHz  
and above range from appearing on the speaker wires and the power supply lines which are good antennas for  
these signals. The impedance of the ferrite bead can be used along with a small capacitor with a value in the  
range of 1000 pF to reduce the frequency spectrum of the signal to an acceptable level. For best performance,  
the resonant frequency of the ferrite bead/ capacitor filter should be less than 10 MHz.  
Also, it is important that the ferrite bead is large enough to maintain its impedance at the peak currents expected  
for the amplifier. Some ferrite bead manufacturers specify the bead impedance at a variety of current levels. In  
this case it is possible to make sure the ferrite bead maintains an adequate amount of impedance at the peak  
current the amplifier will see. If these specifications are not available, it is also possible to estimate the bead's  
current handling capability by measuring the resonant frequency of the filter output at low power and at maximum  
power. A change of resonant frequency of less than fifty percent under this condition is desirable. Examples of  
ferrite beads which have been tested and work well with the TPA3136D2, TPA3136AD2 device include  
NFZ2MSM series from Murata.  
A high quality ceramic capacitor is also needed for the ferrite bead filter. A low ESR capacitor with good  
temperature and voltage characteristics will work best.  
Additional EMC improvements may be obtained by adding snubber networks from each of the class-D outputs to  
ground. Suggested values for a simple RC series snubber network would be 68 in series with a 100-pF  
capacitor although design of the snubber network is specific to every application and must be designed taking  
into account the parasitic reactance of the printed circuit board as well as the audio amp. Take care to evaluate  
the stress on the component in the snubber network especially if the amp is running at high PVCC. Also, make  
sure the layout of the snubber network is tight and returns directly to the GND or the thermal pad beneath the  
chip.  
10.2.2.2 Efficiency: LC Filter Required with the Traditional Class-D Modulation Scheme  
The main reason that the traditional class-D amplifier needs an output filter is that the switching waveform results  
in maximum current flow. This causes more loss in the load, which causes lower efficiency. The ripple current is  
large for the traditional modulation scheme, because the ripple current is proportional to voltage multiplied by the  
time at that voltage. The differential voltage swing is 2 × VCC, and the time at each voltage is half the period for  
the traditional modulation scheme. An ideal LC filter is needed to store the ripple current from each half cycle for  
the next half cycle, while any resistance causes power dissipation. The speaker is both resistive and reactive,  
whereas an LC filter is almost purely reactive.  
The TPA3136D2, TPA3136AD2 modulation scheme has little loss in the load without a filter because the pulses  
are short and the change in voltage is VCC instead of 2 × VCC. As the output power increases, the pulses widen,  
making the ripple current larger. Ripple current could be filtered with an LC filter for increased efficiency, but for  
most applications the filter is not needed.  
An LC filter with a cutoff frequency less than the class-D switching frequency allows the switching current to flow  
through the filter instead of the load. The filter has less resistance but higher impedance at the switching  
frequency than the speaker, which results in less power dissipation, therefore increasing efficiency.  
Copyright © 2016–2020, Texas Instruments Incorporated  
19  
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
Typical Applications (continued)  
10.2.2.3 When to Use an Output Filter for EMI Suppression  
The TPA3136D2 device has been tested with a simple ferrite bead filter for a variety of applications including  
long speaker wires up to 100 cm and high power. The TPA3136D2 EVM passes FCC Class B specifications  
under these conditions using twisted speaker wires. The size and type of ferrite bead can be selected to meet  
application requirements. Also, the filter capacitor can be increased if necessary with some impact on efficiency.  
There may be a few circuit instances where it is necessary to add a complete LC reconstruction filter. These  
circumstances might occur if there are nearby circuits which are sensitive to noise. In these cases, a classic  
second order Butterworth filter similar to those shown in the following figures can be used.  
Some systems have little power supply decoupling from the AC line, but are also subject to line conducted  
interference (LCI) regulations. These include systems powered by "wall warts" and "power bricks." In these  
cases, LC reconstruction filters can be the lowest cost means to pass LCI tests. Common mode chokes using  
low frequency ferrite material can also be effective at preventing line conducted interference.  
Ferrite  
Chip Bead  
OUTP  
1 nF  
Ferrite  
Chip Bead  
OUTN  
1 nF  
Figure 20. Typical Ferrite Chip Bead Filter (Chip Bead Example: NFZ2MSM series from Murata)  
33 mH  
OUTP  
C2  
L1  
1 mF  
33 mH  
OUTN  
C3  
L2  
1 mF  
Figure 21. Typical LC Output Filter, Cutoff Frequency of 27 kHz, Speaker Impedance = 8  
15 mH  
OUTP  
C2  
L1  
2.2 mF  
15 mH  
OUTN  
C3  
2.2 mF  
L2  
Figure 22. Typical LC Output Filter, Cutoff Frequency of 27 kHz, Speaker Impedance = 6 Ω  
10.2.2.4 Input Resistance  
The typical input resistance of the amplifier is fixed to 30 k±20%.  
20  
Copyright © 2016–2020, Texas Instruments Incorporated  
 
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
Typical Applications (continued)  
Z
f
C
i
Z
i
IN  
Input  
Signal  
10.2.2.5 Input Capacitor, Ci  
In the typical application, an input capacitor (Ci) is required to allow the amplifier to bias the input signal to the  
proper dc level for optimum operation. In this case, Ci and the input impedance of the amplifier (Zi) form a high-  
pass filter with the corner frequency determined in Equation 2.  
-3 dB  
1
2p Zi Ci  
fc  
=
f
c
(2)  
The value of Ci is important, as it directly affects the bass (low-frequency) performance of the circuit. Consider  
the example where Zi is 30 kand the specification calls for a flat bass response down to 20 Hz. Equation 2 is  
reconfigured as Equation 3.  
1
Ci =  
2p Zi fc  
(3)  
In this example, Ci is 0.27 µF; so, one would likely choose a value of 0.33 μF as this value is commonly used. A  
further consideration for this capacitor is the leakage path from the input source through the input network (Ci)  
and the feedback network to the load. This leakage current creates a dc offset voltage at the input to the  
amplifier that reduces useful headroom. For this reason, a low-leakage tantalum or ceramic capacitor is the best  
choice. When polarized capacitors are used, the positive side of the capacitor should face the amplifier input in  
most applications as the dc level there is held at 3 V, which is likely higher than the source dc level. Note that it  
is important to confirm the capacitor polarity in the application. Additionally, lead-free solder can create dc offset  
voltages and it is important to ensure that boards are cleaned properly.  
10.2.2.6 BSN and BSP Capacitors  
The full H-bridge output stages use only NMOS transistors. Therefore, they require bootstrap capacitors for the  
high side of each output to turn on correctly. A 0.22-μF ceramic capacitor, rated for at least 25 V, must be  
connected from each output to its corresponding bootstrap input. Specifically, one 0.22-μF capacitor must be  
connected from OUTPx to BSPx, and one 0.22-μF capacitor must be connected from OUTNx to BSNx. (See the  
application circuit diagram in Figure 18.)  
The bootstrap capacitors connected between the BSxx pins and corresponding output function as a floating  
power supply for the high-side N-channel power MOSFET gate drive circuitry. During each high-side switching  
cycle, the bootstrap capacitors hold the gate-to-source voltage high enough to keep the high-side MOSFETs  
turned on.  
Copyright © 2016–2020, Texas Instruments Incorporated  
21  
 
 
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
Typical Applications (continued)  
10.2.2.7 Differential Inputs  
The differential input stage of the amplifier cancels any noise that appears on both input lines of the channel. To  
use the TPA3136D2, TPA3136AD2 device with a differential source, connect the positive lead of the audio  
source to the INP input and the negative lead from the audio source to the INN input. To use the TPA3136D2,  
TPA3136AD2 with a single-ended source, ac ground the INP or INN input through a capacitor equal in value to  
the input capacitor on INN or INP and apply the audio source to either input. In a single-ended input application,  
the unused input should be ac grounded at the audio source instead of at the device input for best noise  
performance. For good transient performance, the impedance seen at each of the two differential inputs should  
be the same.  
The impedance seen at the inputs should be limited to an RC time constant of 1 ms or less if possible. This is to  
allow the input dc blocking capacitors to become completely charged during the 14-ms power-up time. If the input  
capacitors are not allowed to completely charge, there is some additional sensitivity to component matching  
which can result in pop if the input components are not well matched.  
10.2.2.8 Using Low-ESR Capacitors  
Low-ESR capacitors are recommended throughout this application section. A real (as opposed to ideal) capacitor  
can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this resistor  
minimizes the beneficial effects of the capacitor in the circuit. The lower the equivalent value of this resistance,  
the more the real capacitor behaves like an ideal capacitor.  
22  
Copyright © 2016–2020, Texas Instruments Incorporated  
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
Typical Applications (continued)  
10.2.3 Application Performance Curves  
10.2.3.1 EN55013 Radiated Emissions Results  
TPA3136D2 EVM, PVCC = 12 V, 8-Ω speakers, PO = 4 W  
Figure 23. Radiated Emission - Horizontal  
Figure 24. Radiated Emission - Vertical  
10.2.3.2 EN55022 Conducted Emissions Results  
TPA3136D2 EVM, PVCC = 12 V, 8-Ω speakers, PO = 4 W  
EN55022 Class B  
EN55022 Class B  
80  
80  
70  
60  
50  
40  
30  
20  
QP readings  
QP limit  
QP readings  
QP limit  
70  
60  
50  
40  
30  
20  
0.15  
0.3 0.5  
1
2
Frequency (MHz)  
3
5
10  
20 30  
0.15  
0.3 0.5  
1
2
Frequency (MHz)  
3
5
10  
20 30  
Figure 25. Conducted Emission - Line  
Figure 26. Conducted Emission - Neutral  
Copyright © 2016–2020, Texas Instruments Incorporated  
23  
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
11 Power Supply Recommendations  
11.1 Power Supply Decoupling, CS  
The TPA3136D2, TPA3136AD2 device is a high-performance CMOS audio amplifier that requires adequate  
power supply decoupling to ensure that the output total harmonic distortion (THD) is as low as possible. Power  
supply decoupling also prevents oscillations for long lead lengths between the amplifier and the speaker.  
Optimum decoupling is achieved by using a network of capacitors of different types that target specific types of  
noise on the power supply leads. For higher frequency transients due to parasitic circuit elements such as bond  
wire and copper trace inductances as well as lead frame capacitance, a good quality low equivalent-series-  
resistance (ESR) ceramic capacitor of value between 220 pF and 1000 pF works well. This capacitor should be  
placed as close to the device PVCC pins and system ground (either GND pins or thermal pad) as possible. For  
mid-frequency noise due to filter resonances or PWM switching transients as well as digital hash on the line,  
another good quality capacitor typically 0.1 μF to 1 µF placed as close as possible to the device PVCC leads  
works best. For filtering lower frequency noise signals, a larger aluminum electrolytic capacitor of 100 μF or  
greater placed near the audio power amplifier is recommended. The 100-μF capacitor also serves as a local  
storage capacitor for supplying current during large signal transients on the amplifier outputs. The PVCC pins  
provide the power to the output transistors, so a 100-µF or larger capacitor should be placed on each PVCC pin.  
A 1-µF capacitor on the AVCC pin is adequate. Also, a small decoupling resistor between AVCC and PVCC can  
be used to keep high frequency class-D noise from entering the linear input amplifiers.  
24  
Copyright © 2016–2020, Texas Instruments Incorporated  
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
12 Layout  
12.1 Layout Guidelines  
The TPA3136D2, TPA3136AD2 device can be used with a small, inexpensive ferrite bead output filter for most  
applications. However, since the Class-D switching edges are fast, it is necessary to take care when planning the  
layout of the printed circuit board. The following suggestions will help to meet EMC requirements.  
Decoupling capacitors—The high-frequency decoupling capacitors should be placed as close to the PVCC  
and AVCC pins as possible. Large (100-µF or greater) bulk power supply decoupling capacitors should be  
placed near the TPA3136D2, TPA3136AD2 device on the PVCC supplies. Local, high-frequency bypass  
capacitors should be placed as close to the PVCC pins as possible. These caps can be connected to the  
thermal pad directly for an excellent ground connection. Consider adding a small, good quality low ESR  
ceramic capacitor between 220 pF and 1000 pF and a larger mid-frequency cap of value between 0.1 μF and  
1 μF also of good quality to the PVCC connections at each end of the chip.  
Keep the current loop from each of the outputs through the ferrite bead and the small filter cap and back to  
GND as small and tight as possible. The size of this current loop determines its effectiveness as an antenna.  
Grounding—The AVCC (pin 14) decoupling capacitor should be connected to ground (GND). The PVCC  
decoupling capacitors should connect to GND. Analog ground and power ground should be connected at the  
thermal pad, which should be used as a central ground connection or star ground for the TPA3136D2,  
TPA3136AD2.  
Output filter—The ferrite EMI filter (Figure 20) should be placed as close to the output pins as possible for the  
best EMI performance. The capacitors used in the ferrite should be grounded to power ground.  
Thermal Pad—The thermal pad must be soldered to the PCB for proper thermal performance and optimal  
reliability. The dimensions of the thermal pad and thermal land should be 6.46 mm × 2.35 mm. Six rows of  
solid vias (three vias per row, 0.3302 mm or 13 mils diameter) should be equally spaced underneath the  
thermal land. The vias should connect to a solid copper plane, either on an internal layer or on the bottom  
layer of the PCB. The vias must be solid vias, not thermal relief or webbed vias. See the TI Application  
Report SLMA002 for more information about using the TSSOP thermal pad. For recommended PCB  
footprints, see figures at the end of this data sheet.  
For an example layout, see the TPA3136D2 Evaluation Module (TPA3136D2EVM) User Manual. Both the EVM  
user manual and the thermal pad application report are available on the TI Web site at http://www.ti.com.  
Copyright © 2016–2020, Texas Instruments Incorporated  
25  
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
12.2 Layout Example  
100mF  
100nF  
FB  
1
2
3
4
5
6
7
28  
27  
26  
25  
24  
23  
22  
1nF  
1nF  
1nF  
0.22mF  
FB  
FB  
0.22mF  
0.22mF  
1mF  
8
21  
9
20  
19  
18  
17  
1mF  
10  
1nF  
1nF  
11  
12  
0.22mF  
13  
14  
16  
15  
1nF  
FB  
100nF  
100mF  
Top Layer Ground and Thermal Pad  
Via to Bottom Ground Plane  
Top Layer Signal Traces  
Pad to Top Layer Ground Pour  
Figure 27. BTL Layout Example  
26  
版权 © 2016–2020, Texas Instruments Incorporated  
TPA3136D2, TPA3136AD2  
www.ti.com.cn  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
13 器件和文档支持  
13.1 器件支持  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.2 文档支持  
13.2.1 相关文档  
PowerPAD™ 耐热增强型封装应用报告》(文献编号:SLMA002)  
13.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
TPA3136D2  
TPA3136AD2  
13.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.5 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.6 商标  
SpeakerGuard, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016–2020, Texas Instruments Incorporated  
27  
TPA3136D2, TPA3136AD2  
ZHCSF30F MAY 2016REVISED JANUARY 2020  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
28  
版权 © 2016–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPA3136AD2PWP  
TPA3136AD2PWPR  
TPA3136D2PWP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
PWP  
28  
28  
28  
28  
50  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
TPA3136AD2  
2000 RoHS & Green  
50 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
TPA3136AD2  
TPA3136D2  
TPA3136D2  
TPA3136D2PWPR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPA3136AD2PWPR  
TPA3136D2PWPR  
HTSSOP PWP  
HTSSOP PWP  
28  
28  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
6.9  
6.9  
10.2  
10.2  
1.8  
1.8  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPA3136AD2PWPR  
TPA3136D2PWPR  
HTSSOP  
HTSSOP  
PWP  
PWP  
28  
28  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPA3136AD2PWP  
TPA3136D2PWP  
PWP  
PWP  
HTSSOP  
HTSSOP  
28  
28  
50  
50  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
PWP 28  
4.4 x 9.7, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224765/B  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  
配单直通车
TPA3136D2PWPR产品参数
型号:TPA3136D2PWPR
Brand Name:Texas Instruments
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:TEXAS INSTRUMENTS INC
包装说明:HTSSOP,
Reach Compliance Code:compliant
ECCN代码:EAR99
Factory Lead Time:6 weeks
风险等级:1.66
标称带宽:22 kHz
商用集成电路类型:AUDIO AMPLIFIER
增益:16.4 dB
JESD-30 代码:R-PDSO-G28
JESD-609代码:e4
长度:9.7 mm
湿度敏感等级:3
信道数量:2
功能数量:1
端子数量:28
最高工作温度:85 °C
最低工作温度:-40 °C
标称输出功率:20 W
封装主体材料:PLASTIC/EPOXY
封装代码:HTSSOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, HEAT SINK/SLUG, THIN PROFILE, SHRINK PITCH
峰值回流温度(摄氏度):NOT SPECIFIED
座面最大高度:1.2 mm
最大供电电压 (Vsup):14.4 V
最小供电电压 (Vsup):4.5 V
表面贴装:YES
技术:CMOS
温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:4.4 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!